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Separable potentials from Gamow states
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A separable approximation to a two-body interaction is constructed from Gamow states. It was
found possible to reproduce on- and off-shell quantities of a solvable model with good accuracy and
without the occurrence of spurious zero with resonances. No free parameters were introduced to
achieve these results.

I. INTRODUCTION

The description of realistic two-body interactions in
few-body calculations is a difficult task to achieve. One
usually tries to approximate them by a separable form
which ideally should reproduce well both the on-shell and
off-shell behavior of the scattering amplitudes.

Many attempts in this direction have been pursued with
a view to either directly obtain a good fit to phase shifts
and other observables' or to approximate given nonsepar-
able interactions. For the latter purpose the Ernst-
Shakin-Thaler (EST) method has been used extensively. '

However, this method, besides being ambiguous as a
prescription, also introduces quite often spurious results,
as can be seen from the discussion in Ref. 6.

In this work we discuss an ansatz for the separable ap-
proximation based on the use of Gamow states. This
procedure not only appears to be suitable for reproducing
the phase shifts well, it also gives a good description of
the off-shell T matrix and is free of spurious anomalies
such as poles on the real energy axis which are responsible
for "oscillations" or jumps in the phase shifts as functions
of energy.

II. The Method

Gamow states were first introduced to describe alpha
decay. They are defined as solutions of the Schrodinger
equation with purely outgoing wave boundary conditions.
These states correspond in general to complex energies,
and are solutions of the equation

Vtv= g V lf. )~. &f
n, m

(3)

with (b, ')„=&f„~V
~ f ). The functions

~ f ) are
then chosen as the bound and Gamow states, respectively,
associated with the potential V. From this ansatz the se-
parable potential of Eq. (3) shares these states and their
energies with the potential V, and the corresponding S
matrix has the first N poles at the correct positions. In
fact, the T matrix for the potential (3) can be written as

t~(k) = y ~ q„)D„(k)& q
n, m

(4)

for the specific case of the nucleon-nucleon interaction.
For negative energies Eq. (1) is solved by the bound states,
while for complex momenta, with negative imaginary
part, we consider the general vector to describe resonant
phenomena. The momenta associated with the bound and
Gamow states mark the poles of the S matrix in the com-
plex k plane.

Our method consists in constructing a separable rank X
potential whose first N bound or Gamow states coincide
with the corresponding N states of the original potential.
This procedure reproduces quite well the phase shifts for
all energies, provided X is large enough.

According to Adhikari and Sloan, the simplest way to
build up a separable expansion V~ of rank N for a poten-
tial V, such that the action of V~ and V on a set of linear-
ly independent suitably chosen functions

~ f~ ) is the
same, namely, Vtv

~ f )=V
~ f ) for all I =1, . . . , N,

has the explicit form,

[1—Gp(k) V] i tt ) =0, (1) where

where Gp(k) is the analytic continuation in the complex k
plane of the free propagator. With each Gamow state g, a
resonance vector

~ y ) = V
~ f ) can be associated, obvious-

ly satisfying

[1—VGp(k)]
f y) =0 .

While the Gamow states grow exponentially for large r,
one sees from (2) that the corresponding resonance vectors
belong to I, provided V is of compact support, or more
generally that it decreases exponentially; see Refs. 8 and 9

(D '(k))„=&f„~(V —VGp(k))V ~f

Note that we obtain Hermitian V~ without involving
"anti-Gamow vectors, " that is, vectors with negative real
part of k, in contrast to the approach of Fuller. ' Actual-
ly one verifies that the potential V& produces not only the
first Gamow vector but also automatically the anti-
Gamow state with k interchanged by —k*. Calculations
support the idea that better fits are obtained by including
a larger number of Gamow vectors instead of following
Fuller's procedure.
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III. RESULTS AND DISCUSSION

A. Model calculation
of the phase shifts

In order to apply the method described above, a model
for the potential V has to be selected. We have chosen an
attractive spherical rectangular well and a barrier of the
form

05-

Q t 5

V(r)= —V& r &a

=V2 a &r &6

=0 r)b,
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which allows for an easy comparison with exact results.
The s-wave Gamow states for this potential are ob-

tained looking for the solution of the Schrodinger equa-
tion for r & b with purely outgoing boundary conditions.
This imposes a restriction on the complex momentum k,
according to the equation

r

sinhx tanhy sinhx coshx+

FIG. 1. Phase shifts in radians for different rank approxima-
tions for the spherical well potential described in the text, with
parameters fi /2m=1, V&

——2.25, V2 ——4, a=1, b=2. The full
1ine corresponds to the exact phase shifts, the dotted line to the
rank one approximation, and the dashed line to rank two. The
rank %=3 curve coincides with the exact one within graphical
accuracy. Note that for fm as the unit of length V&

——46.0 MeV.

with x =(b —a)P, y =ak&, X=(V2 —k )', and
k, =( V, ~k')'".

The solution of Eq. (6) was obtained by making use of
the Newton method for a complex variable. In Table I
the first few Gamow momenta for the quoted potential
parameters are reported. Figure 1 shows different rank
approximations compared with the exact result. The rank
three, i.e., the approximation which includes the first
three Gamow states quoted in Table I, already reproduces
quite well the phase shifts up to ka =5.5. For larger k,
the phase shifts become negligibly small and it is not
necessary to include further Gamow vectors in the separ-
able expansion. The position of the corresponding
Gamow momenta in the complex plane is displayed in
Fig. 2 for the exact and rank N= 3 calculations.

%'e can also see an interesting phenomenon which
occurs going from rank one to rank two. The asymptotic
value of the phase shift jumps from —m to zero. In view
of l.evinson's theorem, this means that the rank-one ap-
proximation introduces a spurious bound state in spite of
providing a good description of the resonance behavior

around ka =1.51. This can easily be understood since the
first Gamow state

~ P& ) is well inside the attractive well,
so that the matrix element (P~

~

V
~ g~ ) is quite large and

negative, playing the role of an effective coupling strength
for the separable potential. Therefore, the rank-one ap-
proximation is overbinding with respect to the original lo-
cal potential. This deficiency is cured by the rank-two ap-
proximation, i.e., when the second Gamow vector is also
included. Similar behavior is expected to occur whenever
an attractive potential produces a sharp resonance at low
energies.

The rank-two approximation already gives a reasonable
description of the phase shift, but it is necessary to also
include the third Gamow vector to get a fit, especially in
the resonance region at ka —1.51. It should be noticed
that both the second and the third Gamow state do not
correspond to real resonances. This implies that reso-
nance poles can be relevant in the description of the S ma-
trix even if they do not lie close to the real axis. We have
also verified that the Gamow separable approximation
works as well for a pure repulsive potential.

TABLE I. First seven Gamow vector momenta for the model
potential described in the text with parameters given by
Vl ——2.25, V2 ——4. a=1, b=2.

Imk

Irn K
20

Real K

1.51
3.30
4.68
6.31
7.82
9.42

10.97

—0.06
—0.54
—0.69

0.95
—0.98
—1.15
—1.16

—1.5-
-2

~ ~ o0 ~ ~
Q ~ ~ o ~ ~ ~0 ooo

FICx. 2. Complex plane representation of Gamow momenta
for exact and rank %=3 calculations. The dots represent the
exact solution and the circles the rank %=3 case.
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B. The problem of zero-wave resonances
in the EST method

It is instructive to compare our procedure with the usu-
al EST method which is simply a special case of the
Adhikari. and Sloan ansatz (3) with scattering states calcu-
lated at certain energies, called the reference energies, forf„.It was found that, if one chooses the real part of the
Gamow state energies as the selected energies at which the
reaction matrix has to be reproduced according to the
EST method, the phase shifts still compare very well with
the exact one; see Fig. 3. However, if in the EST pro-
cedure one does not properly choose the reference ener-
gies, the resulting phase shift can behave quite differently
from the exact ones. To demonstrate this point we
display in Fig. 4 a conventional EST calculation with
rank three. While Gamow momenta or even their rea1
parts only would lead- to a perfect fit of the phase shift, a
small displacement of the reference momenta to slightly
larger real values leads to quite inacceptable results (ex-
cept, of course, for the immediate neighborhoods of the
three reference momenta). This indicates that the quality
of the approximation profits dramatically from the intro-
duction of Gamow vectors and shows that the convention-
al EST procedure is quite unstable with respect to varia-
tions in the reference energies. Moreover, the convention-
al EST procedure is beset with unphysical zero-width res-
onances. Recently, Haidenbauer and Plessas discussed
the application of the EST method performed by Pieper
to obtain a finite rank approximation of the Reid soft core
potential. They found that the phase shifts -produced by
Pieper's potential can be totally wrong due to the appear-
ance of unphysical jumps in the phase shifts. This is at-
tributed to the presence of unphysical poles very near the
real energy axis of the matrix D„appearing in Eq. (4)
and was previously misinterpreted as a spurious small os-
cillp, tion.

To our knowledge no simple prescription has been
presented in the literature to cure this anomaly. The only
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FIG. 4. Phase shifts in radians. The full and dashed lines
correspond, respectively, to the exact phase shift and to the EST
method with reference momenta k=1.7, 3.4, 5.1; Note that for
fm as the unit of length these IC values are obviously in fm

attempt seems to be the one of Oryu who suggested a
method for a separable expansion that is able to shift the
unphysical poles to higher energies by increasing the rank
of the separable potential. However, it cannot be
guaranteed that these spurious poles are removed except
in the infinite rank limit. The separable expansions of the
type discussed here guarantee for a wide class of poten-
tials that the finite rank expansion cannot produce poles
on the real axis for large energies. Asymptotically all the
poles of the S matrix move away from the real k axis,
since by a simple application of the Riemann-Lebesgue
lemma D '(k) of Eq. (4) approaches the constant matrix
b, of Eq. (3), i.e., the Born approximation is correct.

An example of a spurious "wiggle" appearing in the
EST method is shown in Fig. 4 for a rank-one approxima-
tion. This "wiggle" is due to the presence of a node in the
Fourier-Bessel transform of the resonance wave function
g= Vg. In fact, the denominator in Eq. (4) can be written
in this case as

and

D '(k)=(@
~

V
~
f) —(@~ VGO(k)V

~
Q)
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FIG. 3. Phase shifts in radians for rank-one potentials. The
dashed line corresponds to the EST method with reference
momentum chosen at the real part of the resonance pole. The
full line is the Gamow separable approximation constructed
from the second Gamow vector. The dotted line is again EST
with reference momentum X=1.58.

(y~ VGO(k)V ~q) p f d
2 p2

where for simplicity, A' /2m= 1, and g (k) is the Fourier-
Bessel transform of the resonance wave function
q&(r) = (r

~

V
~
P). The on-shell t matrix is given by

t(p)= ig(k)
i

D '(k);
thus if the real part of D '(k) vanishes very near a node
of g (k), an extremely sharp peak in t (k) can be produced.
A11 our calculations indicate that the use of Gamow states
prevents such phenomena; see, for example, Fig. 1. For
example, fitting the scattering state at the real part of the
second Gamow energy the corresponding rank-one poten-
tial given by the EST produces a wiggle at a slightly lower
energy, but the wiggle is automatically removed by using
a rank-one approximation with the Gamow state at the
true complex energy, as shown in Fig. 3.
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Unfortunately we were not able to find a rigorous proof
that the method avoids in general these anomalies at low
energy for all rank approximations. We can argue, how-
ever, on physical grounds. In fact, according to our
method if the lowest energy resonances are generated at
energies with a proper finite imaginary part, the higher
energy resonances are expected to have a width at least as
large, consequently moving away from the real axis even
further. This argument is essentially based on semiclassi-
cal considerations. Moreover, one can show that asymp-
totically for large energies all the poles of a finite rank ap-
proximation have an increasing imaginary part. I.et us
suppose for simplicity the potential to be of compact sup-
port and consider the rank-one approximation.

D '(k) can be written as

D '(k)=b. ' —f d'x I d'y P*(x)V(x)

eik /x —y /

X V(y)g(y) .4' x —y

For momenta k in the lower half plane the integral will
not decrease as

~

k
~

—+oo, hence D(k) may have zeros
there, corresponding to resonance poles of the t matrix.
More detailed information is obtained if V(x) is of com-
pact support with V- Vo(R r), o &0 as r ap—proaches
R from below, and zero for r &R. The leading contribu-
tion to D for large

~

k
~

comes from the region of largest

~

x —y I, i.e., from
~

x ~, ~ y ~ ~&R and a straightforward
application of Watson's lemma" yields

k, = n +0(1),

y= inn +0(1) .0+2
2R

(12)
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These (weaker) estimates are in agreement with ours ex-
cept for the coefficient o. + 2 instead of 2o. + 3 for the
imaginary part of the Gamow momenta. It is amusing to
note that they would agree for o = —1. This is the scaling
dimension for the 5-shell potential and indeed describes

2ikA

D(k)=b ' —A(o') (1+0(
~

k
~

)),
(ik) + (10)

0,0

with

/1 ( o ) =2' I (2o +3 )8 (o.+ 1,o' )R Vo
~
Q(R )

~
/( o'+ 1),

8 and I being the usual beta and gamma functions. The
derivation makes use of the fact that Gamow vectors do
not have nodes, i.e., the behavior of the integrand near R
is given by that of V.

The imaginary and real parts of this asymptotic expres-
sion yield the asymptotic distributions of resonance poles
k =k, —iy:
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where n is even (odd) according to the positive (negative)
sign of b, .

This infinite sequence of resonances is distributed much
like the resonances of the local potential V which we are
approximating and for which it is known' that

FIG. 5. (a) Half-shell exact and rank n=3. The T matrix
T(k, k';k' ) is shown as a function of k for k'=0. , Re T
(exact); ———,ReT (rank n=3); —~ ——., Im T (exact);
ImT (rank n=3). (b) The same as in (a) for k'=1.402. (c) The
same as in (a) for k' =3.
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the asymptotic distribution of the resonance poles for this
interaction which is at the same time local and separable.

To discuss the case of rank N & I we must find the
asymptotic distribution of zeros for the determinant of
the matrix D, given by Eq. (10) where now 6 and A are
N)&N matrices. The matrix A,J is defined as in Eq. (11),
with

~
ttj(R)

~
replaced by @;(R)QJ(k), ij =I, . . . , N.

Note that A is a matrix of rank one, its range the multi-
ples of the vector (1(t;(R));

As a result we find

2ikR
deta —deth ' —const k)2o'+3 (13)

which is of the same form as Eq. (10) of the rank one
case. We can see from Fig. 2 that the asymptotic limit is
smoothly approached at values of ReX of the order of 20.

C. Model calculation
of the half-off-shell T matrix

Off-the-energy extensions are of major importance in
the description of nuclear structure and scattering quanti-
ties in light nuclei, such as the H, n- H, He, and H sys-
tems. Hence an approximation for the two-body interac-
tion is only suitable if it reproduces well the half-off-shell
t matrix. In order to verify this point the half-off-shell t
matrix t (k,k';k' ) was evaluated for the exact solution of
the interaction model and for the separable approxima-
tion. The results are displayed in Figs. 5(a)—(c) for dif-

ferent on-shell values.
The agreement between the exact and approximate real

and imaginary parts of the t matrices is excellent, up to an
energy roughly four times the height of the barrier V2. It
should be noted that a strongly varying set of functions is
reproduced well without any free parameters.

IV. CONCLUSIONS

From the above results and discussion one may con-
clude that Gamow state vectors can be successfully used
to construct separable approximations of local potentials.
The method presented here provides an approximate S
matrix which satisfies unitarity, is simply manageable,
free of spurious zero width resonances, and displays the
correct on- and off-shell behavior. Furthermore, the
prescription to obtain it is unambiguous; it contains no
free parameters.

Summarizing, the comparison of the exact solution and
the Gamow separable approximation for our model in-
teraction appears rather promising.

Equally good results were obtained in preliminary cal-
culations for "realistic potentials. " A full account of
these results will be presented in a forthcoming publica-
tion.
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