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Backward cross section in the generalized exciton model
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The double differential cross sections of the (p, p') process are calculated for 5~Fe, t2eSn, t97Au, and 2e98i

targets at Ep=62 MeV based on the generalized exciton model. Finite nuclear size effects are treated for
the scattering kernel. Our results indicate that even at backward angles the angular distribution of the pre-
equilibrium reaction can be well reproduced within the framework of the generalized exciton model.

The generalized exciton model' has been extensively ap-
plied to give the preequilibrium angular distributions. with
the help of a useful mathematical reformulation2 which
makes handling of it easier. Although the model was able
to reproduce the global characteristics of preequiiibrium an-
gular distributions at the incident energies of several tens of
MeV, it greatly underestimates the angular distribution at
backward angles. 45 Since the generalized exciton model is
widely used to analyze the extensive experimental data of
preequilibrium reaction, it is very important to investigate
whether the difficulty at the backward angles can be re-
moved by some modifications of the model or not. Former
approaches based on it used the Fermi gas model for target
nucleons in evaluating the single nucleon-nucleon scattering
kernel G(Q, II') (SSKG) between the fast nucleon and a
target one that describes the angular distribution of the fast
nucleon after a collision. It is this scattering kernel which
mainly dominates the angular distribution of the emitted
nucleon in the early stages of the reaction. We expect that
the treatment of finite nuclear size effects in the evaluation
of the SSKG plays a crucial role in explaining the angular
distribution at backward angles.

In the present work, we report briefly on a study of pre-
equilibrium angular distribution using the scattering kernel
along this line in the framework of the generalized exciton
model. We use the SSKG in describing the scattering pro-
cess between the fast nucleon N and a bound target nucleon
N, moving in the harmonic oscillator potential of the oscilla-
tor parameter ca. To simplify the model we assume that (i)
two nucleons N and N, interact with each other via the in-
teraction V05(r —r, ) and (ii) the scattering can be treated in
the plane-wave Born approximation. The strength Vo will

turn out to be canceled in the expression of SSKG in Eq.
(5). The effect of the refraction seems to be small at ener-
gies of several tens of MeV. 5 Under such assumptions the
differential cross section for the inelastic scattering of the

fast nucleon N by target nucleon N, moving in the lowest
bound state is obtained analytically. 7 We need to extend
such a calculation to all target nucleons which lie below the
Fermi level. Performing the summation over all target nu-
cleons moving in the n-fold degenerate states and' over all
excited states of n-fold degeneracy, we can obtain the dif-
ferential cross section in the analytic form

do'( n n) 0 ~ g gs y ( )
p I=-n

where o-0 is the free nucleon-nucleon scattering cross sec-
tion, p and p' are the momentum of the fast nucleon before
and after the collision, and h q is the momentum transfer.
The function f„(q) is defined by

f„(q) = (q'/2n') "/n! (2)

with n =4m co/A, and the coefficients C„"+
&

(i = —n, —n + 1, . . . , n ) are simple polynomials in n of
degree n. If we construct the differential cross section that
is a sum of Eq. (1) over all final subshells n and an average
over all occupied ones n, we can get the energy averaged
SSKG after doing its normalization over the angle. Since
making the average over all final nucleon energies discards
the important angle-energy correlation, 4 we should construct
the differential cross section averaged only within the small
region I' around its expectation value E' when we treat
scattering such that the fast nucleon N has energy F. and E'
before and after the collision, respectively. Such a smearing
of the final nucleon energy after a collision in the m-exciton
state is actually expected due to the finite time interval in
which collision occurs equivalent to the life iI/I of the m-

exciton state (uncertainty principle). We can make such a
cross section by introducing the following weight factor into
the sum over n and n such as

f

1 for bE —I /2» AE(n, n)» DE+I /2
w(n, n;I') = . . ':clear cut

0 for otherwise

I 1 Lorenzian
27r [AE(n, n) —AE]2+ (I/2)2

exp( —[AE (n, n ) —b E]2/(I'/2) 2): Gaussian4~1.

wh««E = E —E' is the energy loss of the fast nucleon N, and b, E(n, n) is the corresponding excitation energy of the target
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nucleon N, . It is then written as

nF n „(n)
x w(n, n;I')/g„)„dQ'

10
1

~ ~ ~

Sn(PP) E =62MeV-
~ ~ ~ exp,'(l- )

where g is the number of all occupied single particle states;
the sum is taken over all occupied subshells n, and over
ones n above the Fermi level nF, and below n,„(n). To
determine the maximum subshell quantum number n,„(n)
for each n, we demand that the energy E' is to be positive.
Finally we obtain the SSKG by

G(n, n)= ", „I ",~n,dO' " d jl' (5)

which now implicitly depends on E' as well as on E. The
present SSKG has a tractable form utilizing the analytic ex-
pressions of Eq. (1), which is suitable for easier application
of the generalized exciton model.

Double differential cross section for the emitted nucleon
in the early stages of the reaction can be calculated if we put
the eigenvalues p, l (/=0, 1, 2, . . .) of the SSKG of Eq. (5)
into the simple closed-form expression in Ref. 3. Consider-
ing that our p, I are dependent on energies of the fast nu-
cleon before and after the collision in the m-exciton state,
we make the following. g replacement:

(m+ 2 —mo)/2
PI P, l(Ein, El) x P, l(Et, E2)

x . x ltt, l (Em —m p/2~Eout)

E, = E~„—i x (E~„—E,„,) x 2
m —mo+ 2

(7)

%e have analyzed the angular distributions for several
(p, p') reactions with incident energies of several tens of
MeV. In the calculation, we always put the initial cxciton
number mo= 3, and other parameters peculiar to the exciton
model are the same as in Refs. 8 and 9. %e used the SSKG
based on Eqs. (4) and (5) with h'co=413 ' ', the weight
factor of the Gaussian type, or the clear cut one and fixed
the smearing width I of Eq. (3) to be 10 MeV. Our setting
of I = 10 MeV is consistent with the value of the width I
of every m-exciton state in the early stages in the usual ex-
citon model for the present incident energy of the proton.
Calculations with various choices of I show that the SSKG
is insensitive to its value for I" less than 10 MeV. In Fig. 1

wc compare the calculated angular distributions using Eq.
(7) with the experimental data'p for the reaction '2pSn(p, p')
with E„=62 MeV for three different outgoing energies. In

in the expansion coefficients (t(m). In Eq. (6), E~„and E,„,
arc the incident and the outgoing energies, respectively, of
the fast nucleon, and EI,E2, . . . are the mean intermediate
energies of the fast nucleon after a single collision, after a
double collision, etc. This substitution corresponds to ap-
proximately replacing the convolution-type integral of Eq.
(14) in Ref. 4 with mean intermediate energies E,
[i = 1 —(m —mp)/2] in the small energy interval I for
every intermediate energy integral. (Note that our Iu, l have
no dimension in contrast with their eigenvalues of MeV '. )
In a simple case that the emitted nucleon comes from the
m-exciton state, after having lost its initial energy equally in
every step of the total (m —mp+2)/2 times collisions, the
energies E; take the form
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FIG. 1. Comparison of the calculated and experimental angular
distributions for the reaction Sn{p,p ) at 62 MeV for outgoing
energies 30, 40, and 50 MeV. The solid curves show the calculated
results based on Eq. (7). The experimental data from Ref. 10 are
denoted by the solid circles. Gaussian type weight factor and the
value of I" =10 MeV are used for the SSKG in Eqs. (4) and (5).

the present calculation we used the weight factor of Gaus-
sian type. Another choice of the clear cut one gives the
similar result for this system. As is clearly seen from the
figure, the agreement is very good except at small angles.
Especially, the agreement in the backward angles is remark-
ably improved to the extent of reproducing the absolute
value of the cross section. The improvement of the back-
ward cross section originates from that of the SSKG due to
the use of the momentum wave function including finite
nuclear size effects over the former one based on the Fermi
gas model. 4 In fact, the calculated SSKG turned out to not
give a little backward contribution, where the transitions
n n of n = nF give the largest contribution in Eqs. (4) and
(5), increasing with the energy loss of the fast nucleon in a
collision. The discrepancy at small angles, which is usually
the case for every model, is discussed in Refs. 4 and 11. To
check the sensitivity of the result to Eq. (7), we have also
made the calculation using' the assumption that the fast nu-
cleon loses its energy randomly in every step of the total
(m —mp+2)/2 times successive collisions instead of Eq.
(7). This turned out to bring forth only a slight change
(within 20%) of Fig. 1. Our calculated results for other tar-
gets such as Fe, '9 Au, and Bi [tcp=55A 'i is used for
hcavy targets' '3 ' Au and 9Bi consistent with our result
that target nucleons lying at the Fermi surface largely con-
tribute to the whole transitions in Eq. (4)] show nearly the
same fitting with the experimental data, although the
overestimation of the calculated value becomes a little more
than the case of '2pSn target (within a factor of 2 or 3). The
results shown so far for various targets suggest the impor-
tance of treating finite size effects in order to explain the
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preequilibrium angular distribution at backward angles in
the framework of the generalized exciton model. A little
overestimation of the absolute values of the cross section
would be reduced in the more detailed estimation of SSKG

FIG. 2, Decomposition of the calculated cross section which is
given in Fig. 1 into contributions from the various exciton states
only for outgoing energy 30 MeV. The various broken curves la-

beled by m denote the cross sections coming from the m-exciton
state. The solid curve is the total cross section corresponding to the
curve of.Fig. 1 for E«, = 30 MeV.

than our simple model. %e show in Fig. 2 the decomposi-
tion of the cross section at E,„,=30 MeV shown in Fig. 1
into contributions from various exciton states. It is noticed
that at every angle there is the large contribution from the
m =3 exciton state (one-step process) in contrast with the
rapid falling off of its contribution at backward angles in the
results of the Fermi gas model. Figure 2 shows that at
backward angles both the one- and two-step processes ac-
count for about 30% of the total cross section, respectively,
and the remaining 40% comes from the processes more than
two step (m ) 5). The multistep direct reaction approach
by Tamura et ai. , " which made quantum-mechanical treat-
ment of the finite nucleus, is known to reproduce the pree-
quilibrium angular distributions very well. In their calcula-
tion the contribution of the two-step cross section accounts
for about 70% (30% one-step contribution) of the total one
at backward angles for ~7A1 target, or about 50% (50% one-
step contribution) for Bi at this outgoing energy. Com-
paring the present approach based on the generalized exci-
ton model with those, we see that the basic physical picture
looks quite different. From this point of view, further inves-
tigation is necessary to get much better understanding of the
preequilibrium particle emission process.

In conclusion, the use of the scattering kernel which in-
cludes finite nuclear size effects, as we11 as the influence of
Fermi motion and the Pauli principle, greatly improves the
backward cross section of preequilibrium nucleon emission
in the framework of the generalized exciton model. In the
calculation, one- and two-step processes dominate even at
backward angles, but those of more than two steps do not
give a little contribution. Further study to refine the
present model and to apply it to the light composite particle
emission is desired.
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