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The energies of muonic x-ray transitions sensitive to the nuclear charge parameters have been
l

measured with a precision up to 9 ppm in rnuonic Zr. Combining our muonic-atom results for the
equivalent nuclear charge radii Rk with recent elastic electron scattering data, the rms radius of
9 Zr could be determined as ( r 2) 'i2=4.2726(9) fm. In addition to the nuclear monopole charge dis-

tribution, nuclear polarization correlations between the muonic Is and 2s and the Is and the two 2p
states could be determined. With additional constraints from elastic electron scattering and theory,
the nuclear polarization corrections of the four lowest-lying states could be evaluated with precisions
of the order of 15%. Of particular significance is the result for the two 2p states, because the exper-
imentally determined 2pli2 correction is smaller than the nuclear polarization correction in the

2p3i2 state, in contrast to current theoretical models.

I. INTRODUCTION

The calculations of the nuclear polarization corrections
in muonic atoms are known to be difficult. ' The lack of
knowledge of the complete spectrum of nuclear excited
states, both discrete and continuous ones, demands the use
of specific nuclear models and leads to different results
depending on the approximations used. Typical quoted
uncertainties range from 10 to 50%%uo. These uncertainties
in the nuclear polarization calculations limit at present
the accuracy with which absolute nuclear charge moments
can be deduced from muonic-atom transition energies.
Most calculations so far have been performed for the
heavy, doubly-magic nucleus 0 Pb, but experimental
confirmations are largely missing. A recent study of
muonic Pb (Ref. 6) employing the data of Kessler
et al revealed .a discrepancy between theory and experi-
ment. In particular, several experimental correlations be-
tween the nuclear polarization corrections in the low-lying
muonic states of Pb are in disagreement with theory,
suggesting a fundamental problem in present theoretical
approaches to the nuclear polarization effect.

In order to study this problem further, and specifically,
in order to find out whether such an effect is systematic,
it is important to extend the measurements to lighter
muonic atoms. Former muonic-atom measurements on

ej 208&206pb, 142& 140Ce 138Ba., and '2cSn (Ref8.
8—10) did not arrive at definitive conclusions, due to lack
of precision. The present work deals for the first time
with a medium-3 nucleus, the semimagic nucleus Zr.
In order to obtain a sufficient number of nuclear parame-
ters, all transitions sensitive to the finite nuclear charge
extension have to be measured. In particular, muonic
transitions to and from the weakly populated 2s state
must be included. This state has, next to the 1s state, the
largest overlap with the nucleus. In addition, the muonic
2s wave function happens to be zero at the edge of the nu-
clear surface of Zr. Hence, it is sensitive to the interior
of that charge distribution. However, due to the low pop-
ulation of the 2s state, transitions to and from this state

are difficult to be precisely determined. In particular,
there is a large Compton background from more energetic
and strongly populated circular transitions. In order to
suppress this background, we have employed an anti-
Compton spectrometer.

From the present measurements, correlations between
the nuclear polarization corrections of different muonic
states will be deduced. Using a nuclear model, constraints
from the analysis of recent elastic electron scattering
data" and theoretical nuclear polarization corrections for
the n =3 (and higher) muonic states, ' ' it will be shown
that the nuclear polarization corrections of the ls, 2s,
2pii2, and 2@3/p levels can be determined with precisions
of the order of 15%. A comparison of the present results
with theoretical calculations exhibits the same kind of
discrepancy as does the muonic Pb experiment. Pre-
liminary data regarding the present Zr as well as a new

Pb experiment have been communicated at confer-
ences. ' '

Section II summarizes the theoretical background con-
cerning the interpretation of muonic transition energies
and emphasizes specifically the role of nuclear polariza-
tion corrections. Section III describes the experimental
setup at the superconducting muon channel of SIN and
the performance of our anti-Compton spectrometer. Also
included in this section is the calibration method used to
determine precise muonic transition energies. The
analysis with regard to the nuclear charge parameters is
treated in Sec. IV. Results in terms of nuclear polariza-
tion correlations, nuclear polarization corrections, and the
nuclear rms radius of Zr are presented. Finally, Sec. V
compares the experimental results with theory and stresses
in particular the discrepancy found for the sign of the nu-
clear polarization correction to the 2p splitting.

II. THEORY

In order to determine the nuclear charge parameters,
the measured muonic transition energies have to be com-
pared with calculations starting with the Dirac equation
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for a static nucleus. In addition to the electromagnetic
level shifts produced by the static, finite nuclear charge
distribution, there are additional shifts associated with
dynamical excitations of the nucleus. They are known as
nuclear polarization corrections. Due to the spin zero of
the Zr ground state, the dynamic hyperfine structure ef-
fects are negligible. Because of the well-known difficul-
ties associated with the solution of the relativistic bound
state problem, one depends in a practical way upon a
Hamiltonian formalism in which each physically impor-
tant effect is represented by an effective, separable poten-
tial. These effective potentials are generally added to the
Dirac equation in a perturbative way. Hence, we write the
total Hamiltonian of the muon-nucleus system as

A =H„+H~+ Vp+(V —Vp)=Hp+ Vg,

where Hp is the zero-order Hamiltonian, the sum of a rel-
ativistic muon Hamiltonian H& and a nuclear Hamiltoni-
an H~. The eigenfunctions of IIo are products of muonic
and nuclear wave functions. Included in Hp is a static
central potential Vo as seen by the muon. It represents
the average electrostatic potential generated by the extend-
ed nucleus,

p(r~)
Vp(rp) = (ol

I

—Z~ f ~'"~
I

IO&
r& —r&

Furthermore, the muonic part of Hp, H&, is assumed to
include all corrections not involving nuclear excitations
and static nuclear moments. These corrections are the
different orders of the electron-positron vacuum polariza-
tion, the p p+ and the hadronic vacuum polarizations,
the anomalous magnetic moment, the Lamb shift, i.e.,
first- and second-order vertex corrections, the relativistic
recoil, and the electron screening. ' For muonic Zr, these
different corrections are listed in Table I together with the
finite size binding energies. The latter were evaluated us-

ing for Vp(r„) a spherically symmetric Fermi-type charge
distribution, with the half-density radius c and the dif-
fuseness parameter a obtained from a least-squares fitting
procedure (see Sec. IV).

The residual muon-nuclear interaction Vz ——V —Vo
will change the unperturbed wave functions of the muon
and the nucleus by admixing or virtually exciting other
states. This normally results in an increase of the binding
energy of the total system. The nucleus therefore does not
simply act as a rigid charge distribution, but responds
dynamically to the electromagnetic muon probe. Such po-
larization effects may be described as virtual excitations
of nuclear states by the muon. The deexcitation of these
states to the ground state transfers energy back to the
probe. The muonic cascade does not result in real final
state excitations of the nucleus, but proceeds between the
different muonic atom levels which are displaced by the
virtual excitations from the positions they would have oc-
cupied for a rigid nucleus.

The nuclear polarization energy shift (NP) is calculated
in second order as

~ENP
j+p l J

where
~

i ) is a particular muon state coupled to the nu-
clear ground state, and the states

~
j) represent the entire

spectrum of all other muonic and excited nuclear states.
The different muon states are treated by a reference spec-
trum method, the high-lying nuclear states by energy-
weighted sum rules. ' The energy shifts b,E'NP for the
low-lying muonic levels (i (3) are calculated using the
computer codes BURP (Ref. 16) and MUoN (Ref. 17).
Table II shows detailed results of such theoretical nuclear
polarization calculations for the muonic 1s, 2s, 2@~/2,
2p3/p 3p~/2, and 3p3/2 states in Zr. Regarding the con-
tinuous, high-lying nuclear spectrum, the isoscalar and/or
isovector contributions for multipoles of order 0(A, (4
are listed. For each multipole, the strength is concentrat-
ed in a single resonant state whose energy is reproduced
by an empirical expression and whose strength is given by
energy-weighted sum rules. Also included in Table II are
electric monopole, quadrupole, and octupole contributions
of the low-lying nuclear states using the known excitation

TABLE I. Corrections to muon binding energies for Zr (in keV).

State

Finite size
binding energy

(a) (b)

Vacuum
polarization

(c)

Lamb
shift

(d)

Other
corrections

(e)

1 $&/2

2$ ~/2

2p 1/2

2p3n
3Pln
3p3/2
383/2
385/2

3642.965
1021.254
1147.770
1126.996
507.998
502.049
503.086
500.690

25.750
4.989
5.939
5.621
1.818
1.735
1.438
1.411

0.137
0.020
0.003
0.002
0.001
0.000
0.000
0.000

—1.231
—0.209
—0.001
—0.040
—0.003
—0.014
—0.003
—0.002

0.151
0.023
0.012
0.012
0.011
0.010
0.008
0.008

'The parameters c and a of the first column of Table VII were used in these calculations, together with
the theoretical nuclear polarization corrections of Table II.
All orders.

'p+p vacuum polarization and hadronic vacuum polarization.
First- and second-order vertex corrections, including anomalous magnetic moment.

'Relativistic recoil and electron screening corrections.
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TABLE II. Nuclear polarization (NP) corrections (in eV). Upper half: The states I$,Iv are isoscalar (S) and isovector ( V) giant
resonance states. Their respective excitation energies are estimated using an empirical formula. The strength of each electric mul-

tipole is determined by sum rules (Ref. 13). Lower half: Low-lying excited states whose reduced transition probabilities are precisely
known (Refs. 18 and 19).

Eexc
(MeV)

8(EA, )

( 2bA, )

1$ i/2 2$1/2
V S

2p i/z
V

2p 3/2

V S
3p i/2

V S
3p3/2

0+
1
2+
3
4+

147

178
16

8

81
395
72
13

5

25

22
2
1

13
49

9
2
0

12
1

0

1

34

1

0

11
1

0

0
30
4
1

0

0
10
0
0
0

0
9
0
0
0

0+
2+
2+
2+
3
3
3

1.76
2.18
3.31
3.84
2.75
5.65
5.78

0.000 07
0.065 30
0.007 84
0.022 40
0.084 21
0.006 74
0.001 41

4
73

8
23
40

3
1

0
9
1

2
3
0
0

NP (total) 1067 141 69 62 20

energies E,„, and transition strengths B( EA, ) of these
states. ""

III. EXP@,RIMENT

TABLE III. Target mass and isotopic composition.

Material
Amount

(g) 90zr
Isotopic abundance (%)

'Zr Zr Zr 96Z

99.36 0.30 0.17 0.12 0.04

A. Experimental setup and spectra

The experiment has been performed at the supercon-
ducting pE1 channel of the SIN ring accelerator at Villi-
gen, Switzerland. The primary proton beam had an inten-
sity of 120 pA, the selected pion momentum was 150
MeV/c, and the momentum of the backward decaying
muons 85 MeV/c. Typical stopped muon rates in a target
of effective thickness 0.49 g/cm were 600000/s as mea-
sured by a 1234 coincidence in the telescope counters.
The target consisted of 1 lg ZrOz powder enriched to
99.36% (see Table III). The muonic x-ray radiation and
the delayed nuclear y rays were detected by a total of
three semiconductor counters, namely a 2 cm planar
Ge(Li) diode with a resolution of 700 eV (FWHM) at 122
keV, an intrinsic Ge detector of size 65 cm and of resolu-
tion 1.75 keV at 1332 keV, and a 90 cm coaxial Ge(Li)
detector with a resolution of 2.0 keV at 1332 keV. In gen-
eral, setup and electronics were similar to former runs.
Special shielding, however, was required for the Compton
suppression spectrometer. This spectrometer consists of
the 65 cm intrinsic Ge detector, an inversely drifted, n-

type coaxial detector, surrounded in an asymmetrical way
by a NaI(T1) annulus of diameter 22 cm and length 29
cm. ' ' Under beam conditions and in the energy range

of interest (50—700 keV), an average Compton reduction
factor of 3—4 has been obtained. Figures 1(b)—(d) show
the circular 3d-2p as well as the weakly populated 3p-2s
and 2s-2p transitions taken with our anti-Compton spec-
trometer. The peak-to-background ratios of the latter two
transitions are of the order of 1:1 or better. Without
Compton suppression, there would be a large background
from transitions between strongly populated circular or-
bits with higher energies (2p-1 s, 3d-2p, and 4f 3d). -

Hence, it would not have been possible to obtain the re-
quired precision in energy. Also shown in Fig. 1 [Fig.
1(a)] are the two high-energetic 2p-1 s transitions in muon-
ic Zr taken with the 65 cm detector without anti-
Compton suppression. All spectra in Fig. 1 are parts of
so-called "prompt" spectra, i.e., spectra taken in prompt
coincidence with a stopped muon. Calibration spectra
were recorded for a time period of 200 ns, but only if an

arriving muon was not stopped in the target (12A1234
coincidence). In this way, the beam loading could be
closely reproduced. The different calibration sources to-
gether with their respective transition energies and uncer-
tainties are listed in Table IV. ' The sources were
located in such a way as to ensure an irradiation of the Ge
detectors similar to that from the enriched Zr target.
Finally, spectra were recorded within 20—120 ns after a
stopped muon. These spectra contain preferentially de-
layed nuclear y rays, i.e., y rays originating after weak
nuclear muon capture in Zr. They also show calibration
peaks feeding through by accidental coincidences. The
strongest calibration lines appear in addition in the
prompt spectra which had a time window of 20 ns width.
Inelastic neutron scattering could induce further prompt
peaks. However, the chances of accidental degeneracy of
muonic transitions with prompt nuclear deexcitation y
lines are negligible, since the first excited state of the sem-
imagic Zr nucleus lies 1.76 MeV above its ground state,
and the level density of Zr below a few MeV is low.
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TABLE IV. Sources with their principal lines used for energy calibration.

Energies (keV)Ref.Source

'2C(p x rays)

' Q(p x rays)

75.263(5), 89.217(6)

133.528(15), 158.412(15)

er left], 3d-2p [(b), lower left], 3p-2s [(c), upper right],FIG. 1. Muonic x-ray spectra of Zr show g g'h win re ions of the 2p-ls [(a), upper le t, - p
ith the anti-Compton spectrometer. The e g'ener ies areh s ectra of (b)—(d) were taken wit e an '-and 2s-2p [(d), lower right) transitions. The spec

given in keV.

"Se 66.060(7), 96.734(2), 121.119 (3),
136.002(3), 198.596(6), 264.656(4),
279.538{3), 303.924{3), 400.657(2)

192yr 136.343(1), 205.796(I), 295.958(1),
308.457(1), 316.508(1), 416.472(1),
468.072(1), 484.578(1), 588.585{2),
604.415(2), 612.466{2)

228Th

144Ce

25

25

2614.533{13)

2185.662(7)

56C

137Cs

152Eu

'"Au

25

25

25

2015.179(11) 2034 759(11)
2113.107(12), 2212.921(10),
2598.460(10), 3009.596(17),
3201.954(14), 3253.417(14)

661.660(3)

244.699(1), 344.281(2)

98.857(10), 129.735(10)
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B. Transition energies

For a successful determination of both the nuclear
charge parameters and the nuclear polarization correc-
tions of the low-lying muonic levels in Zr, the highest
attainable precision in the respective transition energies is
mandatory. The procedure employed in order to obtain
this aim was the following.

First, we selected isolated calibration and muonic x-ray
photopeaks in the three differently time-gated spectra and
applied the computer code LINFIT (Ref. 20) in order to
determine the respective center-of-gravity positions. The
so obtained asymmetry parameters were plotted as a
smooth function of energy and the peaks were then again
fitted using such average parameters. The same method
was applied to the line widths (FWHM) which increase
essentially with the square root of the energy. The mean
parameters were then employed for the fits of all calibra-
tion and muonic x-ray peaks. In order to convert the peak
positions to energies, a linear relationship between posi-
tions and energies was assumed. The remaining non-
linearity of our measuring system was determined from
the well-spaced calibration line positions in the calibration
spectra. Since the nonlinearity behavior is the same in the
different on-line spectra, it can also be used for the
prompt spectra. Furthermore, we have found no shifts
between the prompt and the calibration spectra within the
limits of the statistical errors. The experimental muonic
x-ray energies obtained by such a calibration procedure
had to be corrected for the known isotopic abundances of
the other stable Zr isotopes, i.e., ' ' ' Zr (see Table III)
using the isotope shifts measured by Emrich et al. Fi-
nally, the energies of the emitted muonic x rays were
transformed into transition energies by adding the recoil
energy of the atom. Table V shows the obtained transi-
tion energies involving the 1s, 2s, 2p, 3p, and 3d states in
muonic Zr. In the energy range below 1 MeV, the data
were taken with the anti-Compton spectrometer. In addi-
tion, the 2s-2p~/2 and 2s-2p3/2 transitions were also ob-
tained with the small 2 cm detector. The high energy
data were taken with the 65 cm detector alone, since the
anti-Compton efficiency becomes lower with increasing
energy. The spectra obtained with the 90 cm detector
served for consistency purposes. The quoted errors of
Table V take the nonlinearity errors as well as the absolute
uncertainties of the calibration lines into account. The

TABLE V. Experimental energies (keV) and errors {eV) of
muonic transitions involving the 1$, 2$, 3p, and 3d levels in

Zr .[The uncertainty in the correction for nonlinearity and the
absolute error of the calibration energies {see Table IV) have
been included in the quoted errors of the muonic transition ener-
gies. ]

Transition

2$1/2 ~2p 3/2

2$1/2 ~2p1/2
3p1/2 ~2$1/2
3p3/2~2$1/2
3d3/2 ~2p 3/2

3d 5/2 ~2p 3/2

3d 3/2 ~2p1/2
2p 1/2~ 1$1/2

2p3/2 ~ 1$1/2

3p1/2~ 1$1/2

3p3/2 ~ 1$1/2

Experimental
energy

106.404(9)'
127.525(12)'
516.419(17)
522.470(24)
628.112(12)
630.533(9)
649.229(10)

2515.122(23)
2536.237(22)
3158.998(70)
3165.100(70)

'Average values obtained from measurements with the 2 cm
and the 65 cm detectors.

next table, Table VI, shows the very good internal con-
sistency obtained in the splittings of the 2p (b,2p) and 3p
(63p) levels. The small error in the 2p splitting is espe-
cially important when discussing our results in terms of
the nuclear polarization shifts (see the following sections).

IV. RESULTS

The present section utilizes the muonic-atom transition
energies listed in Table V in order to deduce the nuclear
charge parameters including the nuclear polarization and
the nuclear rms radius.

A. Nuclear polarization and charge parameters

Both charge parameters and nuclear polarization
corrections have to be determined simultaneously from
the data. Hence, correlations between the different pa-
rameters have to be carefully studied. Nevertheless, im-
portant general conclusions regarding the relative sizes of
the NP corrections in several low-lying muonic states can
be obtained, as has been shown by Yamazaki et aI. in the
case of lead.

TABLE VI. Internal consistency checks of experimental muonic transition energies.

Level
difference

~(2p)

Transitions

(2p3/2 1$1/2) —(2p 1/2-1$1/2)
{2$1/2-2p1/2 ) —(2$1/2-2p 3/2 )

( 3d3/2-2p1/2 ) —( 3d3/2 "2p3/2 )

Energy
g eV)

21.115(18)
21.121(11)
21.117(12)

Adopted value
(keV)

21.118(8)

b (3p) (3p3/2-2$1/2 ) —(3p1/2-2$1/2 )

( 3p 3/2-1 $1/2 ) —( 3p1/2-1 $1/2 )

6.051(29)
6.102(95) 6.052(28)

3p3/2- 1$ (3p3/2 2$1/2 }+(2$1/2-2p3/2)+ (2p3/2 1$1/2)
(3p3/2 1$1/2)

3165.111(34}
3165.100(70)
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The specific choice of the nuclear charge distribution is
not the determining factor in the analysis of the data,
since the muonic transition energies are sensitive to cer-'
tain nuclear charge moments only, as will be discussed in
Sec. IV B. The nucleus Zr studied in the present work is
a semimagic nucleus with ground state spin zero. Hence,
a spherical, two-parameter Fermi distribution with half-
density radius c and diffuseness parameter a has been in-
serted into the potential of the Dirac equation. The pro-
gram MUON2, in combination with the computer code
XRAY2, has been employed in order to compare the ex-
perimental with the theoretical transition energies.

In particular, we have determined the experimental
correlations between the nuclear polarization corrections
for the 1s and 2s states and for the 1s state and the 2p
fine structure splitting. The experimentally allowed
values of the NP corrections for the 1s and 2s states were
obtained by varying the quantities c, a, and NP2s for dif-
ferent NPls values. The NP2s corrections corresponding
to each J minimum for a given NPls value were then
plotted as a function of NP Is. The result is shown in Fig.
2(a). Similarly, Fig. 2(b) shows the dependence of the
difference

eV~

I I

eV NP(2p, i, ) —N (2p3(, )

(b)

NP(62p) =NP2p &/2
—NP2p3/2

from the NP 1 s value. Here, we have varied the quantities
c, a, NP2p»2, and NP2p3/2 and the plotted difference
NP(b, 2p) corresponds again to each X minimum at a
given NP 1 s value. The shaded areas in both graphs corre-
spond to uncertainties of +22 and +3 eV, respectively.
These errors have been deduced from a11 minimizations
performed, including also other combinations of fixed and
variable parameters, as wi11 be discussed below. The re-
sults of the theoretical calculations of Rinker and Speth'
are given as discrete points in Fig. 2. Since the nonrela-
tivistic calculations of Chen and of Skardhamar are not
meaningful for the 2p splitting, they are not included in
Fig. 2.

Figure 2(a) shows essentially a one-to-one relationship
between the 1s and the 2s nuclear polarizations. Such a
constant ratio is predicted by theory, due to the predomi-

nance of the giant monopole resonance in spherically sym-
metric states with angular momentum zero." The
theoretical calculations of Rinker and Speth are consistent
with the experimental results of the two s states, but not
with the results between the s states and the two 2p states.
Specifically, agreement with the theoretical value

NP2p»2 —NP2p3/2 —+7 eV

(see Table II) can only be obtained, if the nuclear polariza-
tion correction of the 1s state becomes larger than 3 keV.
Extrapolating to the case of muonic lead, the correspond-
ing theoretical NP correction for the 1s state would then
amount to more than 15 keV. Such a large value seems
highly unlikely, considering the theoretical values and
their estimated errors as discussed in Ref. 5.

Our analysis stresses the importance to include the 2p
levels when determining nuclear polarization corrections.
Due to the precision of the present data, specifically with
regard to the 2p fine structure splitting (see Table VI), a
determination of the NP1s and NP2s corrections together
with the two parameters c and a of the chosen Fermi-type
charge distribution, using all transitions of Table V, leads
to a poor fit of these experimental data and to an overes-
timation of the NP1s and the NP2s corrections, if the
NP2p values are taken from theory. Table VII shows that
the X value considerably improves if the NP2p values are
fitted as free parameters. The importance of the 2p levels
with regard to the nuclear polarization is also seen, if we

TABLE VII. Nuclear parameters determined from fits to
muonic transitions involving the 1s, 2s, 2p, 3p, and 3d levels in

Zr. This table also includes the rms radii (in fm), the theoreti-
cal and experimental 2p splittings (in eV), and the g values per
degree of freedom. The nuclear polarization corrections are ex-
pressed in eV, the nuclear extensions in fm. Column (I) employs
theoretical nuclear polarization corrections. Column (II) fits, in
addition to the half-density radius c, the nuclear polarization
corrections of the 1s, 2s, 2p&&2, and 2p3/p states. The diffuse-
ness parameter a is taken from elastic electron scattering data
(Refs. 11 and 28). The errors of NP2p are relative errors, as ex-
plained in the text. The uncertainties of NP1s and NP2s have
been derived by quadratic addition of the statistical fit errors,
the relative NP2p errors, and a 50% error in NP3p.

Nuclear
parameter (I)

300-

100-

+10-

-10-

Wr (1s, )
-20

3 keV
I

3 keV

C

NP1s
NP2s
NP2p ~ yp

NP2p 3y2

NP3p ]y2

NP3p 3'
NP3d

4.8791(8)
0.5367(4)

1067
141
69
62
21
20
0

4.9011(2)
0.5272

1138(155)
175(22)
55(3)
66(3)
21
20
0

FIG. 2. Nuclear polarization correlations between the 1s and
2s states [(a), left] and between the 1s and the 2p states [{b),
right] in muonic Zr. The shaded areas correspond to estimat-
ed errors (see the text). The theoretical predictions are from
Ref. 13.

rms radius
6(2p)cal.
A(2p)exp.

4.2736(40)
21 138
21 118(8)

4.0

4.2724(9)
21 121
21 118(8)

0.76
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treat their dependence from the finite nuclear size and the
nuclear polarization separately. Table VIII shows that the
kth moments and correspondingly the equivalent radii
Rk ~, which will be discussed in Sec. IV 8, are practically
the same for the two 2p states. Hence, the 2p fine struc-
ture transitions yield the same monopole information
about the nuclear charge distribution. However, this is
not true for the nuclear polarization shifts. Matrix ele-
Inents involving the muonic 1s, 2s, 2p~/z, and 2@3/2 wave
functions obey quite different angular momentum selec-
tion rules, and the nucleus responds differently to defor-
mation forces induced by different multipole excitations.
Therefore, each of the muon states polarizes the nucleus
in its own, unique manner, and the 2p splitting is not
strongly correlated with the Is (or 2s) state with regard to
the nuclear polarization.

The nuclear polarization correlations discussed above
point to a serious problem between theory and experiment
in the NP(62p) splitting. It is thus tempting to extend
the older line of analysis ' in order to deduce values for
the nuclear polarization corrections of the individual lev-
els, in particular of the lowest-lying Is, 2s, 2p&/2, and
2p3/Q levels. Since the nuclear form factor and the abso-
lute nuclear polarization corrections cannot be determined
independently from the muonic-atom data alone, we need
additional constraints on the free parameters. Such con-
straints could be obtained by combining the results of re-
cent elastic electron scattering data on Zr by Rothhaas"
with our muonic-atom experiment.

The elastic electron scattering data of Rothhaas provide
a nuclear charge distribution of the Fourier-Bessel form
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g a j0(q„r) for r (Rp(r)=. „
0 for r&R

In the framework of the plane-wave Born approximation,
the parameters a„are related to the cutoff radius R =10
fm at momentum transfers q =nv/R. Knowing the
coefficients a„ from a fit to the (e,e) cross sections, the
muonic binding and transition energies can be evaluated
from the above charge distribution. Taking all correc-
tions beyond finite nuclear size excepting the nuclear po-
larization into account, the difference in calculated and
experimental binding energies can be interpreted as an ex-
perimentally determined nuclear polarization correction.
The success of such a procedure depends on the smallness
of the errors in both elastic electron scattering and
muonic-atom data. Regarding the (e,e) measurements, no
absolute normalization errors had to be included. Specif-
ically, we have calculated the equivalent radii Rk and
their errors 5Rk which correspond to the muonic 2@3/2-
ls and 2s-2p3/q transitions, using the coefficients a„and
their uncertainties 5a . The nuclear polarization correc-
tion of the 2p3/2 state was fixed at its theoretical value.
The errors Mk ~ were transformed into energy errors by
employing the relation

6E =Cz 6Rk~ .

The coefficient C, is the sensitivity of the respective tran-
sition energy to a variation of the nuclear charge distribu-
tion. The values of a, k, and C, for the two transitions
are given in Table VIII. Our analysis yielded
NPls =1.52(53) keV and NP2s =0.13(7) keV. These
values are in agreement with theory. A change of the or-
der of 10 eV in the 2p3/2 nuclear polarization correction
does not significantly alter these results, justifying the use
of the theoretical NP value for this level. Although the
uncertainties are rather large, a nuclear polarization value
of the 1s state of 3 keV or more is practically excluded.
Such a large value is required by internal consistency for

TABLE VIII. Experimental and calculated energies of muonic transitions and their corresponding equivalent radii in Zr.

Transition

3p3/2 1 s1/2
3p1/2-1 s )/2
2p3n-1s )/2
2p1/2-1s )/2
3p 3/2-2s I/2

3p )/2-2S 1/2

2s1/2 2p1/2
2s i/2-2p
3d3/2 2p1/2
3d 5/2-2p 3/2

3d3/2 2p3/2
b (2p)
2s jn-1s~/2
3d5/2-1 s ~/2

C,
(fm/keV)

—0.5437 —2
—0.5450 —2
—O.S470 —2
—0.5510 —2
—0.3722 —1
—0.3813 —1

0.4198 —1

0.4009 —1
—0 3178 0
—0 S416 0
—0.5423 0
—0 7653 0
—0.6367 —2
—0.5419 —2

2.205
2.204
2.197
2.195
2.098
2.097
2.028
2.048
3.393
4.131
4.131
2.386
2.223
2.209

Experimental
energy E

(keV)

3165.100{70)
3158.998(70)
2536.237(22)
25 1S.122(23)

522.470(24)
516.419(17)
127.525(12)
106.404(9)
649.229(10)
630.533(9)
628.112(12)
21.118(8)b

2642.641(27)'
3166.770(28)'

Calculated
energy E

(keV)

3165.081
3159.038
2536.239
2515.118

522.445
516.401
127.522
106.400
649.231
630.538
628.110
21.121

Experimental
equivalent

radius Rk,
(fm)'

5.4690(4)
5.4693(4)
5.4684(1)
5.4683(1)
5.4581(9)
5.4583{9)
5.4524(6)
5.4544(4)
5.5765(32)
5.6462(49)
5.6424(65)
5.6424(65)
5.4709(2)
5.4693(2)

'The experimental equivalent radii Rk are expressed as Rk ——Rk —C,(E —E ), where Rk and E are the equivalent radii and
transition energies calculated with the best fit parameters of procedure (II) in Table VII, n being held fixed at 0.1029 fm
Adopted mean value from Table VI.

'Derived from triangular sums of other measured transition energies.
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the present experiment, if the theoretical nuclear polariza-
tion correction for the 2p splitting is assumed correct.
Hence, the conclusions from the very general nuclear po-
larization correlations of Fig. 2 are confirmed.

With the constraints from such a combined analysis in
mind, we fitted the muonic transition energies with dif-
ferent sets of parameters. First, no nuclear polarization
corrections were added. If the state dependence of the nu-
clear polarization shift would be nearly identical to the
state dependence of the finite size shift, a good fit would
be expected. However, we obtained a 7 value per degree
of freedom of 13, and in particular, a value for the 2p fine
structure splitting which lies more than three times out-
side the experimental error brackets. Next, we added the
theoretical nuclear polarization corrections of Table II to
each muonic state before fitting again the two charge pa-
rameters c and a. The result is shown in the first column
of Table VII. Although the X value per degree of free-
dom is reduced to 4, the calculated 2p splitting is again
off by 2.5 standard deviations. Such a result is not
surprising, following the discussion of Fig. 2(b). Finally,
we took the value of the diffuseness parameter a from the
(e,e) experiment of Rothhaas and the theoretical nuclear
polarization corrections for the 3p and 3d states from
Refs. 12 and 13 and varied the half-density radius c as
well as the NP corrections in the Is, 2s, 2p»2, and 2p3/2
states. The result of this fit is shown in the second
column of Table VII. The g value per degree of freedom
is now smaller than I, and the 2p splitting is well repro-
duced. The Is and 2s NP corrections agree quite well
with theory. On the other hand, the fit demands a nuclear
polarization value for the 2p3/2 state larger than that of
the 2p~/2 state. Taking the so obtained NP2p values and
varying c, a, NPIs, and NP2s yields c and a values which
deviate by not more than I—2 am from the c and a values
of the second column in Table VII. This confirms the
value for the diffuseness parameter a obtained from the
(e,e) data alone. The errors quoted in the second column
of Table VII for the two NP2p states are relative uncer-
tainties. They were checked in different four-parameter
fits. As an example, the diffuseness parameter a was
fixed at its value obtained from the (e,e) data and the four
parameters c, NPIs, NP2p&/2, and NP2p3/2 were varied
for different values of the 2s nuclear polarization. The g
values obtained for each minimization were then plotted
as a function of NP2s and the NP2p limits at X +1 were
extracted. A similar procedure was performed with a as a
parameter. The NP2p errors obtained in such a way agree
with the errors listed in the second column of Table VII.
In addition, the absolute values of the nuclear polarization
corrections in the other states are also consistent. Hence,
we adopted the nuclear parameters listed in the second
column of Table VII as the "best" values.

B. Equivalent and rms radii of Zr

It is known that a model charge distribution like the
Fermi charge distribution employed above may induce
slight systematical errors, specifically with regard to the
rms radius. Ford and Wills and Barrett ' introduced a
radial. moment analysis relating each experimentally mea-

sured muonic transition energy to a different generalized
moment of the nuclear charge distribution. The method
is based on the fact that the difference in potentials gen-
erated by the muon in the initial and the final state can be
well approximated by the expression

V(l)(r) —V(f)( r) =A +Brke ar

where the parameter k is a characteristic quantity for
each transition and the factor e " is an exponential
correction factor with the parameter a usually kept con-
stant for all transitions within the same muonic atom.
For a spherically symmetric nuclear charge, each transi-
tion energy is then proportiorial to the "Barrett moment"

( r e ")= p(r)r "e "4~r'dr
0

3 ~I,
&ke —arI 2dI

3
Rk, a

The "Barrett equivalent radius" Rk is the radius of a
uniformly charged sphere yielding the same Barrett mo-
ment as the actual charge distribution. In the present
work, the parameters k and u are adjusted by the least-
squares fitting program ALPHAKA (Ref. 32) until the Bar-
rett moment corresponds precisely to the respective transi-
tion energy. In these fits, all corrections beyond finite nu-
clear size, and in particular the nuclear polarization shifts
as discussed in the preceding section and as listed in the
second column of Table VII, have been included. The
equivalent radii Rk obtained in this way are model in-
dependent. This means that the form of the nuclear
charge distribution used to calculate the respective nuclear
moment affects the numerical value of this moment much
less than the experimental errors. Table VIII shows in its
last three columns the experimental (E) and the calculat-
ed (E ) transition energies and the corresponding
equivalent radii Rk . The latter, labeled "Experimental
equivalent radii, " are determined from the equivalent ra-
dii Rq calculated with the best-fit parameters of pro-
cedure (II) in Table VII:

Ri, =Ri, —C, (E E) . —

The parameter a has been kept constant at the predeter-
mined value a=0. 1029 fm . The sensitivities C, and
the moments k for each transition are also listed in Table
VIII. Figure 3 shows a plot of these RI, values vs k.
The fact that all values lie on a straight line supports the
description of the nuclear charge distribution by a two-
parameter Fermi distribution. Specifically, the slope
is directly related to the surface diffuseness parameter a.
Deviations from a smooth line would reveal inconsisten-
cies in the measurements themselves or in the theoretical
corrections applied.

When comparing nuclear charge distributions obtained
by different experimental methods like muonic atoms,
elastic electron scattering, or optical spectroscopy, the
root-mean-square (rms) radius is a more convenient quan-
tity than the equivalent radius Rk . Besides, the rms ra-
dius is a fundamental quantity of each nucleus, and is
often employed in systematic analyses. ' ' As already
mentioned above, the rms radius obtained by fitting
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R (fm)
5.65

TABLE IX. Comparison of recent rms radii deduced from
elastic electron scattering and rnuonic atom experiments.

5.60—

5.55

IX = 0.1029 fm

R =R -C tE-E )a.a ~.a

3d —2p

Reference

Bellicard et al. (Ref. 37)'
Fajardo et al. (Ref. 38)
Phan et al. (Ref. 39)'
Singhal et aI. (Ref. 40)
Dreher (Ref. 41)'
Rothhaas (Ref. 11)
Ehrlich (Ref. 42}g

This experiment

Type of
experiment

(e,e)
(e,e}
(e,e)
(e,e)
(e,e)

(e,e)

p atom

p atom + (e,e)

rms radius
(fm)

4.1200(500)
4.2740(220)
4.2690
4.2725
4.2654(35)
4.2633{84)
4.2660(140)
4.2726(9)

& 2p —1s
$ 3p-2s

5 45 2s-2p

'Two-parameter Fermi distribution with c =4.66 fm, t =2.34
fm.
Parabolic

'

Gaussian shape with n =2, c =4.434(20),
z =2.528(3), and w =0.350(25).
'Parabolic Gaussian shape with n =2, c =4.45(5) fm,
z =2.54(5) fm, and w =0.28(7).
Three-parameter Fermi distribution with c =4.387 fm,
t'=11.094 fm, and w =0.2455.
'Three-parameter Fermi distribution with c =4.387 fm,
t' = 1 l.390 fm, and w =0.250.
Fourier-Bessel expansion with cutoff radius R = 10 fm.
Two-parameter Fermi distribution.

FIG. 3. Barrett equivalent radii Rk plotted against the mo-
ment k for different muonic-atom transitions in Zr.

rnuonic transition energies alone with a two-parameter
Fermi distribution, e.g., is to a certain extent model
dependent. However, a combined elastic electron scatter-
ing and muonic-atom analysis provides a model-
independent extrapolation from the precisely known Bar-
rett moments of the muonic-atom transitions to the
second moment (r ) of the nuclear charge distribution.
In fact, a phase shift analysis of the elastic electron
scattering data" with the Barrett moments of the dif-
ferent muonic-atom transitions as additional integral con-
straints yields the model-independent ratios

In particular, the V2 ratio corresponding to the muonic
2p-1s transitions amounts to

+2. 196,0. 1029

yielding

( p ) ~ =4.2726(91 fm .
This value agrees within 0.2 am with the value given in
the second column of Table VII, which has been extracted
from a least-squares fit of the muonic data alone.

Table IX compares the present result for the rms radius
of Zr with other recent elastic electron scattering
data" ' and the only other muonic-atom result. "
%'ithin the error limits, there is generally good agreement
between the different measurements. The present result,

based on a combined analysis of muonic-atom and elastic
electron scattering data is, however, an order of magni-
tude more accurate. It may be employed as a reference
value when measuring similar isotopes of medium-sized
nuclei.

V. CONCLUSIONS

In the present work, high precision has been obtained
for those muonic-atom transition energies which are sensi-
tive to the nuclear charge extension of Zr. Our measure-
ments allowed a determination of both nuclear polariza-
tion correlations and integral nuclear charge moments.
With the additional input from recent elastic electron
scattering data, " the rms radius of Zr could be deter-
mined model independently and an order of magnitude
more accurately than in former experiments. In addition,
constraints could be set on the nuclear polarization values
of the muonic ls and 2s states. In particular, a nuclear
polarization value of the ls state of more than 3 keV, re-
quired in order to bring the experimentally measured nu-
clear polarization splitting of the two 2p states in accor-
dance with theory, could be excluded. This inversion in
magnitude of the two NP2p values is an experimental re-
sult which until now remains unexplained by theory. The
same kind of discrepancy has been observed in muonic

Pb. There, an accidental unobserved resonance excita-
tion process changing the transition energies from the two
2p states .could still be evoked as a possible explanation.
The chance that such an effect could also be responsible
for the present discrepancy seems extremely remote.
Hence, there seems to exist a fundamental problem in
present theoretical approaches to the nuclear polarization
effect. In principle, if there are magnetic polarization
contributions, they could differently affect the two NP2p
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values. However, in a second-order perturbative treat-
ment, the energy shift does not depend on the sign of the
matrix element of the residual interaction. Thus, magnet-
ic polarization effects can be expected to have the same
sign for both 2p states. In addition, they are not antici-
pated to contribute more than 10% to the splitting. Re-
garding the other corrections which have to be applied to
the two 2p levels, one might question somewhat the vacu-
um polarization corrections of higher order [a(Zct)" ~ ].
While the calculations of Rinker and Wilets are the best
ones available at present, other approaches like the exter-
nal field approximation method used by Calmet and
Owen yield slightly different results. However, uncer-
tainties in these higher-order vacuum polarization correc-
tions would at most influence the muonic lead data in a
sensible way, but not our evaluation of p - Zr, since

- even an overestimated error of 30% in these corrections
would not change our NP2p values by more than the
quoted relative error of +3 eV. Regarding the nuclear po-
larization corrections of the 1s and 2s states of p - Zr,
our experiment yields results compatible with theory. The
errors quoted in the second column of Table VII are of
the order of 15%, considering the constraints mentioned
in the caption of this table. In particular, the nuclear po-
larization shifts of the higher muonic states, i.e., the 3p
states, have to be taken from theory. Although there is no

reason to believe that the nuclear polarization values of
higher-lying muonic-atom levels can be more reliably cal-
culated than those of the lower levels, the absolute size of
these corrections seems too small to influence our results
in a perceptible way. Since this is the case for both the 1s
and 2s and the two 2p levels, we may finally conclude
that both new theoretical efforts as well as a combination
of more precise muonic-atom and elastic electron scatter-
ing experiments are desirable in order to help clarify the
nuclear polarization problem in muonic atoms.
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