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Results are presented for a two-nucleon model of the (p,~) reaction in the resonance region.

Features of the microscopic two-nucleon model adopted include propagating intermediate pions and

rho mesons, and an intermediate delta isobar whose propagator includes interaction with the nuclear

system as mell as an energy dependent width. Realistic distorted waves are adopted for the external

proton and pion. Transitions from a closed shell to two-particle —one-hole and single-particle final

states are studied, with both projectile- and target-emission diagrams included, for a carbon target.

The results indicate that the effect of finite range delta propagation is important in lowering the sen-

sitivity of the predictions to the details of proton and pion distortions and the bound state wave

functions. The results are not very sensitive to the exact nature of the delta-nucleus interaction.

The relative magnitude of target-emission or projectile-emission diagrams depends on the particular

transition and angle under consideration. Comparison with experiment and future extensions and

applications of the model are discussed.

I. INTRODUCTION

There now exists precise experimental data on the (p, m)
reaction at intermediate energies (150& T„&800 MeV)
for a wide variety of nuclear targets and final states. Un-
fortunately theoretical progress has not kept pace and
there does not yet exist a satisfactory theory of proton-
induced pion production on complex nuclear targets. '

The existing data is often characterized as being largely
devoid of systematic trends. The process is characterized
by a large momentum transfer, Q, to the nucleus
(Q&2k&). Thus, approaches that involve only a single
nucleon in the production pmcess [single nucleon mecha-
nism (SNM)] are known to be very sensitive to the details
of pion and proton optical potentials and the form of the
bound single nucleon orbitals. ' In the plane wave limit
the SNM cross section is proportional to

~
$(Q) ~, where

P is the final bound state nucleon orbital. Since Q is very
large the details of the orbital at large Q are emphasized.
Moreover, since one effect of optical potential-induced
distortions is to "smear out" the values of Q at which P is
evaluated, the details of optical potentials which allow
lower "effective" Q values become crucial.

There exists considerable motivation for suggesting that
a two-nucleon mechanism (TNM) is more important and
appropriate for describing the (p, m ) reaction. In the
TNM the transition operator incorporates explicitly the
interaction of the projectile nucleon with one of the target
nucleons. For intermediate energy protons, an important
piece of the TNM should involve virtual isobar (b, ) pro-
duction with subsequent isobar propagation and decay to
the final bound nucleon and emitted pion (see Fig. 1). It
is known that pion rescattering with intermediate isobar
formation is extremely important for pion production in

the two-nucleon system in the range 200 (Tp & 400 MeV. '

This fact has been known for almost 30 years. More re-
cent successful theories of pion production in the two-
nucleon system have also adopted a model with an inter-
rnediate 5 with static transition potentials. Whether such
models are sufficient for explaining spin observables in

the two-body system is still under investigation. The ad-
ditional approximations required for embedding such a
two-body theory in the many-body environment (i.e., va-

lidity of a distorted waves theory) are not yet stringently
tested. Before such finer tests are possible it seems neces-

sary, as a first step, to treat the intermediate isobar forma-
tion more carefully than previously has been done in the
many body problem. In a complex nucleus the TNM al-
lows the large momentum transfer to be shared among
two active nucleons (or, equivalently, among three bound
nucleon orbitals). Also the (p, m ) pmcess, which requires
two nucleons to change their charge (in a nucleons-only
model), can be naturally incorporated in a TNM, as can
transitions to two-particle —one-hole (2p-lh) final states
from an initial closed shell nucleus. Transitions to final
states characterized as 2p-1h have been found to be prom-
inent in (p, vr) excitation spectra.

Earlier investigations utihzing a TNM have been sug-
gestive of the validity of the approach but cannot yet be
considered definitive or capable of quantitative predic-
tions because of the approximations employed. Previ-
ous investigations have either utilized the zero-range ap-
pmximation for the intermediate meson and/or have not
allowed for explicit propagation of the isobar in the nu-

cleus. The propagation of the intermediate particles effec-
tively introduces nonlocalities in the nuclear transition
matrix elements. Because such nonlocalities can them-
selves change the sensitivity of the final results to input
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wave terms. A later contribution, reporting results of
(p, m ) calculations near the production threshold, will con-
tain the details of the nonresonant background extension
of the present model.

In the next section we discuss the basic assumptions
and input required in the model. We also include
representative formulae which were used in the calcula-
tions. The details of the derivations of these equations are
either briefly summarized or discussed in the appendices.

In Sec. III we present the numerical results of applying
the TNM model to study pion production from a carbon
ground state in the initial proton energy region
200( T&' (300 MeV. Both "single particle" and "two-
particle —one-hole" final nuclear states were studied. The
sensitivity of the results to distorted wave and bound state
wave function parameters, intermediate delta propagation
and interaction, and inclusion of both intermediate m. and

p mesons is studied in some detail. We also consider the
relative importance of projectile emission and target emis-
sion diagrams (see later discussion).

Finally, in Sec. IV we discuss the results obtained in
Sec. III. Implications of the results for future comparison
between theory and experiment are summarized. Further
theoretical and experimental research in pion production
is also suggested in this section.

FICx. 1. Diagrammatic representation of the pion production
two-nucleon mechanism assuming formation of an intermediate

A two-particle —one-hole (2p-1h) final nuclear state has been
assumed. The incident nucleon line is labeled by j~, the interact-
ing intermediate 5 is represented by a dashed line ending at a
cross, the intermediate meson ( p or ~) propagating betwee'n ver-
tices 1 and 2 is denoted by a dashed line. The final observed
pion is emitted from vertex 3 and is represented by a dashed
line. The final 2p-1h nuclear state is represented by the solid
lines labeled jq, j4, and jz. Parts (a) and (b) [(c) and (d)] are re-
ferred to as target (projectile) emission diagrams. The different
labelings of the final nucleon particle states arise naturally from
antisymmetrization of the nuclear wave function.

II. THE

TYCHO-NUCLEON

PION PRODUCTION MODEL

In this section we discuss the model adopted, and
representative expressions obtained, for studying pion pro-
duction from complex nuclei. For definiteness, we shall
consider in this section a closed shell (X=Z) nuclear tar-
get ground state (J=T=0) and 2p-lh final nuclear states.
Analogous expressions for single particle nuclear final
states are given in Ref. 10.

In this initial investigation we include post-pion emis-
sion diagrams only [see Fig. 2(a)]. Pre-pion emission dia-
grams [see Fig. 2(b)] are expected to be generally smaller

distortion and bound state wave functions, it seems im-
portant to carry out TNM calculations where the zero-
range and closure approximations are not adopted.

In what follows we present results obtained using a
TNM of pion production. The intermediate mesons (i.e.,
pion or rho) and delta propagate with the only approxima-
tion being that the interaction of the delta with the
many-nucleon environment, appearing in the delta propa-
gator, is assumed to be a local function of the nuclear den-
sity.

The results given in this paper are the first part of a
systematic treatment of the TNM mechanism incorporat-
ing an intermediate propagating and interacting delta,
with virtual pion and rho exchange, including the effects
of realistic external proton and pion distortions. In this
first discussion we work in the resonance region where
contributions from the nonresonant background are ex-
pected to be small. En fact we have already extended the
model to include, microscopically, nonresonant S and P

INCIDENT

INCIDENT

FIG. 2. (a) Post-pion emission diagram. (b) Pre-pion emis-
sion diagram. Diagrams of type (a) are included in the results
discussed in the present investigation.
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than the post-pion emission diagrams. By taking ratios of
the energy propagators appearing in the two types of dia-
grams we estimate that near the resonance region
(T'-300 MeV) the amplitude of the pre-emission terms
should be approximately 20% of the included post-
emission amplitudes. In this work we concentrate on dia-
grams'including an intermediate b, (3—3) resonance con-
tribution.

The diagrams associated with contributions to the
TNM interaction Hamiltonian including an intermediate
6 are shown in Figs. 1(a)—(d). We shall concentrate, as
an example, on the contribution due to Fig. 1(c). Qne can
write this contribution to the amplitude as

A'=y(f
~

V(r3) V(r(, r2) ~i),(.)
f .I

where ~i), ~I), and
~
f) refer to the initial, intermedi-

ate, and final states of the system, respectively. In Eq. (1),
V(r~, r2) represents the two-body transition operator that
connects an initial two-nucleon state with an intermediate
nucleon-delta state. V(r3) is the one-body transition po-
tential at the Nhn vertex. Note that Figs. 1(a) and (b)
[1(c) and (d)] are referred to as target (projectile) emission
diagrams. In what follows we have suppressed the isospin
contribution to various matrix elements and diagrams.
The isospin factors are discussed separately later in this
section for the various diagrams of interest.

The expression for the required matrix elements of
V(r&, r2), as well as the procedures for constructing the in-
itial and intermediate states, are discussed in Appendix A.
The matrix elements of V(r3) and the construction of the
final state are discussed in Appendix B. Combining Eqs.
(A16), (A28), and (B13) we obtain the following schematic
result for the nonisospin part of the matrix element ap-
propriate for Fig. 1(c):

1

lTpP
E

f q C';(q)D, (q)G;(A, q) dq[E~ —Mz+il '(E')/2 —&']

X f dr(R„,'„,(r()j~ (qr, )U~~( k~, r, )

f dr2r2R /j(r2)J'(qr2)R'~ (r2)

(2)

X f dr, r3R„~ J (r3)R„~~ (r3)F[p, (k, r3)],

where G represents a sum over geometric, statistical, and
normalization factors defined and discussed in the appen-
dices. The sum over i =m, p arises from allowing both an
intermediate pion (m) and rho (p) meson.

The symbols R„'1 represent bound nucleon wave func-
l l l

tions [see Fig. 1(c)], R„"J is an intermediate b, wave

function, and the U~ J (k„,r &) come from a partial wave

expansion of the initial proton distorted wave. The Bessel
functions, j~(qr), arise from using the Fourier transform
of the transition potential V(r„r2). The term
E[P' (k ), r3)] includes derivative operators acting on the
final pion partial wave decomposed distorted wave func-
tion, P' (see Appendix 8). The C~;(q) are factors arising

from a multipole expansion of the intermediate pion or
rho transition potential, the D;(q) are the intermediate
meson propagators, and the G;(A, q) are the (monopole)
form factors associated with the baryon-baryon-meson
vertices.

The propagator associated with the intermediate delta is
discussed in detail in Appendix C. We note that the prop-
agator contains an energy dependent width I ~(E) and a
contribution from a 6-nucleus interaction X~. The treat-
ment of the delta propagator follows closely that outlined
in Ref. 12 and is discussed here in Appendix C.

The isospin factors are straightforward to calculate.
The detailed procedure is contained in Ref. 10 and is
available from the authors on request. We briefly summa-

I

rize the order of coupling and the results below. We as
sume an isospin zero target. In the nuclear intermediate
state the delta isospin and nucleon particle state isospin
are first coupled and the resultant isospin (t3) and
nucleon-hole-state isospin are combined to give total iso
spin TOMo, i.e., we have

(3)

4 1

W3
for Tf ———,

'
(5a)

and

302/3 for Tf —
2 (5b)

For Fig. 1(b) the isospin factors are the same as those
given in Eqs. (5a) and (5b). For Figs. 1(a) and (d) the
Tg —

p isospin factors are the same as those given in Eq.

For the 2p-1h final state the coupling scheme is'

y [[-,'(4) —.(2)1 '-'. ,(2')] (4)
f4

where (4), (2), and (2') refer to the states labeled j4, j2, and
j2 in Fig. 1(c), respectively. Using the order of coupling
defined above and the isospin operators given in Appen-
dices A and 8 for the one- and two-body transition opera-
tors, we find the isospin factor for Fig. 1(c) is
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(Sb), while, for the T~= —,
' factors, the expression in

parentheses in Eq. (5a) becomes ( —1+1/v'3).
Of course, in addition to the 2p-1h diagrams shown in

Fig. 1 there are transitions leading to single particle final
states (see Fig. 3). The derivation and final formulae for
transitions associated with these diagrams are similar to
the results given in Appendices A and 8 and discussed
above.

The numerical techniques for carrying out the indicated
integrations including the intermediate particle propaga-
tors are nontrivial but technical in detail. The procedures
adopted are discussed elsewhere. ' One interesting feature
is the difference in the pion propagator for the projectile
and target emission pieces. The pion propagator may be
written

I
D(q) =-

q —qo+m —ie
(6)

where in writing Eq. (6) we have ignored the interaction
of the exchanged pion with the background many-nucleon
system. %'e are working with a nonrelativistic theory so
that one might argue that the qo term should also be ig-
nored in Eq. (6). One could also argue that, for the target
emission piece (where the b, is formed from the incident
nucleon), qo is just the difference in the binding energies
of the particle-hole pair at the NN vertex. Thus, for the
final states we consider, qo is a few MeV, m —qo&0,
and the pion propagator cannot develop a pole for real q.

In this case the integration over q yields no imaginary
part.

For the projectile emission piece, on the other hand, qo
is the sum of the kinetic energy of the incident proton and
the binding energy of the final proton bound state. For a
250 MeV proton, qo ~ 250 MeV. Thus the pion propaga-
tor can develop a pole at qo ——(q +m ), corresponding to
the propagation of an on-shell pion. In this case the in-
tegral over q has complex values. Notice that in this dis-
cussion, although we have not used a static approximation
for the pion propagator, integration over qo is eliminated
because the energy of the intermediate pion is assumed
known, since the final states have definite binding ener-
gies. In the following we summarize the distorted wave
input used to generate the numerical results presented in
Sec. III.

A. Proton distortions

The radial part of the proton distorted wave UIJ(k, r)
satisfies the following Schrodinger equation:

A I(l+ 1) + V(lj, r) EU(~(k—,r) =0,
zp dr zpr

where p is the reduced mass of the proton-nucleus system
in the proton-nucleus center of mass and E is the corre-
sponding energy related to the wave number k in the
proton-nucleus c.m. system by

k =(E p, c )/Ac—
The quantity V(I,j,r) is the proton-nucleus optical po-

tential and is given by

V(i j ")=Vc-i+ Vifi+&~2f2

2 df3 . df4
V3 +iV4 (1 cr) .

r dr dp'

e'
Here Vc,„~ is the Coulomb potential arising from a uni-
form charge distribution, V~ and W2 represent the
strengths of the real and the imaginary parts of the cen-
tral potential, and V3 and 8'4 are the corresponding
strengths for the spin-orbit part of the optical potential.
The f 's are the form factors and taken to be of the
Woods-Saxon form,

f;(r)= 1+ exp[(r —8; )/a;]
(10)

FIG. 3. Similar to Fig. 1 except a single valence particle final
state has been assumed and the nucleon labels have been deleted.
Diagrams (a) and (b) are 5 resonance contributions while dia-
grams (c) and (d) represent nonresonant contributions.

where a; is the skin thickness and R; is the radius of the
potential well. The parameters adopted for the proton-
nucleus optical potentials are given in Table I. The values
given in Table I should be used only with relativistic
kinematics. The parameters given in Table I are taken
from Ref. 13 and have been obtained from fits to proton-
nucleus elastic scattering in the energy range 200
& T~ & 350 MeV.
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TABLE I. Proton-nucleus optical potentia1 parameters for incident proton kinetic energies of 250
and 200 MeV. Potential strengths are in MeV and R s and a s are in fm (Ref. 13).

Vi
—6.0

250 MeV

Wp
—32.0

V3
—3.1

8'4
3.5

Vl
—7.27

200 MeV

—28.46
V3

—3.26
8'4

3.08

R)
1.37

R2
0.800

R3
0.850

R4
0.850

Ri
1.374

R2
0.816

R3
0.880

R4
0.880

al
0.500

Q2

0.800
Q3

0.550
a4

0.550
Qp

0.854
Q3

0.553
a4

0.526

B. Pion distortions-

For the ca1culations shown in this work we have used a
modified Kisslinger potential with the center of mass
correction. The modified Kisslinger potential (for a nu-
cleus of atomic number A ) is of the following form:

Vop, (r ) = Abok p(r—)+Ab, V.p(r )V

—A /2[( T +m ) /M]b &
V p(r ) .

T„=250 MeV

Rebp ———0.43
Reb i

——7. 11
Imbp ——0.56
Imb ) ——3.32

Tp ——200 MeV

Here M is the nucleon mass, k is the wave number of the
pion in the pion-nucleus c.m. , T is the pion kinetic ener-

gy, and bp and b~ are parameters related to the S- and I'-
wave pion-nucleon phase shifts. For 250 and 200 MeV
proton kinetic energies and a ' C target we use the follow-
ing values for the complex parameters bo and b ~.''

the most important new feature associated with the
present model is the incorporation of an intermediate,
propagating delta, we focus first on the sensitivity of the
results to the parameters appearing in the delta propaga-
tor. Results for subsections A and 8 below include only
the pion contribution to the one-boson exchange transition
potential leading to NN~AN.

A. Sensitivity of results to the (free) pvidth

and delta-nucleus potential appearing
in the delta propagator

We consider first the effect of the delta-nucleus poten-
tial on the predicted angular distribution for
' C(p, ~+)' Cs, at T~' =250 MeV. For these illustrative
calculations we have assumed a simple closed shell for the
' C ground state and a single valence lp&&2 neutron for
the ' C ground state. Harmonic oscillator single particle
orbitals with oscillator parameter P=mco/h =0.3718
fm were adopted. For the incident proton energy under
consideration the 6-nucleus potential parameters (see Sec.
II) are V= —19.37 MeV, W= —42. 7 MeV. If the free
width for the b, is used we have I =110 MeV. If we use
the standard result for the energy dependent width I (E),
then

Rebp = —0.44 Imbp ——0.29
Reb l

——9.00 Imb
&

——1.14
k (k +MN)r(E)=

6mm vS (13)

The radial part of the pion distorted wave, P~, has been
generated using the program pIRK.

Finally, the relation between the individual amplitudes
associated with the diagrams shown in Figs. 1 and 3 and
the cross section is given in the c.m. system by'

do. l km E E +' 2(E~E~), ,
—g Amp

(12)

where E, E~, E", and E"+' refer to the energies of the
final pion, incident proton, initial target, and final target,
respectively.

III. RESULTS

The TNM discussed in Sec. II has been applied to ob-
tain the numerical results reported in this section. Since

where ~S is the total energy in the pion-nucleon c.m.
(~N c.m. ) and k is the momentum of one of the particles
in the mN c.m. For the kinematics and transition under
consideration I (E)-50 MeV. Pion and proton distor-
tions have been included using parameters given in Sec.
II. The results of the calculations using various widths
and 6-nucleus potential parameters are shown in Fig. 4.
The results indicate that the shape of the predicted angu-
lar distributions are not appreciably effected by details of
the 6-nucleus interaction and whether the free or energy
dependent width is adopted in the resonance region. For
both the target and projectile emission diagrams reduction
factors of -2 result as one changes from an energy
dependent width and phenomenological 6-nucleus in-
teraction to a free width and no 6-nucleus interaction.
Apparently this occurs, below the resonance region, be-
cause the important total effective width in the delta prop-
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propagation can be seen. The result shown, for the target
emission diagram and the reaction ' C(p, n.+)' Cs, ,
Tz' ——265 MeV, indicates that both the shape of the an-
gular distribution and the general magnitude of the dif-
ferential cross section is appreciably changed by allowing
propagation. The calculation including 6 propagation
yields more structure and an enhancement in the differen-
tial cross section compared to the model calculation where
a nonpropagating 5 is included. (The limit of the non-
propagating 6 is obtained by replacing the kinetic energy
operator in the 5 propagator by a C number. )

B. Sensitivity of results to proton and pion distortions
and bound nucleon orbitals

IO

IO
I

50
I

IOO I50

agator is less in the former case than in the latter.
The general importance of allowing for 6 propagation

is shown in Fig. 5. In this case no pion or proton distor-
tions are included so that effects clearly associated with b,

I, NO PROTON DISTORTIONS
2, NO PION OISTORTIONS
3. NO 6-NUCLEUS INTERACTION

Tp =265 MeV

FICx. 4. Effect of the 6-nucleus potential and 5 width on the
target emission contribution to the differential cross section for
the reaction ' C(p, m+)' Cg, for an incident proton laboratory
kinetic energy of 250 MeV.

Since previous SNM calculations have shown consider-
able sensitivity to the parameters associated with the sin-
gle nucleon bound and continuum wave functions, ' it is of
interest to study the sensitivity of the TNM results to the
nucleon wave functions. First consider the sensitivity of
the ' C(p, m+)' Cz, predictions to whether harmonic os-
cillator (HO) or Saxon-Woods (SW) bound nucleon orbi-
tals are adopted. The results, shown in Fig. 6, indicate
that for both the target and projectile emission diagrams
the difference between using harmonic oscillator or
Saxon-Woods orbitals is negligible. The Saxon-Woods pa-
rameters used for the bound orbitals were a =a„=0.53
fm and R =R„=1.25 fm. The well depths were varied
to yield the single particle binding energies for each orbit.
The relative lack of sensitivity to the orbitals in the TNM
compared to the SNM may be understood by the follow-
ing. In a SNM all the momentum transfer (after account-
ing for the distortions) is given to one nucleon (the in-
cident nucleon which gets bound). Thus, one is exploring
the wave function of the bound nucleon at large momen-
tum transfer, Q. In momentum space the HO and SW
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E
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IO4
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b,Q Io~
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E
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'
~ Q

~ +aaae
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bo= (-0.43, 0,52)-

5.52)

~ ~ ~ ~ ~ ~

I
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20 40 60 80 IOO l20 l40 l60 180
8

FIG. 5. The target emission contribution to the differential
cross section for ' C(p, n.+)' Cg, , T~ =265 MeV when (a)
(solid line) the kinetic energy term in the 6 propagator is as-
sumed to be a C number. (1) (dashed line) the kinetic energy
term is treated as an operator.

0
~ ~

~ ~ ~

~ ~

IO I I I I I I I I I I I I I I I I I I I

IO 30 50 70 90 IIO I30 l50 l70

FIG. 6. The differential cross section contribution arising
from projectile and target emission diagrams assuming harmon-
ic oscillator (HO) or Saxon-Woods (SW) single nucleon bound
orbitals. Full proton and pion distortions have been included.
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wave functions differ considerably at large Q, resulting in
a sensitivity to the bound state wave functions. In a
TNM, however, the momentum Q is shared by three
bound wave functions, so that one is exploring each of the
wave functions in a region of smaller Q where the HO
and SW wave functions have very similar form. Thus the
TNM should not be as sensitive to the type of the bound
state functions utilized as long as they are similar at low

Q (k~. This insensitivity of the TNM to the single orbi-
tal nuclear structure is very encouraging, as it paves the
way to better understanding the reaction mechanism in-
volved in pion production. Of course, the details of the
many-particle nuclear structure may still be important.

Next we consider the sensitivity of the calculations to
pion and proton distortions. Figure 7 illustrates the effect
of pion distortions on the angular distributions for the
' C(p, m+)' Cs, reaction. We see that increasing or de-
creasing the pion distortion potential by —10% has very
little effect on the angular distributions. The most strik-
ing effect is obtained, of course, by the turning off of the
pion distortions. In this case we see that the angular dis-
tributions are not affected at forward angles, 8 (50'. For
larger angles the cross section drops smoothly and rapid-
ly. The fact that the angular distributions do not vary ap-
preciably for forward angles is a new feature. There is ap-
parently no SNM which can reproduce this behavior of
the angular distributions. In the SNM, turning off the
pion distortions makes the angular distributions decrease
by an order of magnitude. The fact that, in our model,
angular distributions without any distortions do not begin
to differ from those with pion distortions included (until

g, ~ 5()') is a positive feature of the TNM which can be
explained by the following discussion. An incoming pro-
ton with 250 MeV of kinetic energy has about 720 MeV/c
momentum. For pion production on ' C, exciting the
low-lying states of ' C, the outgoing pion has roughly 200
MeV/c momentum. Thus the momentum transferred to
the nucleus is about 520 MeV/c at forward angles. In the
TNM this momentum transfer is shared by the three
bound state wave functions. Thus, one is exploring these
wave functions for Q = 170 MeV/c momentum, which is

well below the Fermi momentum (250 MeV/c). There-
fore, one does not depend critically upon the pion distor-
tions to transfer 520 MeV/c momentum to the nucleus as
in the SNM. This results in the insensitivity of the angu-
lar distributions (at forward angles) to turning off and on
of the pion distortions. As we begin to look at the process
away from forward angles, the momentum transferred to
the nucleus begins to increase. At 8= 180', Q =920
MeV/c and thus each of the three wave functions is

evaluated in a momentum region somewhat greater than
the Fermi momentum. Hence, the pion distortions begin
to play an important role in determining the effective
momentum sharing. It appears from Fig. 7 that pion dis-

tortions begin to play a significant role in the momentum

sharing whenever the bound nucleons have to absorb more
than -200 MeV/c momentum. For higher momentum
transfer (Q &600 MeV/c), perhaps more than two nu-

cleons begin to take part in the pion production. Hence, if
one wants to cut down the effect of the pion distortions in

the model, perhaps higher-order processes (involving more
than two nucleons) should be treated microscopically.

Next we consider the effect of proton distortions on the

shape and magnitude of the angular distributions for the

IO

EFFECT OF PION D ISTORT IONS

bo= (-0.39, 0.46) bl =(6,40, 3.00)

( 043 0,52) b( (7 II 3 327
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FIG. 7. The effect of pion distortions on the angular distribu-
tion for the ' C(pm+)' C~, reaction for T~"=250 MeV. Only
projectile emission diagram contributions have been included.
Harmonic oscillator orbitals and full proton distortions have
been used in obtaining all curves shown.

FIG. 8. The effect of proton distortions on the angular distri-
bution for the ' C(p, m+)' C, reaction for T""=250 MeV.
Only target emission diagram contributions have been included.
Harmonic oscillator orbitals and full pion distortions have been

used in obtaining all curves shown.
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same transition treated above. We see from Fig. 8 that for
the target emission diagram a 10% change in the proton
optical potential results in approximately a 10% change
in the differential cross section with the shape of the an-
gular distribution remaining the same. Of course, a more
dramatic effect is obtained by turning off the proton dis-
tortions. The differential cross section increases by a fac-
tor of 3, with the shape of the angular distributions al-
most unaltered. This effect shows that, in a TNM, the
(p, m) reaction is quite insensitive to the proton distor-
tions. The increase in the differential cross section ob-
tained by decreasing the strength of the proton optical po-
tential is merely due to the fact that one is decreasing the
strength of the absorptive part of the optical potential.
The fact that the shape of the angular distributions
remains unchanged shows that, in a TNM, proton distor-
tions play a minor role in the momentum sharing process
(for Q &800 MeV/c). In a SNM, although the depen-
dence of the angular distributions on the proton distor-
tions is not as severe as on the pion distortions, it is still
strong. '

C. Studies associated with
the one-boson exchange NN —+Nb

transition potential

The two-body NN~NA transition potential has two
terms for each boson [see Eq. (2)], a scalar (A,; =0) and a
tensor (A,;=2) piece. In Fig. 9 we have shown the relative
contributions from the scalar and the tensor parts of the
pion transition potential for the projectile emission dia-
gram. One sees that the tensor part of the NN —+Nb, in-
teraction is larger at all the angles by more than a factor
of 2. Also notice that the scalar piece is fairly smooth.
The effect of including only the p meson exchange poten-
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FIG. 10. The predicted differential cross section including
only the rho ( p) meson piece of the NN~Nh transition poten-
tial. The reaction is ' C(p, m+)' C( 2,9.5 MeV) for Tp' ——200
MeV. Harmonic oscillator orbitals have been adopted and full
pion and proton distortions have been included.
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FKx. 9. Contributions of the A,; =2 (tensor) and A,;=0 (scalar)
parts of the pion exchange potential VNN N~ to the differential
cross section for the ' C(p, ~+)' C, reaction at T" =250
MeV. Fu11 pion and proton distortions have been included.
Harmonic oscillator orbitals have been adopted. Only the pro-
jectile emission diagram contributions have been included.

FIG. 11. Various contributions to the differential cross sec-
tion for pion production in the reaction ' C(p, m+)'3C( z,9.5

MeV) for Tp'" =200 MeV. The pion contribution to the
NN~NA transition potential and full pion and proton distor-
tions have been included. Harmonic oscillator orbitals have
been adopted. Comparison is shown of projectile (dashed line)
and target (solid line) emission contributions treating a finite qo
as discussed in Sec. II, the results of qo ——0 for the projectile
emission piece is shown as a dot-dashed line. The term qo is the
energy transfer appearing in the intermediate pion propagator.
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tial is shown in Fig. 10 for ' C(p, m+)' Cs, , T~ =200
MeV. We find that the few percent reduction (compared
to using the pion potential only) that results when a p+~
transition potential is adopted occurs because of a destruc-
tive interference between the important k;=2 pieces of
the p and ~ potentials.

As discussed in Sec. II, for low lying final nuclear states
the energy term qo appearing in the pion propagator is
only a few MeV for the target emission diagram while qo
can be 200—300 MeV for the projectile emission contribu-
tion. We wish to point out that the qo term is important
to include in (p, m. ) calculations. First note that the pro-
jectile emission diagram is dominant over a wide angular
range for (p, m) reactions leading to selected final states.
Therefore, in Fig. 11(b) we compare the projectile emis-
sion contribution with the qo term deleted in the propaga-
tor with the result obtained by setting qo ——Tp
+

~
Ez

~ &d, . The difference is significant, resulting in an

enhancement for the finite qo term with the enhancement
increasing for larger angles. We note that the sensitivity
to the type of single particle orbital adopted (see Fig. 6),
or to the strength of the b, -nucleus interaction (see Fig. 4),
or to modest changes in the proton and pion optical po-
tentials used for generating the final pion and initial pro-
ton distorted waves, respectively (see Figs. 7 and 8), is no
greater than the sensitivity to keeping the qo term in the
TNM.

D. Effect of intermediate p exchange

The coupling constants and mass for the intermediate p
exchange are given in Appendix A. We find that the in-
clusion of an intermediate p exchange has a negligible ef-
fect on the differential cross section. This is in agreement
with the results of Londergan and Nixon' and is a.conse-
quence of using single particle wave functions (for m and

p exchange matrix elements) which tend to have relatively
small high momentum components. However, we should
point out that it has been shown by Arima et al. ' that one
may obtain different results for vr and p exchange matrix
elements if one uses nuclear wave functions containing
two-nucleon correlations induced by the tensor force.
Thus, in this latter case the effect of p exchange may be
greater than we have found. This is an important area of
future research for reaction mechanism studies involving
two active nucleons.

E. Energy dependence and comparison with experiment

The predicted energy dependence of the
' C(p, m+)' C( —, , 9.5 MeV) differential cross section is
shown in Fig. 12(a). The results indicate a strong depen-
dence on energy of the shape and magnitude of the angu-
lar distribution. A simple (ld5&2)(lp»2)(lp&&2) ' 2p-lh
final state (using harmonic oscillator orbitals) has been
utilized for these model calculations. For this transition
the projectile-emission diagram dominates, and thus the
energy dependence mainly reflects the changes in this
diagram s predicted angular distribution. For compara-
tive purposes we have shown the available experimental
data in Fig. 12(b). While the magnitude of the cross sec-
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tion is not accurately predicted (nor expected —see later
discussion), the general trend of the shape and energy
dependence of data is well reproduced by the TNM.
Clearly data at the energy range above Tz ——250 MeV are
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FIG. 12. (a) Predicted energy dependence of the
' C(p, ~+)' C( 2,9.5 MeV) reaction as given by the TNM
model with a propagating 6 and full external particle distor-
tions. The angular distributions are plotted as a function of the
momentum transfer, q, to the nucleus. (b) Experimental data
for the reaction shown in (a). The lines through the data are to
guide the eye (Ref. 19).
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FICi. 13. Comparison between theory and experiment for the
' C(p, m+)' Cg, reaction at T„=250 MeV. The TNM model
developed in this paper has been used in the calculation. The
experimental data is from Ref. 20.

important for comparison with the model.
We show a comparison of a TNM prediction for

' C(p, m+)' Cz, , T~ =250 MeV with experimental data in
Fig. 13. The theory is not in quantitative agreement with
experiment, however, some features of the angular shape
of the data are reproduced. The conclusion is that the
TNM in its present form does not yet quantitatively fit
the data but that the general shapes and energy depen-
dence, for the transitions studied, are reasonably well
predicted. We note that Keister and Kisslinger find that
use of more realistic wave functions for ' Cs, results in a
change in the magnitude of the ' C(p, m+)' Cg, pre-
dictions while leaving the shape of the angular distribu-
tion substantially unchanged.

IV. SUMMARY AND CONCLUSIONS

In this initial investigation we have developed and ap-
plied a microscopic model of the pion production reaction
mechanism that involves two active nucleons (TNM).
The principal new feature of the present model is that it
allows for propagation of an intermediate b, resonance
taking into account interactions with the many-nucleon
medium. Other features of the model allow for a finite
range one-meson exchange transition potential, VNN
full external pion and proton distortions, and flexibility in
choosing the geometric form of the bound nucleon orbi-
tals. Transitions to single valence particle or two-
particle —one-hole final states from any of the (p, ~+),
(p, m ), or (p, m. ) reactions are treated on equal footing in
the model.

Heretofore, comparison between theory and experiment
has not been encouraging; the existing single nucleon
mechanism (SNM) theories possess considerable sensitivi-
ty to the parameters entering in effective potentials deter-
mining bound state and distorted wave functions.

Presumably a fair amount of this sensitivity originates
from the fact that pion production is a high momentum
transfer process, and thus, in the SNM, details of momen-
turn space bound orbitals and distorted waves at high
momentum transfer are unphysically accentuated. In a
TNM with a propagating intermediate 5 the pathological
high momentum dependence is alleviated by the facts that
(a) there are now two active nucleons to absorb the high
momentum transfer and (b) an additional momentum
smearing effect is introduced by the nonlocality originat-
ing from the propagating h. As a result, we find for our
TNM model that the results are not overly sensitive to the
orbitals adopted and the distortion parameters (see Figs.
6—8). For the particular transitions we studied, the shape
of the angular distributions were quite stable, at forward
and medium angles, to changes in the parameters under
consideration. At very large angles the momentum
transfer is large enough so that more than two active nu-
cleons may be required to adequately treat the reaction.

Studies of the meson exchange transition potential re-
veal the dominance of the tensor component of the reac-
tion (see Fig. 9). The more realistic m +p transition poten-
tial yielded a prediction similar in shape but smaller in
magnitude than the vr transition potential alone (see Fig.
10). One expects this to be a general result because of the
destructive interference between the important tensor con-
tributions of the two potentials. The crucial import'ance
of including the energy transfer component in the meson
propagator for the projectile emission contribution was il-
lustrated in Fig. 11. The relative importance of the target
emission and projectile emission contributions was seen to
be a function of the transition and angle under considera-
tion (see Figs. 6 and 11). For the transitions we studied
the projectile emission diagram dominated except at very
large angles (0& 130'). The dominance of the projectile
emission diagram for the ' C(p, sr+)' Cz, is consistent
with recent TNM results obtained using a finite range
transition potential.

The most important new results obtained in this paper
relate to the effects of allowing for intermediate 5 propa-
gation. First, there is the indirect result that the sensitivi-
ty to the other parameters (distortions, orbitals) is less
than found in previously explored TNM models. Second,
allowing for 5 propagation can significantly affect
predicted angular distributions (see Fig. 5). Third, the
shape of the predicted angular distributions do not seem
to be sensitive to the details of the assumed (local) 5-
nucleus interaction (see Fig. 4).

We have included some experimental data for compar-
ison with the theoretical predictions. While comparison
of angular shapes and the energy dependence of the (p, m. )

reaction is encouraging, the agreement between theory and
experiment is still not satisfactory. Beyond using more
realistic model nuclear wave functions there are several
obvious improvements to the present model that are under
current investigation. These are discussed briefly below.

Some additions to the present model which one might
wish to include are the following:

(a) inclusion of nonresonant pion-nucleon scattering
contributions;
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(b) use of Dirac relativistic phenomenology for the ac-
tive baryon wave functions;

(c) inclusion of nonstatic contributions at the meson
production and absorption vertices in a nonrelativistic
treatment;

(d) use of a more realistic transition operator TNN
as opposed to a one-meson exchange potentia/ VNN
and/or allowing for the intermediate exchanged meson to
propagate including nuclear medium effects;

(e) adoption of pion distorted waves arising from more
realistic momentum space optical potentials;

(f) inclusion of pieces of the SNM not included in the
present TNM; and

(g) inclusion of preemission diagrams.

As mentioned earlier, we have already completed initial
studies of a microscopic TNM model for including non-
resonant 5 and I' wave pion-nucleon scattering in the
present model. While this is the subject of a future pre-
sentation, we have found that, for T~h") 200 MeV, the
nonresonant background contribution is negligible com-
pared to the terms already included in the present TNM
model. Thus (a) above does not appear to have the poten-
tial to substantially change angular distributions in the re-
gion 200 ~ Tz' & 400 MeV.

The fact that the TNM requires evaluation of nucleon
wave functions below the Fermi momentum argues that
(b) and (c) above may not be of crucial importance—
however, detailed calculations are required to substantiate
this conjecture. The fact that relativistic approaches may
introduce an effective mass (due to the large scalar poten-
tial) certainly could effect predicted magnitudes of cross
sections.

Contributions (d)—(g) all seem to have some potential
for changing angular distributions. Additions (d), (e), and
(g), while adding some computational complexity to the
already formidable calculational task, are straightforward
conceptually, and their inclusion will be pursued. In-
clusion of the standard plane wave external pion and pro-
ton SNM is straightforward to add to the present calcula-
tion. However, Keister, and Kisslinger have argued that
this contribution is largely cancelled by an exchange plane
wave contribution which we have also not included. Es-
timation of this latter term is less straightforward.

It would be useful to have more experimental data in
the region above 200 MeV. This is an energy region
naturally accessible to TRIUMF. At this stage differen-
tial cross section angular distributions associated with the
more selective (p, vr ) reaction (where the SNM does not
naturally contribute) would be the best test of the present
model. Comparison of the present model with higher en-
ergy (p, m ) data to discrete final states as well as in the
continuum region would allow one to better separate
better reaction mechanism and nuclear structure uncer-
tainties.

We have not discussed analyzing power predictions in
this paper and, in fact, have not yet completed such calcu-
lations. Obviously, comparison of predictions with exist-
ing asymmetry data is a stringent test of a proposed
theory and will be pursued in future investigations.

APPENDIX A: TVf0-BODY
TRANSITION POTENTIAI. V(r&, r2)

A. Intermediate pion

The interaction Hamiltonian at the NNm vertex is taken
to be of the static form

VNN
——(f /m)o"V ~ 4, (Al)

where nz:—m . We use a static approximation to keep
the calculations tractable. Higher-order corrections to
VN~ can be incorporated in the model later on. Here V
is the derivative operator acting on the pion wave function

The pion-nucleon coupling strength, f~, is
&4~X0.088. The matrix representations of the operators
connecting two-component spinors in spin and isospin
spaces are a and r, respectively. The pion wave function,
N, is a scalar in spin space and vector in isospin space.

The static form for the KNvr interaction Hamiltonian
can similarly be written as

Vt,N (f*„lm)S——7 T .4. (A2)

f =&(72/25 )f
In momentum space we assume the two-body transition

potential, generated by one-pion exchange, to be

V(r„rz) =(2m) J dq exp[iq (r1 —rz)] V(q),

where

(A3)

V(q)= (f /m)(f' /—m)[(A —m )l(A —q&)]

1
X~) qs2 q&I '+p

gp —foal +l6
(A4)

In Eq. (A4), (q& —m +i@) ' is the nonstatic pion propa-
gator and (A —m )/(A —q„) is the monopole form fac-
tor at the NNm and AN+ vertices. We use a hard form
factor (A= 10m, implying a small interaction distance in
configuration space) for both the NNm and b,Nm vertices,
as motivated by the work of Holinde, Phys. Rep. 68, 122
(1981). Our studies indicate that the results are insensitive
to small variations in A for A ) 1.2 GeV.

~1 'qS2 q 3 (3~1 qS2'q o 1'Szq +~1 Szq )

= —,[S12(q)+cr1 Szq ], (A5)

where S12(q) is defined by

S12(q)=3~5[[F1S2]' [qgq]'] (A6)

Here the S (T) are 4X2 matrix representations of the
operators connecting spin (isospin) —, states with spin (iso-

spin) —,
' states, and f" is the b,Nm coupling strength. In

the quark model f' is related to f„ through
SU(2 ),~;„XSU(2);„,„;„symmetry by
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It can be shown that

o}'qs2'q= —g Cz(q)[Y},(q)e [o.,eS2]~]~,
A, =0,2

where

(A7)

Co (q) = —'}/(12m. )q 2,

C2 (q) =&(241r)q2 .

Thus one can write

(A8)

r, r ) (2~)—3( ' )(f /m)(f* /m) g J G(A q)D (q)C2(q) exp[iq (r}—r2)][Yz(q)S[o'}S2] ] (A9)

where

G(A, q) =(A' m')/(A—' qo+q'—)

and D„(q) stands for the pion propagator.
Consider the term

Io= exp[1q (r}—r, )][Y2,(q)e[o'}C}tIS2] ]
Using the partial wave expansion for the plane wave

expiq r=4m .+if},(qr)Y, (r) Y,
" (q)

(Al 1)

Y}* ( —q)=( —1)'Y} (q),
one can write

(A13)

3/2 —A&+A2 A2+A+L+1~ ~ ~ ~. A} k2 A A} )}2
I11

——(4~) g (}) ( —1) ~}4~LZ2,}(qr})J22(qr2)
A, ),A,2, A, ,L

~ [[Y., (r})~}]'[Y. ,(r, )S2]'] (A14)

where the abbreviation x =v'(2x + 1) has been used. The large parentheses and curly bracketed expressions are the usual
3J and 6J symbols, respectively, defined in Ref. 11. One thus can write the two-body transition potential in partial wave
decomposed forGl as

&2,z,2L I q G(A q)C2(q)D (q)j2 (qr})j2. (qr2)[[Y2. (r})o'1] [Y2. (r2)S2] ]
A, ),A2, A, ,L

where we have defined

(A15)

1

E},2. 2,g ———(31r) ' (f /m)(f„'/m)(i) ' '( —1) ' +
A A2XL, (A16)

B. Intermediate rho meson

If the intermediate boson is a rho meson then Eq. (A4)
is modified to the form

fp

Alp

1/2
72 fp = 1.006 .
25 m

Vp(q) = [(A —m )/(A'+q„')]'2

Alp le p

Now using the result that

q Cr1.S2—Cr1 qS2.q
2

where

o} S2 o} 'q 2 'q)
X 2 2 . &1 T2~

gp —mp+EE
(A17)

where

A, =0,2
CP2(q)[Y2(q)e [o}S2]"] (Al&)

fp gNNp +fNNp

~p 2™ gNNp

Po =2Co ——2v'(121r)q (A19a)

and Cp = —C, = —v'(24~)q2, (A19b)
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the two-body transition potential for the intermediate p
meson is given by Eq. (A15) if Ci is replaced by C~~,

D (q) is replaced by D~(q), and, in Ej, j„j„l,
(f /m )(f~/m ) is replaced by (fz/mz)(fq/mz). We

adopt the same form factor for the p coupling as for the m

coupling.
C. Formation of the initial state

We expand the proton distorted wave as

'P (kp, r)= g 4 (kp, r)g
m

2

I1=(4m/k~) g (i) 'exp(ioj )Ut j (k&, r)r '(l&m& —,'m, ~J&M&)
1,11,ml

1

M1

X(i,m' —,
'

m, , ~ j,m, ) Yj*, (kp) Yi (r)X (A20)

wh~~e m =mt, +m, ,™,In Eq. (A.20), Ur, j is the radial part of the proton distorted wave, oj is the phase shift for
the lth particle wave, and 7 is the spin part of the proton wave function.

Using ihe result

Yi,~(r)X~ = g (&im' —,'m,
, ~

jiiM3)[Yi (r)S 2]" (A21)

we can write

(kp„r) = (4'/kyar )
$1

j1,&, ml, M1
1

(i) ' exp(ioI )( —1) ' ' j,U~ (k, r)

I 1

1 2 J1
Yj*, , (kp) [Yj, ( r ) —,] '

1

(A22)

%'e can rewrite the closed shell as a particle in a state

~
j2mq ) coupled to rest of the nucleus, which itself is

represented as a hole in the state
~
j2mq ). Then the nu-

clear ground state can be written as (suppressing isospin
variables)

I
o+) = g(1/j2)[J2i2]

J2

where the factor (1/j q) is included to properly normalize
the particle-hole state. The total initial state, a proton
coupled to a closed shell J=0 J,=0 nucleus, can be writ-
ten as

Ui j (kz, r ) has been absorbed in the definition of state ji.

D. Formation of the intermediate state

The intermediate state consists of a b.(1236), a nucleon
particle, and a nucleon hole. We form the intermediate
state by first coupling the 6 and the nucleon to some total
angular momentum, J, and z component, J„and then
coupling this 6-nucleon particle state with the remaining
nucleon-hole state. A bound-state wave function is writ-
ten

~
initial) =%~ (k~, r) ~0+) .

$1
(A23)

A simple exercise in angular momentum coupling then
leads to the result

@nljM(r)= g &njj(&)Ylm, (r)&m, (imI 2' m.
~ jjM)

mlm

(A26)

i
initial) = Co[[jic3jp] "jz]" ', (A24)

ml, M1,j2,
1

and the intermediate state in a jj coupling scheme is de-
fined via

where I
intermediate) = ga[[jac31jz] 'ejz] ' (A27)

C =(4 /k )(')'( —1) ' ' ' " ''
( ')

P
'I

1 4

1 z Jl
x exp(ioi, ) ~ Yj*,m, (kp) .

Vlg
(A25)

where a is a normalization constant. Using the expres-
sions given above, after some angular momentum algebra,
the matrix elements of V(ri —r2) between initial and final
states can be written
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( intermediate
~

V(r& —r2)
~

initial)

g aCOE& 3 I f q G(b„q)D;(q)Cq;(q)dq(v'6/2m)( —1) '
i =1,2 M) J)l) A, )A,2

JzJ2 A, ,L

A A A A A A A M A A
&&J2J1~211~1JM 2L~5~2I 2

1) lg A,2 12

0 0 0 0 0 0

J2 J1
X '.,

Jz Js
3

C

2
1

12

j2 L

X f r(R„ I 1 (r2)r) jg(qr))U( J (kp, r))r) dr)

X f re„( J (rq)jg (qr2)R, I, , (r2)r2 'dr2, (A28)

where i =1 (2) denotes the pion (rho) transition potential matrix element and the bracketed expression containing nine
angular momentum labels is the 9j symbol defined in Ref. 11. Note that in obtaining Eq. (A28) we have utilized a func-
tion Bq J 5M resulting from the fact that V is a scalar transition operator for the entire baryonic system

APPENDIX B: ONE-BODY TRANSITION POTENTIAL V(r3)

The static one-body transition potential at the EN' vertex involving the external pion can be written as

V(r3) = (f* Im)S—&.V @' "(k,r3)T2 Q . (81)

Nl (k, r3)"(k,r3) =(4m/k ) g (i ) exp(iot )
l,m

Let us consider the term S2 V @' '"(k, r3). We use the identity

YI (r3)Y(* (k ) .

V@~(r)Y~~(r)= —v'(1+1)/( 12+1)(d /dr llr)fr(—r)Yrr+i, m(r)+Vll(21+1)[dldr+(1+1)lr]fr(r)Y 1 i i, m(r)

(83)

where the Y+~~(r ) are the usual vector spherical harmonics

Here N' '*(k,r3) is the pion distorted wave with outgoing boundary conditions. The symbol p denotes the pion wave
function in isospin space. A partial wave decomposition for the pion distorted wave can be written in the form

YJIM(r) g +fppg (r)e~(lm lq
~

&~) (84)

(85)

The e~ satisfy the following relations:

and where the ez are spherical unit vectors defined in terms of unit vectors in rectangular coordinates e„, e~, and e, as

e+ ———1/v 2(e, +e~), eo=e„e =1/3/2(e„ie~) . —

e& =( —1)~e &, e& e&
——( —1)~eq e& ——5'

z .

Utilizing Eqs. (Bl)—(86), V(r3) can be written (suppressing isospin variables)

(86)

V(r3)= (f' lm)(4~/k~) —g (i) exp(io'I )YI ~ (k~)
l m

l m l m
+[a~ (k, r3)/r3[Y~ +i(r3)S2] +pi (k, r3)/r3[Pl i(r3)S2] ], (87)

where a~ and P~ are defined by

ar =aI (k~, r3) = Q(1 +1)/(21 + 1—)[dldr3 (1~+1)/r3]41 (k~—P3),

PI =P( (k~, r3)=+1 /(21 +1)(dldr3+1 Ir3)@( (k, r3) .

(88a)

(88b)
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Qne can absorb ui and pi in the definitions of I'i +i and

i, respectively, and write V(r3) in abbreviated form
as

l(,)= g, [[ i +,(r3)Sz]
l, m

%'e reconstruct the 2p-1h final state by coupling the
two particles together to give a definite angular momen-
tum J and z projection, J,. This two particle state is then
coupled to the hole state to yield a total Jf,lf. Thus the
angular momentum coupling for the final state wave
function is written

l m+ [I'J &(r3)Sz] (89)
I

final & = g ~[[J4A ]'" jz] ' ', (811)
where

I'J =— (f' /m— )(4m. /k )

)&(i) exp(ioJ )YJ* (k ) . (810)

where e is the normalization constant for the final state
The matrix elements of the one-body transition poten-

tial between the intermediate and final states can then be
written as

& final
I

V(r3)
I

intermediate&= g g eo'+J, &f[j4jz]'"jz]
I
[I'J ii(r3)Sz]l,m

+ [~l 1(r3 ) —sz ] I [[jajz ] 'j z ] (812)

After some angular momentum algebra one obtains,

& final
I

V(r3)
I

intermediate)

1/~( 1 ) f™f+QJ4 +J z J J J4+Jz+J3 4 ~

CX6 l ml, m j24

Jf Im' l 1 J24 Jf J2 J4 J24 J2
—Mf m~ M] j& j3 I j3 j~ I

l4 I +1
&& f r3R„J J (r3)R„ I& (r3)r3 'dr3+2l~+3

r

l4
I4 I„—1 lg—1 1)( cxJ (k r3 )r3 ++21 —1 0 ()

J4

3
2

Ig
I4 Ig I +1

1 3
r

0 2 2

j4 j~

1 /3J (k, r3)r3

APPENDIX C: DELTA PROPAGATION IN THE NUCLEAR ENVIRONMENT

The brief treatment below assumes the reader is familiar with the discussion of 6 propagation given in Ref. 12. The
effective wave function for a 6, formed from a bound nucleon and a pion, can be written as

XaN(r, k;,co) = dr'Ga(r, r', oJ)PN(r') exp(ik; r'), (C 1)0

where k; is the pion momentum, co is its energy, and PN(r') is the nucleon bound state wave function. The 6 propaga-tion Ga(y, y, co) satisfies the following differential equation:

[—Ta+(M+co MJ, )+(i/2)I—a(Eq) Xq]Ga—(r, r', ~) =5(r r') . — (C2)
In the above equation Ea ——M+co+ TJ„where Ta is the kinetic energy operator of the b, and M+co is the energy of

the pion nucleon system in the pion-nucleus center of mass (ACM). Expanding I ~ to first order in Ta, (C2) can be writ-
ten as

I
—Ta[1+(i/2)I a(M+co)]+M+co Ma+(i/2)—I ~(M+co) Xa(r, r', co)—] *Ga(r, r', co) =5(r—r'),

where we have defined
(C3)

dI
I a(M+co) =

E=M+ co

Using (C4) one can see that XaN satisfies the following differential equation:

[ —Ta[1+(i/2)I z,(M+co)]+M+co Ma+(i/2)I a(M—+co) Xa(r, r', co)]—XaN(r, k;, co) =PN(r) exp(ik;. r) .

(C4)

(C5)
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Equation (CS) is a local equation only if Xt, represents a
local interaction. Some of the effects giving rise to X~
(e.g., Pauli-exclusion, true pion absorption, etc.) are nonlo-
cal in nature. However, the same situation exists in the
case of the nucleon-nucleus interaction where a local po-
tential assumption has been most often adequate. In the
saxne spirit the 6-nucleus potential is represented by a lo-
cal potential proportional to the nuclear density, so that
we have

Xt ~(V+i W) [p(r )/p(0)] . (C6)

Here p(r) describes the nucleon density at a distance r
from the nuclear center. V and W are the real and imagi-
nary strengths of the 6-nucleus interaction. Values of V

and W used can be calculated from the following expres-
sion:

( V+t W)/TR =a +b(E~ I. /Tg )+c(E~ I, /T~ ) (C7)

where E I is the kinetic energy of the pion in the labora-
tory and Tz is a reference value for energy. %'ith the
choice. T~ ——180 MeV, a, b, and c, are found to be'

a =0.44 —i0.77,
6 = —1.24+i1.24,
c =0.47 —i0.47 .

This ansatz should not be trusted far from the resonance
region.
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