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Isospin dependence of Pauli corrections to the pion-nucleus optical potential
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We examine how the Pauli exclusion principle affects the pion-nucleus optical potential U in the
region of the 633 resonance, i.e., for pion kinetic energies of 50—300 MeV. In our formulation the
exchange effects enter through n-body correlation functions and contribute to U as higher-order
corrections in a density expansion. We study the rate of convergence of the expansion and derive an
integral equation that sums selected exchange terms to all orders. We calculate the isoscalar, isovec-
tor, and isotensor components of U for the cases of infinite nuclear matter and finite nuclei. We
identify the limiting conditions under which our treatment of the Pauli effect reduces to that in
more familiar approaches. .

I. INTRODUCTION

The availability of pion charge exchange data in recent
years has led to a renewed interest in understanding
dynamical modifications to the pion-nucleus and A33-
nucleus interaction, especially the isospin-dependent
pieces of these interactions. A recent phenomenological
analysis' of pion elastic, single-, and double-charge-
exchange data has provided a quantitative characteriza-
tion of the second-order medium corrections that are re-
quired by the data when the pion optical potential U is ex-
pressed in the form

U = Uo+ Ui(p. T)+ U2(p. T)',
where P is the pion and T the nucleus isotopic spin opera-
tor and where Uo, U~, and Uq are referred to as the iso-
scalar, isovector, and isotensor components of the optical
potential. The origin of the large second-order corrections
found in Ref. 1 is not established theoretically, and the
purpose of this paper is to study in detail one such correc-
tion, i.e., arising from the Pauli exclusion principle.

There have been studies of the Pauli exclusion principle
for pion scattering in many contexts. ' The investiga-
tion in the current paper relies on a method that we feel to
be particularly well suited to the optical potential formu-
lation. In particular, we use the diagrammatic expansion
for U of Ref. 15, in which the Pauli exclusion principle
enters through well-defined multibody correlation func-
tions. The contribution to Uo, U&, and U2 arising from
the leading term in this expansion was evaluated in Ref.
14. Because this term was found to be large, one might
expect higher-order terms in the expansion to be impor-
tant. The main aim of the current'paper is to examine the
rate of convergence of the representation of the Pauli ef-
fect in the formalism of Ref. 15.

In Sec. II we enumerate the types of exchange terms
that occur in the expansion in Ref. 15 and select an im-
portant subset of them. In Sec. III we derive. an integral
equation that sums these terms, and describe a method for
determining Uo, U&, and U2 from the solution. Section
IV specializes to the case of infinite nuclear matter and

Sec. V introduces a surface correction that permits an ap-
proximate treatment for finite nuclei.

In Secs. VI and VII we compare our results to other ap-
proaches. Section VI introduces the eikonal approxima-
tion, which makes possible the assessment of how well the
Pauli principle is represented in the Glauber theory treat-
ment of pion scattering. Section VII shows the connec-
tion between our representation of Pauli effects through
correlation functions and the more common procedure of
expanding U in terms of an effective pion-nucleon scatter-
ing amplitude that excludes intermediate states that are
normally occupied in the nuclear ground state. In Sec.
VIII we present numerical results, and in Sec. IX we sum-
marize our results and present our conclusions.

II. THE DENSITY EXPANSION

In Ref. 15, a diagrammatic expansion for the pion opti-
cal potential U is described. The antisymmetry of the
wave function influences U through exchange terms that
occur as n-body correlation functions. In this section we
want to focus on a subset of these exchange terms and
sum them to all orders. In this fashion we are able to
study the convergence of the Pauli correction to the multi-
ple scattering expansion of U.

In the theory of Ref. 15, the optical potential is the
proper self-energy of the pion Green's function. The free
Green's function propagates pions forward in time as par-
ticles and backward as antiparticles. Examples of terms
that occur in this expansion are shown in Fig. 1. Figure
1(a) shows the exchange term corresponding to Fig. 1(b),
which is the sequential scattering of a pion from two nu-
cleons. The diagrams are similar to Feynman diagrams
and the rules for evaluating them are given in Ref. 15.
Because we are interested here in the Pauli effect, we
quote only one rule, which is that each diagram should be
given an overall sign ( —)'+" where h is the number of ex-
plicit nucleon "hole" lines (corresponding to orbitals in
the normally occupied ground state) and l is the number
of closed loops. In Fig. 1(a), l+h =3 and in Fig. 1(b),
I+A =2, therefore there is a relative minus sign, which
may be traced directly to the antisymmetry of the wave
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FIG. 1. '
Examples of diagrams contribute to pion-nucleus

elastic scattering.

function. The shaded boxes represent the pion-nucleon
scattering amplitude. We want to now consider the ex-
change terms corresponding to the sequential scattering of
the pion from an arbitrary number of nucleons through
the pion-nucleon scattering amplitude. There are three
such terms in third order, and they are shown in Fig.
1(c)—(e). The reducible terms such as those shown in Fig.
1(b) and (f) will not be considered further here.

We now want to classify the diagrams as follows. The
term in Fig. 1(d) is clearly a medium modification of the
intermediate pion propagator. In our calculations we
shall always a11ow pions in intermediate states to propa-
gate as dressed pions, and to streamline the notation we
will never draw diagrams in which pions have explicit
self-energy insertions. Among the diagrams involving ex-
change of nucleon lines are thus left with the simple
sequential term in Fig. 1(c) and the more complicated "in-
tertwined" contribution of Fig. 1(e). The intertwined dia-
grams in which some intermediate nucleon lines are
crossed will not be considered further in this paper. These
are topologically similar to exchanges of more complicat-
ed irreducible terms and should be considered separately
along with their direct counterpart. For example, Fig.
l(e) and the multiple reflection in Fig. 1(g) are similar and
should be considered together at a later time.

(c)

FIG. 2. Diagrammatic definition of U' '""'.

The Pauli corrections to sequential scattering are there-
fore the series drawn in Fig. 2(a). We will show the effect
of summing all terms of this form in order to study the
convergence of the theory. In Sec. VII we demonstrate
that the sum of these terms gives, in a well-defined limit,
the more familiar 6-matrix prescription for including the
Pauli effect, namely excluding the intermediate states of
the free pion nucleon amplitide that lie below the Fermi
surface. The pion propagators in Fig. 2(a) are, as stated,
modified by the pion interactions with the nuclear rnedi-
um, as shown in Fig. 2(b). We include, as a first approxi-
mation, all dressings of the pion which can be described
by the lowest order optical potential, the first term on the
right-hand side of Fig. 2(c). The effect of including our
U' '""' correction, the second term on the right-hand side
of Fig. 2(c), is also shown.

III. SCATTERING THEORY

. In this work, we ignore the spin-dependent part of
pion-nucleon amplitude and assume that the I' wave dom-
inates the mN scattering amplitude. For the purposes of
this work we evaluate the Pauli corrections for fixed nu-
cleon sources. ' " For the mN scattering amplitude corre-
sponding to nucleon i, we then take

k
F;(k', k) =

The contribution to the pion-nucleus optical potential
arising from the spin dependent part in the pion-nucleon
amplitude is small; to include this part is trivial but tedi-
ous, and we ignore it here. The isospin dependence is in-
cluded in the operator

Xj AQQ+ 2 A ]f Qrj

where A,oo and ko~ characterize the scalar-isoscalar and
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scalar-isovector nN scattering amplitudes and where {t't is
the pion isospin operator and ~; is the isospin operator for
a nucleon. U(k) is the form factor for pion-nucleon cou-
pling.

We define a set of isospin states for the pion-nucleon
system.

0
0

f33 f4—4 ———4m(ko/3)A, oo,

f23 f32 f4s =fs4 = —2~27r(ko/3)~o(

The rest of the elements of F are zero. For a given m the
physical mN scattering amplitudes can be related to F by
the following expressions:

f+, +p=

0
V( +p)= 0 —= V),

0
0

0
0
1

V(m P)= 0 =Vs ',

0

0
0

0

0
V(m. n)=

1
= V4,

0
V(m+n) =

0
——V2,

(4)

T

= ( V) i
F

i V) ) gY) (k') Y) (k),
4m

(10)

=( V2 i
F

i
V) ) gY) (k') Yi (k) .

4m.

0,
0
0
0

V(m p)= 0 =Vs,
1

0

and the matrix

0

0
V(n n)= = V6,

F=

f))
0 f22 f22

f22 fss
0 0

0
0

0 0
0

0 0 0
0 0 0

0 0 0

f44 f4s

fs4 fss
0 0

0

0

f66

where

f() ——f66 ———4m. (k() /3)(Zoo+ —,
'

Ao) );
f22 ——fss ———4m(k() /3)(A, oo ——,

'
J(,o) );

(5)

We divide the diagrams into two classes: (1) the incom-
ing pion interacts first with a proton in the nucleus; (2)
the incident pion starts the interaction with a neutron in
the nucleus. The total contribution to the optical poten-
tial is the sum of these two. Therefore, we can define the
optical potential as a 6&6 matrix, U. The diagonal ele-
ments of U, namely U», U33 and Uss, correspond to the
optical potentials for which ~+, n, and m. interact first
with a proton in the nucleus, respectively; and Uz2, U44,
and U66 are the optical potentials for which m+, no, and
m scatter first with a neutron in the nucleus during a
multiple scattering process. Then m+-, m -, and m

nucleus optica'1 potentials can be written as follows:

U'+'=(v,
i Ui v, )+(v, i Ui v, );

U"'=(V,
(
Ui V, )+&V4i U[ V4&;

U(-)=(Vs
i

U}, Vs)+(V, i U[ V, ) .

(13)

(14)

To evaluate Figs. 2(a)—(c) we define the operators T' ',
T' ', T' ', . . . , to be 6&6 matrices. According to the
rules specified in Ref. 15, we have

TJJ' (k', k;rf —r; )= Q Y, (k ') Y) (k) QFII-IJ' J'(rf r;)—(2), . U(k')U(k) ", e " — (m)

U'(k, )
(15a)

TJJ' (k,k;r —rz, rz —.r;)=—(3) I U (k')() (k) ~ t
— {ttt} (ttt)QY(~(k') g FJJ IJ'J' (rf rg)IJ -J'(rg —r—;) Y,~(k),ttt JJ J J (16a)

TJJ' (k', k;rf —r„,rz —rJ), rJ) —r;) =
2 g Y) (k')(4), v (k')U (k)

U (ko) ttt

F -I' '-(rf rz)—
i tt

~
ttt Jtttt

XIJ' J- (r„—rJJ)IJ'- J'(rJJ —r;) Y( (k),(m) (m) (17a)

or

TJJ (k', k;rz —rJ))= 2 $Y, (k')Y) (k) $FJJ'IJ-J'(r„—rJ))
(2), U(k')u(k), , —

( )
JJ t t 2(k )

ttl Itt JJ J J (15b)
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TJJ' (k,k;r~ —ri), rii —rc) = — TJJ-IJ"j'(rB(3) (2) {m) (16b)

T (k",k;rg re,—re —rc, rc —rD) = — T -I" (rc —rD) .(4) r {3) (m) (17b)

The generalization to more than four struck nucleons is
obvious. Here I' ' is a 6 && 6 matrix,

I

isovector, and isotensor parts of the optical potential can
be generated, '" namely,

d ki u (ki)
I,' '(.)=~,,'f, , I;.(k, )

(2n. ) u (ko)

&&1 (r)g(ki, r) 7'i (ki)
I

U, =(U'+'+ U' ' 2U-'"—)l[T(2T 1)], —

( U(o) U(+ ))yT +TU.

Uo ——U' ' —TU2 .

(22)

(23)

(24)

It is sufficient to consider only the diagonal matrix ele-
ments in the magnetic quantum number m for reasons ex-
plained below. In Eq. (18) k and k' are the incident and
outgoing momenta of the pion, respectively, r is the rela-
tive coordinate of successively struck nucleons, and g is a
pion propagator in the nucleus,

+ik r
g(k, r)= z

ko —k +8'+ig
Here I (r) is the pair distribution function of the two nu-
cleons and 8' is a complex number that characterizes the
mean free path of the pion in the nucleus. &is related to
the first-order pion-nucleus optical potential,

8'(R,E)= —kop(R)A, oo 1+ 2 . (20)
2kop(R)

Finally, the pion-nucleus optical potential from Pauli ex-
change multiple scattering can be written,

IV. THE OPTICAL POTENTIAL
FOR INFINITE NUCLEAR MATTER

p, (0)
S(kFJ r)

A

where we define

(25)

r=rA —ra

and where pz(0) is the density of nuclear matter of parti-
cles of type j (j=neutrons, protons) and S(kyar) is the
Slater function,

S(k~qr)= f e' '8(k~q —k) .2 d k

p, (0) (2~)'

We define

(27)

As discussed in Ref. 14 the sum over all occupied states
of a hole line extending between two nucleons leads to

U (Pauli)(k~ k)
y

occupied
states

((e
' 'fT(r)e' ")) (21)

and

I JJ (q)—:, pJ(0) f—d re IJ'J (r)S(kF~r) (28)

where the double angular brackets mean that we average
over nuclear wave functions, keeping only the sequence in
Fig. 2.

Following Ref. 15, we calculate elastic scatterings, and
then by applying isotopic spin invariance the isoscalar,

S' '(q)—=2 d re'q'S(k~ r),p, (0)
2

(29)

where S 'J'(q) is a 6X6 matrix. We look at elastic scatter-
ing in forward direction, so that k'=k. Substituting Eqs.
(25) and (27)—(29) into Eq. (21) we arrive at

U (Pari)
3

g f q dq fdQko I
I'i (ko)

I
S(ko —q)E[I' '(q) —I™(q)I''(q)+ ] .

There is an overall factor of 2 in Eq. (30) arising from the sum over spin. This is explicit in the definition of S in Eq.
(29), which has an extra factor of 2 compared to Eqs. (27) and (28). The alternating sign is due to the rule that each hole
line gets an additional minus sign. The overall sign arises because each term has one closed loop.

In Eq. (30), an infinite number of terms is included. We can sum up all these terms to give

U (Pauli)

'3
( )

g f q'dq fd&k, I
I'im«o)

I
'S«o —q)

2m I+I( '(q)
(31)

We may integrate over the direction ko (instead of q) in Eqs. (30) and (31) because U' '""' is a rotationally invariant
function of ko and q. It is convenient to do this and place q along the z axis because I [see Eq. (28)] is then diagonal in
the magnetic quantum number. It is permissible to set m =m in Eq. (18) because of this choice of coordinate system.

Now we evaluate S and I. From the definition of S and the expression I one finds
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2, if ~ko —q~ (kp;S"'(k,—q) =
0, if~ko —q~ )kp; (32)

and

I ii (q) =Fii hi (q, kFg), (33)

where

hi '(q, k~i)=
3

hi '(q, kF~ ) =hi "(q,k~q ) =
2m

p +q —
kF&

2pq

u'(p)
u'(k, ) k,' p'+—W+i q
3

k J»

J
~

2
2

0 ~0 ~ 2

q+kv. u2( )
p dp

u (k ) k —p +W+iri
3 p +q —kF~

1 ——
2 Zpq

(34)

1 P +q —kFg
2 2 2 3

+—
2 2pq

Substituting Eqs. (32)—(35) into Eq. (31) we have

ko+k+.3 I (m)

2m' „o"Fi —
~ o+& 1+I™(q)

(35)

(36)

where

2 2 2 3
kp+q —kF.

Ap ——1—
2kpq

kp+q —k
i

——1 ——
2, 2kpq

(37)

2 2 2
'3

kp+q —kFJ+—
2 2kpq

(38)

V. SURFACE CORRECTION FOR FINITE NUCLEI

For finite nuclei there exists a nuclear surface which
makes pion propagation different from what it is in the
case of infinite nuclear matter. The nuclear matter result
of the previous section is the first approximation in a sys-
tematic expansion' of the nuclear density matrix. We
must accordingly interpret pj as the density at R, the
midpoint between the two nucleons struck in succession,
and v in the argument of the Slater function as the magni-
tude of the distance between the struck nucleons. Correc-

a (R ) = —p(R ) /p'(R ) (40)

to take account of the nuclear surface. In this case we can
write

S "(ko—q) =QS i (q) Yio(ko)
1

and we find

(41)

tions to the local density approximation of the density
matrices are important in the surface. In Ref. 14, a
correction was applied that was motivated by semiclassi-
cal scattering theory. According to this, the pion travels
along trajectories parallel to the z axis, so that R is large
and nearly perpendicular to r. It was argued that along
such trajectories the density matrix should have an addi-
tional v dependence arising from the exponential falloff of
the nuclear wave functions at large r. %'e adopt a similar
approximation here and make the replacement

pi S (k~z v) ~pi (R )Sz( kzz v)e

where a is the diffuseness of the density

S 'i(q)=p;( R)(4m) i (2l+1)f v dv ji(kov)J'i(qv)S(kziv)e

Similarly, we can write

I ii''(q) =Fii Ji(ko, q, m)

and one finds

dki u( i)k i(q —kl) & —r2yspa(Jikqo, m) =
~ pi(R) 3 z Y~ (k~) Y~~(k~) 2 z fd v e ' S(kzzv)e

(2m) u (ko) ko —k)+W+ig
If q is taken to be the z direction in the evaluation of the integration over r, one can find

(42)

(43)

(44)

i(ko, q, m)=pi(R)( —1) QC&z&oC» ~(iko) f v dvj I (qv)S(kz~v)e ' 'HI (ko, v, W),
7T 0

(45)

where
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2i kldk&jl (k&r) U'(k~)
Hl (ko, r, W) =

rrko o ko —k)+W+iq u (ko)

and C~ ~ is the Clebsch-Gordan coefficient. By carrying out straightforward algebra we finally have
3 1/2 ~

( )
O' J q dq Si(q)g( —1) C

2~ v 4~. o. 2l+1 ' o ~ 1+I ™(q)
where U, I', and I are 6&6 matrices.

Ef only the lowest order diagram is considered, the above equation can be greatly simplified. The result is

(lowest) 3 (0)
U~J'

" = QFJ~'JJ~ F
4m

(46)

(47)

(48)

and one can prove that

X ICIoio I pj(R)pJ'(R) J r «I (r)JI(kor)S(4 r)S(kF)r)e " " 'II~(ko r, w) .
4m, „ (49)

From Eqs. (42)—(47) and Eqs. (22)—(24) we obtain the isoscalar, isovector, and isotensor parts of the pion-nucleus optical
potential corresponding to the Pauli exchange terms.

VI. EIKONAL APPROXIMATION
FOR THE PROPAGATOR

3
.2 1 d3k —ik r

G(r) = —5(r)+ko' f ko' —k
(54)

At medium energy the incident momentum of the pro-
jectile is quite large and the elementary cross section is
often forward peaked. Therefore, the eikonal approxima-
tion is often used for the study of the pion nucleus in-
teraction and reasonable results are obtained. In this sec-
tion we investigate the effects due to the eikonal approxi-
mation for the propagator in the derivation of the optical
potential. It is assumed that because nearly all scattering
processes lead to small momentum transfer, the momen-
turn of the incident particle in its passage through the nu-

cleus is never likely to be very different from its incident
momentum ko. To proceed with our discussion we as-
sume that the form factor for pion-nucleon coupling is
U(k)=k, which means that we do not cut off high
momentum. In this case,

If r&0, we have
3

G( )=ko
d'ke-'"'

ko —k +ig
(55)

d'ae'a'
e

2h, .ko —ig
G(r)= —ko

1

2m
(56)

If we let z be the component of r parallel to ko, this in-
tegral may be written as

If we write the variable of integration k as k=ko+b,
where ko is in the direction of the incident pion and
neglect b, in the denominator of the integrand then we
may approximate the propagator by the integral

3

d kl kl
(2 )' k' k' —k'+W+

(50)

The straight line propagation implies that ko
I I

k &, so we
can write

~ I

G(r)=ko 5' '(b)e ' 8(z) .
2ko

Substituting Eqs. (53)—(57) into Eq. (44) we have

p;(R)
JJ (ko, q, m) =5(m, 0) (iko /ko )4n. 4

(57)

I (r) =F1 "G (r),( )
~ 3

JJ 4~ k2

where
3

1 d kk eG(r)= I k,' k'+ W+—iri

(51)
&( J dzI (z)S(k~ z)e ' +'e

(58)

From Eqs. (47)—(58), we can calculate the pion-nucleus
optical potential in the eikonal approximation.

and W is a complex number for a given R and a given in-
cident energy. %'e define ko ——ko+ 8 so that

3
3 2 —ikr

G(r)= I (53)
ko —k +iq

G(r) can be reduced to

VII. CONNECTION TO OTHER THEORIES

Suppose we examine a simple model in which there is
one species of massive nucleons fi11ing a Fermi sea in an
infinite medium. We represent the pion-nucleon interac-
tion by a separable potential in p waves,
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(k'
I

V
I
k&=Au(k')u(k)QY( (k')Yi (k) . (59) I (nt t(P ) I (m)( P)

The scattering T matrix
Schwinger equation

satisfies the Lippmann-
d'k" u'(k")

I
Y( «")

I

'
=—v (ku)A,

(2m. ) u (ko) ~o co—k+i ri

&
k'

I
T

I
k& = &k'

I
l'

I
k&+ J (2m )

x~(PF
I

P k"
I

)
I p~~,

" .

(k'I T
I
k&=Au(k')u(k)QY& (k')Y( (k), (61)

where A, is a function of energy and may be expressed in
terms of A, and u.

For pion scattering in the medium, it is com-
mon ' ' to introduce a "G matrix" for meson-
nucleon scattering. One introduces the Pauli operator Q
to exclude nucleon states below the Fermi surface. We
may accordingly define the pion-nucleon G matrix Tg as

&k'I Tg Ik&=&k'I ~ Ik&+ I (2m)

x ~(k', ;P) &k IT, Ik&
C00 —COk + l 'g

(62)

where

x (k" IT Ik&,
F00—COk + i'g

(60)

where cuk ——(k +p, )' . The solution of this equation is
easily found and may be written

Note that I' '(P) depends only on
I
P

I
because of our

choice of z axis. Thus we have

Y( (k') Y( (k)(k'
I Tg I

k& =u(k')v(k)XQ
1+I,'-'(P)

To get the U '"" plus the lowest order optical potential
U' ' in terms of Tg we must sum over the nucleon states
(including two spin directions)

y-2 j d I'
(69)

Then,

U' '+ U '""=2J (k'
I Tg I

k& .
d I'

~~~~ (2m)'
(70)

However, because we have chosen the direction of P as
the z axis, we cannot immediately integrate over P. From
the fact that (k'

I
Tg I k& is a scalar function of three vec-

tors, k', k, and P, we know that its value is independent
of the choice of z axis and it is a simple matter to place
the z axis along k' or k using the rotation matrices'
D~ z(a, 13,y). In nuclear matter we want the case k'=k
and the result is

(k'
I Tg I

k&=u(k')u(k)y Y] (k')A, ( 'Y( (k) . (64)

Q(k",P)=e(
I
P —k"

I

—Pp) .

The vector P is the total momentum of the pion and nu-
cleon, and the 8 function restricts the intermediate nu-
cleon momentum P—k" to be above the Fermi surface
pF. We may write the solution of Eq. (62) as

(k
I Tg I

k&=u (ko)AQ
1+I (m)(P)

so
U(0)+ UPauli

2@~ P dP 1

2~ 1+1~~~ P

(71)

A solution of this form holds only in a coordinate system
for which P lies along the z axis; otherwise there are off-
diagonal terms in magnetic quantum number.

It is convenient to express (k'I Tg Ik& in terms of
(k'

I
T

I
k&. This is given as

&k'I Tg Ik&=&k'I T Ik&+f,«'I T Ik" &

(2m. )

x ~("""
.
' «-ITgIk&.

~O —~k+i g

Substituting Eqs. (61) and (64) into (65) we find

X( '(P)=
1+I ' '(P)

where

x fdPI Y, (P)I'e(P, —II —kI).
(72)

To make a connection with the results of Sec. IV, note
that Ig(P) is the same as I in Eqs. (18) and (28) if we set
the pair distribution function I =1, 8 =0, use the pion
propagator (coo—cok+ig) instead of (ko k+iri)—
and make use of the connection f= 4n T between th—e T
matrix and scattering amplitude.

We have thus shown that our definition of the set of di-
agrams in Eq. (2) gives back the normal Pauli G matrix of
Eq. (62) under the set of approximations given above,
which makes the connection to Refs. 3—5, 12, and 13.
We hasten to point out that the 6-matrix treatment of the
Pauli effect was strongly criticized in Ref. 6 because the
nonstatic corrections arising from the negative frequency
components of the pion propagator are not incorporated.
Because our treatment in Secs. II—V (and the numerical
results we present in Sec. VII) is built upon the field
theoretical meson propagator and not the linear propaga-'
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TABLE I. Optical potential for ' 0 corresponding to Pauli exchange terms of Fig. 2. Uo, U~, and
U2 are the isoscalar, isovector, and isotensor potentials, respectively, calculated for P=4.87 fm

p(R) =p(3. 5 fm), and Ap/p=(A —Z)/2 =0.111.

T„(MeV)

50
100
150
200
250
300

Uo (fm )

( —0.32 —0.44i) X 10
(0.79—2.24i) X 10
(4.80+0.67i) X 10
(0.53+4.27 i) X 10—'

( —1.81+1.97i) X 10
( —1.56+0.45 i) X10-'

U, (fm-')

( —0.56—0.89 i) X 10
(1.97—4.02 i) X 10
(7.99+ 1.99i)X 10
(0.53+7.01i)X 10

( —3.10+3.17i)X 10
( —2.70+0.64i) X 10

U, (fm-')

( —0.04 —0.80i) X 10
(2.16 —2.64i) X 10
(4.16 +2.21i)X10 4

( —0.036+3.55 i) X 10
( —1.69 +1.63i) X 10
( —1.59 +0.23i) X 10

tor [see Eq. (60)], this criticism does not apply to the
present treatment. We also prefer using the diagrammatic
analysis because it allows us to extend the theory to finite
nuclei in a straightforward fashion, and permits addition-
al effects to be incorporated naturally, such as short-range
nucleon-nucleon correlations (including the rho meson)
and pion mean-free path corrections. All of these correc-
tions, we believe, are essential to getting the physics
correct and they are difficult to incorporate in other ap-
proaches.

Q 4
I

CV

E

O
W 2

VIII. NUMERICAL RESULTS FOR
THE OPTICAL POTENTIAL ia — (b)

Dp/p
)

We show in this section numerical results appropriate
to the finite nucleus ' O. Because we find the integrals
more stable in finite nuclei as a consequence of the surface
correction and inclusion of the pion medium modifica-
tions, we have not made extensive calculations for infinite
nuclear matter. In this paper our interest is mainly the
resonance region. From previous work' we know that
the important region of the nucleus for scattering at these
energies is the surface near R =R where, for ' 0, R =3.5
fm and p(R)/p&-0. 2 (po—=0. 16 fm is approximately
the density at the center of nuclei). We therefore show re-
sults only for relatively low densities, p/pc&0. 5. The
value R used here is the same as that in Ref. 14 for the
evaluation of the second-order optical potential. In all of
our calculations, we have taken U (k) to have the form

IO—

0 8
I

C4

E6

(c)
+P~PI

U(k)=k(1+k /p ) (73)

C) q
I

OJ

E

with P=4.82 fm '. We have also used the phase-shift
analysis of Ref. 19 to obtain the pion-nucleon parameters.
For the nuclear density, we have taken a two-parameter
Fermi shape with a half-density radius R, =1.1A' fm,
and diffuseness a =0.56 fm for both neutrons and pro-
tons. We calculate the various parts of the optical poten-
tial for incident pion kinetic energies ranging from 50 to
300 MeV. In Table I we summarize our numerical results
for on-shell values of the optical potential evaluated in
momentum space.

For practical applications it is useful to parametrize the
optical potential as a function of p and Ap. One such
parametrization was suggested in Ref. 14. For k=k'=ko,
T= 1, it assumes the following form:

0
0 0.5 I.O

(Eplp()

I

I.5 2.0

FICz. 3. Dependence of isoscalar ( Uo), isovector ( U~), and
isotensor potential ( U2) on the valence neutron density bp. The
unit of Ap in p&

——3.62X10 fm . The solid curve is the real
part of the full calculation and the long dashes the imaginary
part of the full calculation. The real and imaginary parts of the
lowest order calculation are, respectively, the dot-dashed and
short dashed curves.
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r

Uo ———ko A,p+
Po Po

2

Po
(74)

2/3
y OCP

(77)

(78)

Up ———kp —P A)+—1 Ap 1 hp2

2 po - 2 po
(75)

2/3 (79)

Qp2
U2 ——kp

Po
(76)

Equations (77)—(79) have a different dependence on p
than Eqs. (74)—(76). However, the density dependence of
8' and the surface correction may change this. We show
the effect of this in Fig. 4 where we have plotted the den-

In Fig. 3 we show the dependence of the optical poten-
tial on bp(r)/p, for fixed p(r)/po ——0.2, which is the den-
sity at R =3.5 fm for ' 0, and at pion incident kinetic en-

ergy T.=180 Mev. Here po
——0. 16 fm-3, which is ap-

proximately the central density of nuclei. The unit p& of
bp(r) is p~

——3.62&&10 fm, which is approximately's
the valence neutron density at R in ' 0 in Hartree-Fock
calculations. It is interesting to notice that the isoscalar
part of the optical potential does not depend on the
valence neutron density for fixed total density of the nu-
cleus. The isovector part of the potential can be approxi-
mately parametrized to be proportional to bp(r)/p~. The
isotensor potential is plotted as a function of bp(r) /p~.
We observe that the real and imaginary parts of the opti-
cal potential, to a good approximation, lie on straight
lines. The same situation occurs for other pion energies
and densities up to p/po-0. 5. This calculation confirms
the dependence of Eqs. (74)—(76) on bp, even when higher
order effects are included. The figure also shows the
dependence of the lowest-order calculation on b,p.

The p(r) dependence of the optical potential is obtained
by taking a fixed bp(r) and changing p(r) In this. case, it
is more complicated because the pion mean free path and
the surface exponential falloff correction are functions of
p(r). We evaluate W and make the surface correction at
fixed R =3.5 fm, and change p(r) to calculate the optical
potential. We found that the following dependences hold
to a very good approximation:

E

o 0

I2 /i/'
L~

IO—

-IO—

I5
I

0

IO-
E

2

i=0

1=2

i=0
I

IOO

I I

l50 200

T~ (MeV)

I

250 500

0 I

0 O. I 0.2 0.3 0.4 0,5 0 O. I 0.2 0.3 0.4 0.5
p(R)/p(o)

FICx. 4. Dependence of A,; on p/po. The solid line is the real
part of k and the dashed line the imaginary part.

FIG. 5. Comparison of full calculation to lowest order re-
sults. The solid line is the real part of the full calculation and
the long dashes the imaginary part of the full calculation. The
real and imaginary parts of the lowest order calculation are,
respectively, the dot-dashed and short-dashed curves.
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TABLE II. Convergence of series in Fig. 2 as a function of density.

0.2
0.36
0.75

0.75

2.25+ 2.95 i
1.76+ 2.30i
0.43+ 1.85 i

—0.97—1.12i

Lowest order

6.83+9.49 i
5.23+7.44i
2.73+5.60i

—3.03 —4.10E

180 MeV
1.88+2.65 i
1.50+2.25 i
0.75+ 1.84i

50 MeV
—1.00—1.79 i

1.94+2.86 i
1.39+2.20i
0.62+ 1.47 i

—1.03 —1.43 i

Full calculation
~1

5.16+8.85 i
3.45+ 6.72 i
1.31+4.44i

3.28 —6.16i

0.88+2.19i
3.88+ 1.63 i

—0.047+0.89 i

1.03 —4.26i

2—

E

o ~ / ll
-I -x y

/

I

r

IO—

E
Q ~ /

)W g /

-IO—

E
Q

/i

L

loo
I

I 50 200
(MeV~

250 300

FIG. 6. Comparison of full calculation to eikonal approxima-
tion. The solid line shows the real part of the full calculation
and the long dashes the imaginary part. The real and imaginary
parts in the eikonal approximation are, respectively, the dot
dashed and short-dashed curves.

sity dependence of A, ; [defined by Eqs. (74)—(76)]. The
quantities Ao, A, &, and A,z now have a slightly stronger den-
sity dependence. The results are similar to those of Ref.
14. Clearly the precise form of the density dependence
depends on the details of the calculation.

Now we investigate the convergence of the expansion.
From Eq. (48) we can calculate the lowest order contribu-
tion. In the upper part of Table II we show the lowest or-
der and full calculation at three densities for T„=180
MeV. The rate of convergence is not much different up
to p/po-——0.36. At p/po ——0.75 we eliminated the surface
correction and the convergence is noticeably worse, espe-
cially for A, z. In the lower part of Table II we show the
results for 50 MeV at p/po ——0.75. At low energies one
expects that the higher densities will become more impor-
tant. Convergence appears to be better than it is at 180
MeV, because the interaction is weaker. At low energy
the Pauli corrections in both s- and p-waves should be
considered, but here we have studied convergence for the
p-wave piece only.

In Fig. 5 we compare our full calculation with the
lowest order results for the pion incident energies between
50 and 300 MeV for p/po ——0.20. We find the following:
(1) The higher order terms give a rather large correction
to the isotensor part of the potential for pion incident en-

ergies below 200 MeV. At some energies the potentials
can differ by a factor of 2 and even have different phase.
(2) The contributions to Uo and U& from higher order
terms are relatively small. This is especially true for the
isoscalar part of the optical potential. (3) Above 200
MeV, the higher order correction is small, less than 30%.
As a rule of thumb, the effects of higher order shift the
lowest order downward by 4 MeV for the isoscalar, 7
MeV for the isovector„and 15 MeV for the isotensor in-
teraction.

The lowest order calculations here give the same results
as in Ref. 14 if the elementary amplitude is taken to be
the same. But here we use a different method to compute
the Pauli exchange terms.

We calculate the optical potential with the eikonal ap-
proximation, using Eq. (58) for different energies and
compare with the results from Eq. (44). In Fig. 6 we give
two different results. We see that the energy dependences
of the various parts of the potentials with and without the
eikonal approximation are not far from each other. Gen-
erally, the eikonal approximation makes the optical poten-
tial smaller. Around 160 MeV, the overall difference is
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TABLE III. Dependence of A,; on form factor cutoff P in Eq. (73).

541

T. (MeV)

4.82 48.2 4.82

150

48.2 4.82 48.2

250

48.2 4.82

300

48.2

A,o (fm') 1.23
—3.49 i

1.59
—3.12l

4.37
+0.61i

4.23
+ 1.09 i

0.33
+2.62i

0.14
+2.58 i

—0.80
+0.87i

—0.81
+0.84i

—0.53
+0.15i

—0.52
+0.16i

(fm ) 5.18
—10.88 i

6.38
—9.90i

13.00
+3.20i

12.46
+4.46i

0.59
+7.55i

0.11
+7.54i

—2.46
+2.51 i

—2.47
+2.43 i

—1.63
+0.38i

—1.61
+0.40i

A.
2 (fm3) 2.69

—3.31i
2.88

—2.86i
3.07

+ 1.63 i
2.82

+ 1.83 i

—0.017
+ 1.76i

—0.07
+ 1.72 i

—0.61
+0.59i

—0.61
+0.57i

—0.43
+0.06i

—0.43
+0.70i

less than 30%. This comparison gives some measure of
the importance of the real part of the pion propagator in
calculating the exchange effects.

Within the eikonal approximation for the propagation
of the pion, the Pauli exchange series converges faster.
We found that in all cases the lowest order diagram ac-
counts for most of the Pauli exchange contributions.

To give some idea of the dependence of our results on P
in Eq. (73) see Table III. The results are insensitive to this
parameter.

In Table IV we show the effect of dressing the pion
propagator according to Fig. 2(c). W now includes the
term in Eq. (20) and in addition the result O' '""'. Those
modifications do not lead to a significant modification of
the results.

IX. SUMMARY AND CONCLUSIONS

We have evaluated Pauli effects in the optical potential
formulation of Refs. 14 and 15. The theory is different
from the familiar G-matrix formulation, in which the
Pauli principle leads to a restriction on intermediate states
that can occur in the pion-nucleon scattering amplitude.
In our theory, nucleons are excluded from states below the
Fermi surface by explicit evaluation of exchange terms.
We presented an integral equation which sums to all or-
ders a specific set of exchange terms and showed that a
special case of the solution gives the m-nucleon G matrix

for infinite nuclear matter. We have considered correc-
tions to this, which arise from the nuclear surface and
pion-nucleus interactions. We are also able to avoid im-
posing the time-ordering restrictions that occur in the 6-
matrix approach, namely that pions propagate only for-
ward in time. Our theory has the additional advantage
that it leads to an explicit procedure for using isospin in-
variance to evaluate the isovector and isotensor optical po-
tentials required for studying pion charge exchange. One
of our main interests was to study the convergence of the
expansion that leads to U' '""'.

In order to study the convergence we have made a few
approximations. The main ones are to neglect the spin
dependence of the pion-nucleon amplitude and to retain
only the p-wave interaction. In the region of the b, 33 reso-
nance, the corrections are not expected to be large. We
have also used a local density approximation to the nu-
clear density matrix to include surface effects. We found
that for the purposes of evaluating scattering in the reso-
nance region, the convergence of the expansion is quite
fast, and that the dominant effects in the isoscalar and
isovector interaction arise already in the lowest order of
our expansion (which is second order in the m N scattering
amplitude). For the isotensor interaction, the qualitative
behavior is obtained in lowest or'der. As an approximate
rule for obtaining the complete result, we found that a
shift of the lowest order result downward by 4 MeV for
the isoscalar, 7 MeV for the isovector, and 15 MeV for

TABLE IV. Results of calculating k; with the PauH effect on the mean-free path W in Eq. (20). Column 1 is without the Pauli
correlations and column 2 includes them.

Z. (Mev)

Iteration
Ap (fm3)

1

1.23
—3.49 i

100

2
1.26

—3.58 i

1

4.38
+0.61i

150

2
4.37

+0.75i

1

0.33
+2.62+

2
0.29

+2.57i

1
—0.80
+0.87i

250

2
—0.79

+ 10.87 i

1
—0.53
+0.15i

300

2
—0.52
+0.16i

A, ) (fm') 5.18
—10.88 i

5.36
—11.16i

12.8
+3.08 i

'12.7
+3.50i

0.59
+7.55i

0.50
+7.41i

—2.42
+2.47i

—2.38
+2.46i

—1.60
+0.38i

—1.59
+0.39i

A2 (fm ) 2.69
—3.31i

2.80
—3.39i

3.07
+ 1.63 i

2.99
+ 1.72i

—0.018
+ 1.78i

—0.029
+ 1.72i

—0.61
+0.59i

—0.60
+0.58 i

—0.43
+0.064i

—0.43
+0.066i
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the isotensor interaction will give the full result.
We also examined the use of the eikonal approximation

to the pion propagator in evaluating Pauli effects. We
found that the eikonal approximation leads to similar re-
sults but tends to underestimate the exchange effects.

Our conclusion is that Pauli exchange terms are easily
incorporated perturbatively. This result provides addi-

tional encouragement for using a microscopic optical
model approach as a means of evaluating pion-nucleus
scattering.
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