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Relation between the interacting boson-fermion approximation model
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The relation between the phenomenological Hamiltonian as used in dynamical boson-fermion
symmetries and the semimicroscopic Hamiltonian of the interacting boson-fermion approximation,
both used in the description of odd-mass nuclei, is studied in detail. Predictions are obtained for the
parameters of the boson fermion symmetry Hamiltonian. From the microscopic picture behind the
interacting boson-fermion approximation model, predictions are also obtained for the regions in the
table of isotopes where the boson-fermion symmetries can be expected to occur. In addition we
derive the structure of an additional exchange force, which results from the interaction between like
particles.

I. INTRODUCTION

In the interacting boson model (IBM) the properties of
low lying collective states in medium mass even-even nu-
clei are described in terms of a system of interacting s and
d bosons. Different aspects of the Hamiltonian have been
investigated Firs.t, in a study of the algebraic properties
of the Hamiltonian the importance of dynamical sym-
metries has been emphasized. ' In this approach the
structure of the Hamiltonian is based entirely on group
theoretical arguments. Many examples of the three dif-
ferent possible dynamical symmetries, the U(5), the SU(3),
and the SO(6) limit have been discussed in the literature.
Second, in a more microscopic approach in which the s
and d bosons are interpreted as correlated pairs of identi-
cal nucleons with angular momentum J=0 and J=2, the
structure of the IBM Hamiltonian has been related to the
underlying shell-model Hamiltonian. The resulting
IBM-2 Hamiltonian has been used extensively in
phenomenological studies of collective properties in a
large variety of even-even nuclei. Both basically different
approaches have been very successful and the relation be-
tween the two formulations is well understood.

In the extension of IBM to odd mass nuclei by coupling
the single particle (fermion) degrees of freedom to the col-
lective (bosons) degrees of freedom of the core nucleus, a
similar situation exists. ' In one approach, limiting situa-
tions of the interacting boson-fermion model (IBFM) for
which energy eigenvalues can be obtained in closed form
have been studied. ' The structure of the Hamiltonian
in these dynamical boson-fermion symmetries is deter-
mined solely by group theoretical arguments. Several ex-
amples of these symmetries have been found in the spectra
of odd-even nuclei. In Sec. II we present a short review of
dynamical boson-fermion symmetries. The concept of
dynamical boson-fermion symmetries has been extended

even further which has led to the introduction of dynami-
cal supersymmetries (SuSy) in nuclear physics. ' '9

In a different approach, hereafter called the interacting
boson fermion approximation (IBFA), the structure of the
boson-fermion (BF) interaction is derived using a semimi-
croscopic theory. ' In analogy with even-even nuclei it
is assumed in Refs. 8 and 20 that for odd-even nuclei the
most important terms in the boson-fermion interaction
also arise from a shell model quadrupole force between
protons and neutrons. As a result the BF interaction con-
tains a direct quadrupole and an exchange force (Sec. III).
The latter arises from the two-particle nature of the bo-
sons. This version of the model has been applied success-
fully to a large variety of odd-even nuclei. ' In Sec. IV
we will show that a quadrupole pairing interaction be-
tween identical nucleons in the shell model space intro-
duces additional terms in the BF interaction. These extra
terms will be used in the discussion of Sec. V.

The question now arises how the IBFA and the symme-
try approach to describe the structure of odd mass nuclei
are related to each other. In Sec. V this relation is worked
out in detail for a specific example, the SO(6)U(2) limit
of the IBFM. We obtain a set of equations that relates
the parameters in both Hamiltonians. From these we can
derive under what conditions dynamical boson-fermion
symmetries can be expected to occur in real nuclei, pro-
vided the IBFA model is a good description of odd-even
nuclei.

II. DYNAMICAL BOSON-FERMI SYMMETRIES

In this section, a short overview will be given of the
concepts of dynamical symmetries in nuclei, insofar as
needed in the rest of this paper. A more detailed treat-
ment can be found in the literature. '

For even-even nuclei the importance of symmetries in
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the IBM model is well established. Since the group struc-
ture of the general IBM Hamiltonian is U(6), the most
general one- and two-body Hamiltonian can be expressed
as a sum of terms which are at most quadratic in the gen-
erators of the group U(6). In general, no further symme-
try is present (apart from rotational invariance) and the
Hamiltonian must be diagonalized numerically. However,
when this sum reduces to a sum of Casimir invariants of a
chain of subgroups of U(6), the Hamiltonian exhibits a
dynamical symmetry which is conventionally labeled by
the largest subgroup. There are three possible symmetries,
U(5), SU(3), and SO(6), each corresponding to a different
geometrical picture of a spherical, axially symmetric and
gamma unstable nucleus, respectively,

U(5) D SO(5) D SO(3), (2.1a)

U(6) D SU(3) &SO(3), (2.1b)

SO(6) V SO(5) &SO(3). (2.1c)

Whenever the Hamiltonian possesses one of the sym-
metries, a set of closed analytic expressions can be ob-
tained for excitation energies, electromagnetic transition
rates, and other nuclear properties of interest, thus provid-
ing a simple scheme for interpreting and classifying ex-
perimental data.

For odd mass nuclei the situation is similar. In this
case the group structure of the Hamiltonian is more com-
plicated, since we are now dealing with a mixed system of

U' '( l2) DU'„'(6)(8 U,'"'(2) . (2.2)

The subscripts k and s refer to the pseudo-orbital and
spin part, respectively. Next, the boson and fermion
groups can be combined at the level of U(6) into a com-
mon boson-fermion group U' "'(6) which can then be fur-
ther decomposed into three different chains of subgroups,

boson (collective) and fermion (single-particle) degrees of
freedom. In this paper we will discuss the case in which
the single particle levels that can be occupied by the odd
nucleon are limited to orbits with j=—,', —,, and —,. This
situation is of considerable physical interest since this sit-
uation approximately occurs in the low lying negative par-
ity states in the odd mass W, Pt, and Hg isotopes as well
as in the odd mass Kr and Rh isotopes. The group struc-
ture in this case is G=U' '(6)U' '(12) where we have
added the superscripts 8 and E to distinguish between the
boson and the fermion groups. The symmetry group 6
can be reduced to the angular momentum group in several
different ways. We will focus our attention to the reduc-
tion that has proven to be the most appropriate one in ap-
plications to real nuclei. First, the fermion angular mo-
menta j= —,, —,, and —,

' are split into a pseudo-orbital part,
k=0, and 2, and a pseudo-spin part, s= —,. This corre-
sponds to the decomposition of the fermion group
U(+)(12) into the direct product of a pseudo-orbital group
Uk '(6) and a pseudo-spin group U,' '(2),

U' )(6)(3U' '(12)aU' '(6)(3)U~"'(6)eU,' (2)&U' '(6)@U, (2)

U'~"'(5)eU' '(2)&SO' "'(5)a U,' '(2)&SO' "'(3)SU, ' '(2)&Spin(3),

SU' ")(3)(3U,' '(2)DSO' "'(3)(8)SU,' '(2)&Spin(3),

SO' "'(6)U, ' '(2) DSO' "'(5)(3)U,' '(2) &SO' "'(3)SU, ' '(2) DSpin(3).

(2.3a)

(2.3b)

(2.3c)

We note that Eqs. (2.3a)—(2.3c) are analogous to the three
group chains of the IBM model for even-even nuclei [see
Eqs. (2.1a)—(2.1c)]. When the Hamiltonian is written as a
sum of Casimir invariants of the subgroups of one group
chain, analytic formulas can be obtained for both excita-
tion energies and electromagnetic transition rates. This
allows for a simple interpretation of the otherwise very
complicated spectrum of odd mass nuclei. In the follow-
ing we will limit ourselves to the group chain Eq. (2.3c).

In general the IBFM Hamiltonian can be written as

~C2U' "'(6)+1 2so' "'(6)+~C2so'B"'(5)
l~+XC2s~(BF)(3) +7 C2spin(3) (2.6)

The Hamiltonian of the boson-fermion symmetry asso-
ciated with group chain (2.3c), which will be referred to as
the SO(6)U(2) limit of the IBFM, can be expressed in
terms of the linear, C&~ and the quadratic, C2~ Casimir
operators of the groups appearing in Eq. (2.3c). Omitting
the terms that only contribute to binding energies the
symmetry Hamiltonian is given by

H =Hg+Hp+ VBF, (2.4)
The energy spectrum can be readily constructed,

where H~ is the IBM Hamiltonian which describes the
collective degrees of freedom in the even-even core nuclei,
HF represents the fermion Hamiltonian,

~~= g ~g~gm&jm ~ (2.5)
jm

and VzF is the boson-fermion interaction.

E=g[N((N) +5)+N2(N2+3)]

+ 2g [cr((o (+4)+o 2((r2+ 2) + (r3]

+2P[r(( r) +3)+&2(&2+ 1 )]

+2yL (L +1)+2y'&(J+1) . (2.7)
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FIG. 1. A comparison between the experimenta1 low-lying spectrum of ' 5Pt {Refs. 25—27) and that obtained using Eq. (2.5) with

/=31. 6 keV, g= —16.7S keV, P=17.5 keV, y=2. 5 keV, and y'=3 keV. The number of bosons is %=6.

This expression for the excitation energies has been ap-
plied to the negative parity states in ' Pt. ' ' ' ' In Fig.
1 we show a comparison between the experimental and
theoretical energy spectra. For a discussion of the quan-
tum numbers, etc. , we refer to the extensive literature on

boson-fermion symmetries. "' ' '
For the purpose of the present paper it is convenient to

rewrite the Hamiltonian H,„~ explicitly in terms of the
boson and fermion generators. The fermion and boson-
fermion parts of H,„can be expressed as

and

Hp „=(2(X+6/+10'}K"'(0,0)+(6$+10q+8p+12y)v 5K"'(2,2)

Vnz, ~~
———2v 5$(d"d)' 'K~ '(0,0)+2((dtd)' 'K' '(2, 2)+(2g+8g+8p+40y)(dtd)"'K"'(2, 2}

+$4rl(s d+dt )'s'[K' '(0, 2)+K' '(2, 0)]+$2/[(s d}' 'K' '(2, 0)+(d s)' 'K' '(0,2)]

+2((dtd)' 'K' '(2, 2)+(2(+8rl+8p)(dtd)' 'K' '(2, 2)+2((dtd)'4'K'4'(2, 2) .

(2.8)

(2.9)

The operators K' '(l, l') in Eq. (2.9) represent the pseudo-
orbital generators of the UP'(6) group and are defined in
the Appendix. In Eqs. (2.8) and (2.9) we have assumed
that H,„m is invariant under the SU,' '(2) pseudo-spin
group (y'=0). Furthermore, we note that H,„ is invari-
ant under the phase P (see the Appendix).

ID. THE IBFA MODEL
In the IBFA model the boson-fermion interaction is

constructed on the basis of semimicroscopic arguments
from the underlying shell model (SM) Hamiltonian HsM.
Usually it is assumed that the most important term in

HsM is a quadrupole-quadrupole interaction between neu-

trons and protons. In Sec. IV we will also consider the
terms arising from the quadrupole pairing interaction be-
tween like particles. In this section we will give the "stan-

dard" formulation of the boson-fermion interaction in the
IBFA model with a short explanation of the physical sig-
nificance of the different terms.

The IBFA Hamiltonian has been derived from the shell
model Hamiltonian using several different approaches.
The general result can be written as

Hp QE~a~ a/—— (3.1a)
jm

V y I [g(2)( t- )(2)](0)

JJ

+ g A ':[( d )' '(d ')' ']' '.JJ' J J
JJ J

—QAJv'5(2j+1)[(dtd}( )(a a. )( ']' ) (3.1b)
J
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where

(3.3a)

+fJ'i "("i"ui +"i""i)QJ"i ~

QJ) =(s d+d s)' '+X(d d)' ' (3.2)

and aJ is the creation operator of the odd particle degree
of freedom. The parameters in (3.1b) can be related to the
occupancies UJ of the spherical shell model orbits,

I J
—I pQJJ (uJuJ VJUJ )V 5,

~ f

AJjJ' —v'—5Ap[ QJJ'(uJ uJ'+uJ uJ )p~ J

Hamiltonians. However, to make a quantitative analysis
of energies in the boson model, the renormalization effects
arising from the truncation of the shell-model space to the
collective S and D pair subspace should be taken into ac-
count. In phenomenological calculations therefore, the
strengths I"p Ap, and Aj are considered as free parame-
ters, which can be adjusted to give a best fit to the excita-
tion energies. It has been shown ' " that with the
parametrization equations (3.1)—(3.5) of the boson fer-
mion interaction it is possible to describe the main
features of a large variety of odd-mass nuclei.

1

&(2j"+I) (3.3b) IV. THE QUADRUPOLE PAIRING INTERACTION

where QJJ are the single particle matrix elements of the
quadrupole operator. Assuming that for orbits in the
same major shell the radial overlaps can be approximated
by a constant, which can subsequently be absorbed in the
strength parameters I"p and Ap, 'QJJ' can be written as

Q,,'= &j I I

I'"'I
I

j'& (3.4)

The coefficients pjJ in Eq. (3.3) are related to the internal
structure of the D-fermion pair state, which is the shell-
model equivalence of the d boson. Assuming that the D
pair state exhausts the valence E2 strength, these coeffi-
cients can be written as

The boson-fermion interaction in the IBFA model, Eq.
(3.1), is derived from the shell model neutron proton
quadrupole interaction. In Refs. 30 and 31 it has been
shown that the interaction between the like particles also
gives a contribution to the exchange force. The two terms
that are most important in the like particle interaction are
the monopole and quadrupole pairing interaction. ' The
monopole pairing interaction contributes to the monopole
term in Eq. (3.1b) and is responsible for replacing the sin-
gle particle energies by quasiparticle energies in the fer-
mion Hamiltonian equation (3.1a). In the following we
will study the boson-fermion image of the quadrupole
pairing interaction:

~JJ QjJ J J +uj J

The normalization constant K~
1/2

Kp —— g (Pjj )

(3.5)

(3.6)

y y (gt(2)g (2))(p)

where

(4.1)

can also be absorbed in the strength parameters I p and
Ap. In a more sophisticated approach, ' an energy
denominator has been introduced in Eq. (3.5) to take into
account the nondegeneracy of the single-particle orbits.
Since this extension has little effect on the conclusions of
the present paper, we will use the simpler form of Eq.
(3.5) in the following.

The first two terms in Eq. (3.1) have a specific micro-
scopic interpretation. The first term is the direct
quadrupole-quadrupole interaction analogous to the
particle-phonon interaction in the particle-vibration
model. The second term represents the exchange force.
It results completely from the action of the Pauli principle
between the odd nucleon and the bosons, which are inter-
preted as collective fermion pair states and can therefore
occupy the same shell model orbits as the odd nucleon.
The exchange force vanishes whenever the orbits con-
sidered for the odd particle are filled (uJ =1) or empty
(uJ ——0) and is important when the orbits are partially
filled. A similar term has been introduced in the
particle-vibration model. ' Also the strength of the
direct quadrupole interaction is affected by the Pauli prin-
ciple as can be seen from (3.3a). Contributions to the last
term in Eq. (3.lb), the monopole force, can have various
different physical origins.

A complete microscopic derivation of the IBFA model
also gives an explicit relation between the interaction
strengths in the shell-model and the IBA-IBFA model

(4.2)
JJ

In Eq. (4.2) cJ are the shell model single nucleon creation
operators. The coefficients bJJ in Eq (4.2) a.re normalized
such that

(0
I

(A"")'A""
I
0& =1,

leading to

g (bJJ')'= I .

(4.3)

(4.4)

(j)cJ =uJa,. + (s a )

10
+XuJ~i'J 2+,jt J

1/2

(dt- )(j)

10
~j, ~X " 2j+I

1/2

(s daJ )~ (4.5)

The coefficients )(3jj are the normalized d-boson structure
coefficients, which are related to those introduced in Eqs.
(3.5) and (3.6) by,

PJJ PJJ'/KP . —— (4 6)

In order to construct the boson-fermion image of the
quadrupole pairing interaction, we will make use of the
pseudo-particle creation operator c J as was introduced in
Refs. 8 and 20,
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We note that in the special case of only S pairs, Eq. (4.5)
reduces to the Bogo1iubov-Valatin quasi-particle transfor-
mation when we make the approximation s /v N =1,
which is valid for low-seniority states. The pseudo-
particle operator c J is a first-order approximation in the
d-boson operators to the boson-fermion image of the shell
model single particle creation operator cJ. The image of

I

the two-nucleon creation operator (4.2) can now be con-
structed by replacing the shell-model creation operators cJ
by the psuedo-particle creation operators c J.

Keeping only the terms that act within the one quasi-
particle space of the IBFA model and are of first order in
the d-boson operators, we obtain

10+~2 g biJ uJuJ'pJ. -J.

]. J/2

[aJ (dtaJ )'J ']' '

1 — 10—V2 g b 'u u' —P'.JJJJ~JJ
' 1/2

s ts t[(da t )(i)a ](2) (4.7)

+ g IAJJ [(dts)' '(aJa')' ']' '+H. c. j (4 8)

It should be noted that a more rigorous derivation also in-
troduces terms of higher order in the d-boson operators,
such as st(dtd)( ', in the two-nucleon transfer operator.
However, to calculate these terms consistently a
knowledge of the terms that are qnadratic in the d-boson
operators in the pseudo-particle operator (4.5) would also
be required. For the present purpose these higher-order
terms do not play an important role and are neglected.

To evaluate the contribution of the quadrupole pairing
interaction to the boson-fermion interaction of the IBFA
model, we substitute Eq. (4.7) in Eq. (4.1). Again retain-
ing only the terms that are of first order in the d-boson
operators, we obtain

VBF ——g t AJJ [(s d)' '(aJaJ )' ']' '+H. c. j
JJ

In the special case in which the odd nucleon occupies only
a single j orbit or when the coefficients Ap and Ap' are
equal, this contribution is symmetric in the boson part
and can to a large extent be absorbed in the quadrupole
interaction of Eqs. (3.1) and (3.2). In general, however,
this is not the case and V&F gives an extra contribution to
the boson-fermion interaction. As will be shown in the
next section, an interaction term of this kind is required to
reproduce the dynamical symmetries of the IBFM for odd
mass nuclei.

The fact that VBF is not symmetric in the boson opera-
tors may look surprising. The reason for this can be seen
by writing the simplest boson-fermi image of the two nu-
cleon creation operator. Omitting all terms which are
higher than first order in the boson operators, this image
has the form, of

(2) —x st(a ta )(2)+p
JJ J J

with

Aii Apuj ui QJJ ~5

AJJ ApuJ uJ QJJ v 5—,

(4.9a)

(4.9b)

It can be seen that this represents the subset of terms in
Eq. (4.7) that contributes to A'. Up to this order there is
no contribution to Ap', resulting in a boson image of the
quadrupole pairing interaction which is nonsymmetric to
a maximal extent.

A()
——V2/2/Nz g QJJ'uJuJ pJJ,

JJ

Ap' ———V2v'2/Nz QQJJ'uJuJ pJJ . (4.10b)

In Eqs. (4.9) and (4.10) we have assumed that the coeffi-
cients bJJ. are proportional to the single-particle matrix
elements of the quadrupole operator QJJ equation (3.4)
(see, i.e., Ref. 32)

bii'=zQii' . (4.11)

It can be checked easily that the terms of second order in
the d-boson operators are similar in structure to the ex-
change force that is normally considered in the IBFA
model. The contribution to the boson fermion interaction
given by (4.8) represent, however, terms that so far have
not been taken into account in the standard IBFA model.

V. BOSON FERMION SYMMETRIES
AND THE IBFA MODEL

The properties of several odd mass nuclei have been in-
terpreted in terms of a dynamical boson-ferrnion symme-
try. To obtain a better physical insight as to why these
nuclei exhibit a dynamical symmetry it is important to
study the relation between the symmetry Hamiltonian and
the boson-fermion interaction of the more microscopic
IBFA model.

A first step in understanding this relation is to note the
occurrence of an SU(2) pseudo-spin symmetry in Vr)F, Eq.
(3.1). When we consider the case of two shell model or-
bits coupled to a core nucleus, with j& ——j and j2 ——j—1,
the pseudo-spin symmetry occurs whenever these two or-
bits are degenerate, which means equal single-particle en-
ergies and equal occupancies. The physical reason for the
occurrence of this SU(2) symmetry is that the single parti-
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HE = Q Ekv'2k + 1K' '(k, k) .
k=0, 2

The quadrupole term in Eq. (3.1b) gives

Vg —— g qkk[(std+d s)' '+g(d d)' '] K' '(k k')
k, k'=o, 2

(5.1)

(5.2)

cle matrix elements of the quadrupole operator equation
(3.4) depend only on the quasi-orbital angular momentum,
k = (j& +jz ) /2, but not on the orientation of the spin,
s= —,'. The concept of this pseudo-spin symmetry can
easily be extended to a more general case, in which the
odd nucleon can occupy more than two orbits.

Suppose in this case that the single-particle angular mo-
menta j=j],j2, . . . , can be decomposed into a pseudo-
orbital part, k =k1,k2, . . . , and a pseudo-spin part,
s= —,'. The pseudo-spin symmetry now occurs whenever
the single-particle orbits with the same value of the
pseudo-orbital angular momentum (pseudo spin-orbit
partners) are degenerate. We note that this property does
not depend on the strengths of the quadrupole and ex-
change terms I 0 and Ap.

In the construction of the boson-fermion symmetry as-
sociated with the group chains in Eq. (2.3), a similar pro-
cedure is followed. The SU,' '(2) symmetry group of Eq.
(2.3) is equivalent to the SU(2) pseudo-spin symmetry
group discussed above. Since the pseudo-spin symmetry
in the IBFA Hamiltonian only holds for s = —,', the
dynamical boson-fermion symmetries in which the
pseudo-spin is different from s = —, do not have a counter-
part in the IBFA model. In the symmetry Hamiltonian
H,„ofEq. (2.6) the pseudo-spin symmetry is only bro-
ken by the last term which is proportional to the total an-
gular momentum. The excitation energies of the negative
parity states in ' Pt, shown in Fig. 1, indicate that the en-

ergy spectrum is characterized by a series of doublets of
states. This feature implies that in this case the pseudo
spin-orbit force is small and therefore y'=0 in H,„.For
simPlicity in the following we will assume that Hsym is
pseudo-spin invariant (y'=0). The presence of a pseudo-
spin symmetry in the IBFA.model implies that the 3p3/2
and 2f5/z s.p. orbits are degenerate and form a k=2
doublet, E]/2 —Ep E3/2 —E5/2 —E2 U1/2 —Up,

U3/2 —U 5/2 —vz. If in addition we take A
& /z ——A p,

c4 3/2 —35/2 —32 the total IBFA Hamiltonian equation
(3.1) is pseudo-spin invariant and can be expressed in
terms only of the pseudo-orbital operators K' '(k, k') de-
fined in Eq. (A2). This will enable us to make a term by
term comparison between the symmetry Hamiltonian

Hsy~ and the IBFA Hamiltonian. The fermion Hamil-
tonian of Eq. (3.1a) can now be rewritten as

epz =ezp = — ( 7 ) Apuzvz(upvz+Upuz)
(2) (2) & 1/2

7T

(A, )
1/2

2
ezz = Ap (upvz +Upuz )

277

(5.5)

200 2 2,+(—1), uzvz

Finally, the monopole term can be expressed as

VM= g x„(d'd)"'K'"(k, k),
IG =0,2

with

(5.6)

xk =3/5(2k + 1)Ak', k =0,2 . (5.7)

In the special case, in which U2
——0 or 1, the exchange

force VE in Eq. (5.4) reduces to a simple form. The coef-
ficients epz' and ezp' vanish, ezz' becomes indePendent of
A, , and the term, proportional to epp', can be combined
with the monopole term xp. The remaining terms in VE
correspond to the part of the U' '(6) Casimir operator in
Eq. (2.7) that is of second order in the d operators and
was considered in Ref. 34. In the following we will con-
sider the more general case with arbitrary values for the
occupation probabilities.

When we compare the IBFA and the symmetry Hamil-
tonian there are two terms which cannot be accounted for.
The first one arises from V,

(s td+dts)' 'K' '(2, 2)

and the second one from Hsym p

(std)"'K"'(2 0)+H.c.
The second term which is not symmetric in the boson part
is not present in the standard form of the IBFA Hamil-
tonian. However, as we have shown in Sec. IV, quadru-
pole pairing interaction between like particles gives a con-
tribution to the boson-fermion interaction that has pre-
cisely this structure. Rewriting the interaction of Eq.
(4.8) in terms of the boson and pseudo-orbital generators
gives

VE —— g ekk [(std)' 'K' '(k, k')+H. c.], (5.8)
k, k'=0, 2

with

Similarly the exchange term in Eq. (3.1b) can be rewritten
in terms of boson and pseudo-orbital generators as

VE ——g g ekk'(dtd)' 'K' '(k, k') . (5.4)
k, k'=0, 2

with

e pp = Ap(upvz+ Upu 2 )
(o) 2

277

with

1 5
O'02 =9'20 =—

2 7T

" 1/2

' 1/2

I p(upuz —Upvz )

(S.3)

1
eo2 =—

2

1
e2o =—

2

' 1/2

(upU2Ap+ UpuzAp )
'ij

1/2

(uzUpAp+UzupAp ) (5.9)

1
q22 ——5 I"p(uz —vz) .2 2

e22 (Ap+Ao")uzvz
14m
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By comparing the coefficients of the corresponding terms
in the multipole expansion of the IBFA Hamiltonian,
H~+ Vt2+ VE+ VM + V@ defined in Eqs. (5.1)—(5.9), and
the Hamiltonian in the SO(6)C3 U(2) limit,
HF»~+ VBF,„~, Eqs. (2.8) and (2.9), we obtain a set of
equations that relates for the parameters in the two Ham-
i1toni ans .

First we will investigate under which conditions the
symmetry can arise from the IBFA Hamiltonian. The
IBFA parameters then have to fulfill the following equa-
tions:

0
l.2 -l.o—

1 /2

(Ap+Ap )X= —2 7' u 2 u2Ao

Q2U2(QOB2 —UOU2) = —(Q 2
—V2)(B OU2 +VOW 2) ~

2 2

1 /2

Xl"p(Q 2
—

V 2) =22 2 10 2 20 pUpA()
7m

(5.10a)

(S.10b)

(5.10c)

0.4

0.8

l.2

l.5—

0.8
5.0—

0.4-
l.2

0.8

y( Ap —Ap')( u OU2 —Upu 2 )
' 1/2

1
Ap[( upu2+ Upll 2) +—„u2u2], (5.10d) -0.5—

l.2—
I

l.2
0.8—
0.4

5 2 40 2 2
Xp = — Ap[(tlOU2+UOQ2) + lg 9 2V2]

100
x2 ——— 5 Aou 2u249m.

5 1/2

Ep = (%+3) Ap[(QOU2+upu2) + 4", u 2u2]2'
1 /2

5 5
[ 1 p(fl OQ2 —

UpV2 )
4

(5.100)

(5.10f)

-l.2—

0.0-

0.8-

0.6—

0.8

1.2

+Apupg 2+ Ap

lipu2�]
E2 = 5 A[p(ll U02+UPO)2+ 4g Q2U2]

1 /2 2 30 2 2

277
1 /2

1 5
[ I 0(QOQ 2

—UOU2 }
4

(5.10g)
-l.8—

0.3
I

0.5

l2 — -05-
0.7 0.3

2,
2

0.5
l

0.7

FIG. 2. Ratios of IBFA parameters as a function of v 2 for
three different values of

~
X

~

=0.4, 0.8, and 1.2.

+Ap'U p Q 2 +Ap rl 0U 2 ] (5.10h)

The phase factor, P, in Eqs. (5.10d) and (S.10g) is the
same one as in the terms in the Hamiltonian of Eq. (2.9)
that change the number of d bosons. The phase can be
chosen such that ( Ap —Ap' })0. With this choice the
SO' "'(6) term in H,„m, which is 'proportional to gl, be-
comes attractive. This is necessary for a correct ordering
of the various bands in the boson- fermion symmetry.
This phase factor is related to a particle-hole conjugation
and changes sign in the middle of the shell (up ——u2 ——0.5).
The allowed values of up and u2 are given by Eq. (5.10a),
0(u o ( 1 and —,

' (u 2 & —,
' . In Fig. 2 the calculated values

for uo and the ratios of the IBFA parameters are given as
a function of u2 for three different values of X,

~
X

~

=0.4,
0.8, and 1.2. The sign of P is determined by the fact that
both 1 p and Ao have to be positive [see Eq. (5.10b)] and

changes at u 2
——0.5. For u o ——u 2

——0.5 there is a singular
solution, since at this point the contribution of the quad-
rupole interaction vanishes.

By requiring that the IBFA parameters fall in a "physi-
cally allowed" region, Eqs. (5.10a)—(5.10h) can be used to
determine where spectra with SO(6)U(2} symmetry can
be expected to occur. Phenomenological calculations for
the odd Eu (Ref. 22), Pm (Ref. 24), Xe (Ref. 23), and Ir,
Pt, Au (Ref. 21) indicate that I 0/Ap & 1. From the
phenomenology. of the IBA-2 model it is known that in
essentially all cases

~
X

~

( 1.3. From Fig. 2 it can be seen
that this implies that —,

' (u 2 (0.4 or 0.6 (u 2 (—', . Furth-
ermore, the two coefficients Ap and Ap' [see Eq. (4.10)]
should have opposite signs. All these conditions together
limit the region where the SO(6)131U(2) symmetry can be
expected to occur to (i) X=—1.2, u2 —0.6, and up 0. 1 or
(ii) X=1.2, v2 —0.4, and uo —0.9. For smaller values of X
or

~

u 2
2—0.5

~

the ratio Ap/1 0 is considerably smaller
than 1, while for values of u 2 closer to —,

' or —', the signs
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other shell model orbits. There are three regions in the
nuclear mass table where the SO(6) symmetry has been
applied, namely the Pt-Os region, ' the Xe-Ba region,
and the Kr-Sr region (see Fig. 3). Inspection of the
single-particle level scheme (Fig. 4) shows that the
SO(6) U(2) symmetry could occur for

(a) the odd-neutron nuclei in the Pt-Os region with the
odd neutron occupying the 3p~/2, 3p3/2 and 2f5/2 orbits;
or

(b) the odd-neutron nuclei in the Kr-Sr region with the
odd neutron occupying the 2p ~/2, 2p3/2 and 1f5/z orbits.

50 IOO

Neutron Number

I50

FIG. 3. Regions where a description in terms of the SO(6)
limit may be appropriate (dashed areas). The even-even nuclei
shown in the chart are those for which the first excited 2+ state
is known.

of Ao and Ao' will become equal. In addition to the condi-
tions (i) or (ii) mentioned above the core nucleus should
have SO(6) symmetry and the single-particle levels with
spin j=—,', —,', and —, should be well separated from the

The fact that the symmetry is expected to occur only for
negative parity states (the p~/2 p3/2 and f&/2 orbits), in-
stead of for positive states (the s~/2 83/2 and d5/2 orbits)
is no accident. For positive parity states the condition
that the j= —, and —,

' levels are almost degenerate is never
realized because of the effects of the spin-orbit splitting of
the s.p. levels. The spin-orbit force splits the p levels such
that the p3/2 orbit lies below the p&&2. The occupancy of
the @~&2 is therefore always smaller than that of the p3/2,
which reduces region for the SO(6)C8IU(2) symmetry to

g= —1.2, U2 —0.6, Uo —0. 1 .

En
MeV

CA l/l ~Mm

PV hl

CFl

3d 3'
2g»s-
4S 'l2
1 j l5l2
3d sn
] j ll/2

2g 9&&

3p '/2
gp 3/2
2( s/2
1 j l3/2
2f 7/2
th~i2

-20—

3s ~/2

2d 3/2

2d s/2

1g 7l2

1g 9/Z

2p '/2
2p 3/Z

]f 5lp

60 80 100 &2Q

I

, 200

FEG. 4. Single neutron energies (Ref. 28) as a function of mass number. The regions where the single-particle levels with j= 2, T,
and 2 are well separated from the other shell model orbits have been indicated in the figure.
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TABLE I. Quasiparticle energies and occupation probabili-
ties of the single-particle orbits in the neutron 82-126 major
shell for ' 'Pt, calculated by solving the BCS gap equations us-

ing 6=135/A.

2f7/3 'lh9/2 li, 3/2 3p3/3 2f&/3 3pl/3

P/9)~l.2~0.8

1.07
1.88
0.96

&, (MeVl
EJ (MeV)

2
UJ

'From Ref. 37.

0.00
2.93
0.99

1.97 2.57
1.10 0.73
0.89 0.67

2.92
0.69
0.46

3.51
0.95
0.16

O.IO—

In the following we will investigate whether this condition
is satisfied in the case of ' Pt, for which it has been sug-
gested"' ' ' ' that the negative parity states provide a
good example of the SO(6)U(2) symmetry (see also Fig.
1).

The results of a Bardeen-Cooper-Schrieffer (BCS) cal-
culation for the quasi-particle energies and the occupation
probabilities of the orbits in the neutron 82-126 major
shell for ' Pt is given in Table I. The occupancy for the
3p~/2 shell is small, while that of the 3p3/z and 2f5/2 or-
bits is of the order of 0.5. We note that these values de-
pend strongly on the position of the li ~3/z orbit. Since the
BF quadrupole interaction arises mainly from the
neutron-proton quadrupole force, for the odd-neutron nu-
clei the values of the coefficient X should be taken equal
to that in the proton boson quadrupole operator. The
value of X used in phenomenological calculations for the
even-even Pt isotopes was X~= —0.80. These values for
the occupancies and 7 are in agreement with the condi-
tions (5.11) and this explains why, in first approximation,
the negative parity states in ' Pt provide a good example
of the SO(6)U(2) limit of the IBFM. The larger break-
ing of this symmetry observed in the neighboring nuclei

Pt and ' ' Pt (Refs. 39 and 40) can then be under-
stood by noting that the occupancies of the 3p3/2, 2f5/2,
and that of the 3p~/2 orbits are different from the ones in

Pt. Therefore one should rather study the X= 117 iso-
tones in this mass region to find more experimental exam-
ples of this type of symmetry, since for these nuclei the
single particle occupancies will remain essentially un-
changed. However, the corresponding core nuclei, ' Os
and especially ' 'W, do not exhibit an SO(6) symmetry.

It is also possible to take a different approach in which
one uses the relation between the SO(6)183U(2) limit and
the IBFA model to calculate a "physical" region for the
BF symmetry parameters. The results of such a compar-
ison are

51/2
2 2

Ap[(upU2+UpQ2) + $9 QpUp]
4m

-l.5
0.3

I

0.5
2

V2

0.7
0

0.3
1

0.5

V2

07

always has a negative value as explained before. The ra-
tios of the symmetry parameters are plotted in Fig. 5 as a
function of U2 and

I
X

I
. In the analysis of the spectrum

of ' Pt in terms of the SO(6)lglU(2) symmetry, the values
obtained for the ratios p/31 = —1.05 and y/g= —0.08 are
in good agreement with the values given in Fig. 5 for

I
X

I

=0.80. The value for g/g = —1.9, however, is about
twice as large as that extracted from Fig. 5.

Finally in Fig. .6 the ratio ri/I p is plotted. Using the
value for 31 as found in the analysis of ' Pt we obtain
I"p=0 1 Me+ for

I &
I
=0 80 and U2 ——0.65. This value is

considerably smaller than the one used in single-j shell
calculations in the Pt region in Ref 21. H. owever, in these
calculations a limited single particle space was used which
gives rise to a larger strength of the effective quadrupole-
quadrupole interaction.

-O.)—

FIG. 5. Ratio of parameters in the SO(6)g U(2) limit as a
function of Uz for three different values of

I
X

I
=0.4, 0.8, and

1.2.

1 5
'

]./2

[I p(BpQ p
—

UpUp ) + Ap UpQ2 +ApQpU2]

p = — 5 Apts 2U p
—7/,1/2 2 2

49m

(5.12)
-O.Z—

0.5 0.5

2

1. 2
I

0.7

The phase factor P in Eq. (5.11) again is the same as in
Eq. (2.7) and has been chosen such that the coefficient 9)

FIG. 6. Ratio q/To as a function of U2 for three different
values of

I
g

I

=0.4, 0.8, and 1.2
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VI. CONCLUSIONS

In this paper we have investigated the relation between
a description of odd-A nuclei in terms of boson-fermion
symmetries and that in terms of the IBFA model. As an
example we studied the conditions under which the
SO(6)SU(2) symmetry arises from the IBFA model Ham-
iltonian. The same procedure can be used for other exam-
ples of dynamical boson-fermion symmetries. In a future
publication, a detailed investigation will be presented of
the other limits given in Eq. (2.3), the U "(5) and SU "(3)
limits. It was shown that in order to obtain an exact
correspondence between the two Hamiltonians an addi-
tional term in the boson-fermion interaction of the IBFA
model had to be introduced. This extra term, which can
be derived from a quadrupole pairing interaction between
identical particles, has up to now been neglected in the
IBFA Hamiltonian.

The close relation between the IBFA model and the
multi-j boson-fermion symmetries is based on the fact
that in both descriptions the Hamiltonian is invariant
under an SU(2) pseudo-spin s = —, symmetry. It was
found that the symmetries correspond to specific values of
the occupation probabilities of the single-particle orbits in
the IBFA Hamiltonian. This explains why only a few
good examples of these symmetries are found in odd-even
nuclei. In ' Pt the "microscopic conditions" are indeed
satisfied.

It should be realized that also the IBFA model offers
only a simplified semimicroscopic description of odd-
mass nuclei. If more terms are added to the IBFA Hamil-
tonian, such as for example an explicit hexadecapole
force, symmetries can occur for a wider range of parame-
ters. The good agreement for the values of the symmetry
parameters obtained from the predictions, and those ob-
tained from a phenomenological fit to ' Pt, can be seen
as an indication that the effective BF interaction used in
the IBFA model is indeed complete.

The present investigation of the relation between the BF
symmetry Hamiltonian and the IBFA model Hamiltonian
can be seen as a first step towards a real microscopic
understanding of BF symmetries in nuclei. In the IBFA
model only the structure of the Hamiltonian is taken from
microscopic considerations. The interaction strengths in
the Hamiltonian are treated as adjustable parameters in
phenomenological applications. This is similar in spirit to
the approach taken for even-even nuclei where also the
structure of the Hamiltonian is determined qualitatively
using microscopic arguments but where a quantitative cal-
culation of the model parameters has proven to be compli-
cated.

In conclusion, we have shown that dynamical boson-
fermion symmetries correspond to special cases of the
"semimicroscopic" IBFA model Hamiltonian. An attrac-
tive feature of dynamical symmetries, both in even-even
and odd-even nuclei, is that they provide a simple frame-
work to classify and analyze the experimental data, which
can then be used as a starting point for a more detailed
description of nuclear properties by adding symmetry
breaking terms in the IBFA.

APPENDIX

The generators G& '(l, l') of the boson-fermion group
U' '(6) can be obtained by combining those of the boson
group U' '(6),

Bp '(l, l')=(b(b())J, '
)

boo ——s; bz ——d
(A 1)

with the corresponding ones of the pseudo-orbital group
U(F)(6)

K' '(k k') = —y [(2j+1)(2j'+1)]' ( —l)J + +'
JJ

(A2)

into

Gp(~)(l, l) =By(k)(l, l)+Ice(k)(l, t),
G„' '(0, 2) =Bq '(0,2)+ /ICE '(0,2),
Gp (2,0)=Bq '(2, 0)+PEq '(2,0),

(A3)

with l=0,2 and X=-0, . . . , 4. The generators G' '(l, l')
in Eq. (A3) have been determined by requiring that they
form a closed set under the commutation relations of the
group U' "'(6). This, however, leaves a freedom of sign,
P, in G& (0,2) and G& '(2, 0). We note that the eigen-
values, as well as the eigenvectors of the Hamiltonian
0,„ in Eq. (2.6), are invariant under this phase. The
generators of the subgroups of U' "'(6) appearing in Eq.
(2.3c) are

SO' "'(6): {G„''(2,2),G' '(0, 2)+G' '(2,0),
G(3)(2 2)]

)(5) {G ' (2,2),G 3 (2,2)),
SO(BF)(3). {G(&)(2 2) }

(A4)

Finally the generators of the spinor group Spin(3) are pro-
portional to the total angular momentum operator

~„")= ~io(d'd)„("
—g [ ,'j(j+1)(2j+1)j' '(~, ~, )„'"—.

J
(A5)

The Casimir operators appearing in H,~, Eq. (2.6) can be
expressed in terms of the generators in Eqs. (A3)—(A5) as
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4

C (BF)
——G' '(0,0) G' '(0,0)+G' '(0,2) G' '(2, 0)+G' '(2 0) G' '(0, 2)+ g G' '(2, 2) G' '(2, 2)

C (gp( =2[6 (0 2)+G (2 0)j [G (0 2)+G (2 0)]+4 g G (2,2) G (2 2)
A, =1,3

A.=1,3
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