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A mNN theory, incorporating mesonic and dibaryonic excitation mechanisms, is introduced to
give a unified description of NN and md reactions. The mesonic mechanism-is built into the theory
by extending the conventional meson theory of nuclear force to include the isobar 6 excitation. The
dibaryonic excitation at short distance is introduced according to current understanding of six-quark
dynamics. The theory is free of the nucleon mass renormalization problem and is therefore tractable
in practice. The model Hamiltonian consists of (a) V» for two-baryon interactions between NN,
Nh, and b,h states; (b) h N ~ for 6 excitation; (c) U„N for ~N two-body interaction in nonresonant
channels; (d) F„NN NN for nonresonant pion production; and (e) HD» for the formation of a di-
baryon state D. Dynamical equations for NN and ~d scattering are derived by making the assump-
tion that all NN and ~d processes can be described in a subspace spanned by NN, NA, AA, m.NN,
and the dibaryon state D. The resulting scattering theory satisfies the essential two-body (NN) and
three-body (mNN) unitarity relations. The projection technique is applied to cast the theory into a
form such that all NN and ~d reaction transition matrix elements can be calculated by solving,
separately, a two-body integral equation and a Faddeev-type three-body equation. Both can be
solved by well-established numerical methods. This makes the calculation based on the most sophis-
ticated meson theory of nuclear force possible. Explicit formalisms have also been developed for ex-

ploring the question of the excitation of a dibaryon resonance during NN arid nd scattering from the
point of view of six-quark dynamics. The numerical results obtained from the theory are presented
in a separate paper.

I. INTRODUCTION

The main feature of intermediate energy nuclear reac-
tion, induced by pion, nucleon, electron, photon, or heavy
ion, is the production or absorption of on-mass-shell
pions. Therefore, a microscopic approach to the problem
should start from a theory of the coupled NN+trNN sys-
tem (called the m.NN system from now on). An acceptable
n.NN theory should describe simultaneously all of the fol-
lowing processes:

n N~m. N(E),p & 300 MeV),

NN~NN(E»~ & 1000 MeV),

(1.1a)

(1.1b)

(l.lc)

trd~m. d(E~,q & 300 MeV),

—+aNN,

—+NN .

(1.1d)

(l.le)

In addition, we must face the fact that at this higher ener-

gy two colliding hadrons are more likely to overlap and
the effect of their internal quark structure could become
important. To describe all the processes listed in Eq.
(1.1), it may not be possible to parametrize the baryon-
baryon interaction at short distance solely in terms of the
conventional meson-baryon-baryon form factors or a

phenomenological repulsive core.
Theoretical investigation in these two. directions have

been active in the past few years. The unitary nNN
models' have succeeded in describing extensive spin-
averaged hard data, but could not reproduce many features
of the spin observables. Except for the phenomenological
model of Ref. 4, these unitary models and several less am-
bitious approaches ' so far have not been able to give a
satisfactory description of NN scattering phase shifts.
Another important development is the extension of the
conventional meson theory of the NN potential to include
the excitation of the 6 resonance. This approach' ' has
achieved reasonable successes in describing NN scattering
up' to 2 GeV and some md scattering data. ' However,
difficulties are also encountered in describing NN spin ob-
servables. The investigation of NN short-range interac-
tion' based on a quark mechanism is still in the
developing stage. The existing models have only made
very qualitative contact with the ~NN data. In particu-
lar, pion production channels have not been considered in
a realistic and unitary way.

All of these theoretical efforts, in particular the attempt
to understand the energy dependences of NN and ~d spin
observables, have clearly indicated that none of these ap-
proaches can succeed without going beyond their present
scope. The main purpose of this work is to unify these
theoretical efforts by extending the unitary ~NN
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theory' to account for six-quark dynamics at short dis-
tances and show how the theory can be applied in the
study of extensive NN and ~d data. Because of the com-
plexity of the problem, we will report our results in three
separate publications. In this paper we present our theory
and focus on the derivations of basic scattering equations.
In future work, we hope to discuss our numerical strategy
and present our results on NN and wd scattering.

In Sec. II we discuss the basic m.NN mechanisms based
on the meson theory of nuclear force and the current
understanding of six quark dynamics. We then postulate
a model Hamiltonian of the mNN system which contains
all of the essential physics and can be used to develop a
mathematically rigorous and also manageable mNN
scattering theory. To relate this work to previous unitary
mNN theories, we derive in Sec. III all ~NN scattering
equations governed only by the mesonic mechanisms. In
Sec. IV, we develop formalisms which include the excita-
tion of a dibaryon state D in the study of NN and m.d
scattering. In Sec. V, we summarize our results. All nu-
merical results and comparisons with the data are present-
ed in separate papers.

II. MODEL HAMILTONIAN

To motivate our approach, let us first discuss qualita-
tively the mechanisms which should be considered in de-
fining the ~NN interactions. The interaction at long dis-
tance is due to the one-pion exchange, which is conven-
tionally taken to describe the high partial-wave NN phase
shifts. This pionic force is also responsible for exciting
the nucleon to the 6 isobar state, which then decays into
the mN state asymptotically if the collision energy is
above the pion production threshold. In the current ~NN
models and the model we are going to consider, this pion-
ic excitation is described by constructing an isobar model
with a ~B'~B vertex (B and B' could be N or 6) to fit
the ~N scattering phase shift. Its relation to quark
dynamics can be established through the chiral (cloudy)
bag model, although much work remains to be done
in this direction.

The NN low partial-wave phase shifts clearly indicate
that other mechanisms are at work at shorter distances.
Here, we face an interesting and still unclear situation.
First, it is undeniable that the heavy mesons, such as co

and p, are observed experimentally and they must play
some role in determining the NN force. However, the ex-
change of heavy mesons is unrealistic if the size of a
baryon is comparable to or larger than their Compton
wavelength. This seems to be the case, as suggested by
bag model study of nucleon structure. Therefore, the
most probable mesonic process other than the one-pion
exchange is the "sequential" exchange of two-pions. The
most detailed analysis of the two-pion-exchange mecha-
nism is the nonperturbative approach of the Paris group.
It is, therefore, advantageous to develop a theoretical
framework in which the Paris potential (as well as other
phenomenological or meson-exchange potentials) can be
taken as the starting point to define the baryon-baryon in-
teraction. An important step to describe pion production
is to also define interactions which can couple the NN

channel to NA and AA states. The one-pion-exchange
component of these coupling interactions can be generated
by the vertex interaction ~B~B'. However, no two-
pion-exchange model has been developed in a nonpertur-
bative approach to define the interactions between chan-
nels involving at least one A. It might be reasonable to
follow the conventional approach by including the ex-
change of a p meson to approximately describe this pro-
cess. (Note that the coupling interaction NN~Nb, or
NN~b. b. can generate an effective NN interaction. Con-
sequently, if these transition interactions are treated expli-
citly, we need to introduce a procedure to remove from
the Paris potential the uncorrelated two-pion exchange
with intermediate 4 excitation. This procedure has been
introduced in Ref. 16.)

The short range part of the NN force is usually treated
phenomenologically. At the present time, much experi-
mental evidence, in particular the NN and m.d spin observ-
ables, have pointed to the need for a more microscopic ap-
proach in defining baryon-baryon (BB) interactions at
very short distances. Especially, the possible existence of
the dibaryon states ' can be better resolved if we relate
the short range BB force to six-quark dynamics. We dis-
cuss this nontrivial connection to quark dynamics based
on the bag model and the resonating group
method' ' of calculating baryon-baryon scattering.

The bag model calculation (for example, the calculation
by Mulders et al. ) has predicted the masses of confined
q states in each B =2 color-singlet eigenchannel. It has
been suggested that these confined q states are the so-
called dibaryon (one-body) states which could be excited
at a very short distance during NN or ~d scattering.
Through their coupling to NN, NA, or ~NN channels,
some of these q

6 states may be responsible for the strong
energy dependences seen in NN and md spin observables.
This interpretation implies that the baryon-baryon in-
teraction has two entirely different mechanisms, just like
the situation in the study of low energy nuclear reactions.
The first mechanism is the fast direct process which can
be described by an effective two-baryon potential, despite
the involvement of internal structure of two interacting
objects during the collision. The second process is the
compound state formation in which each baryon has lost
its own identity and a completely different q configura-
tion is excited.

This qualitative picture of q dynamics is supported by
the resonating group method' ' calculations of NN in-
teraction within the nonrelativistic quark model. These
calculations indicate that the quark exchange mechanism
between two nucleons in an s wave can be effectively
represented by a short-range repulsive nucleon-nucleon
force as we have conventionally determined from NN
phase shifts. We therefore argue that the conventional
phenomenology for treating the short range BB interac-
tion can effectively include this "fast" exchange process
of quark dynamics. On the other hand, the compound
state formation of quark dynamics is beyond the descrip-
tion of the resonating group method and must be added
into the theory separately. It is our assumption that this
unknown compound state formation mechanism, being
mainly due to the confining force, can convert the incom-
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ing two baryon into a dibaryon state D'with masses
predicted by the q bag model calculation. In the same
way that we use a ~N~A vertex to describe the 6 reso-
nance, we also introduce a BB~D vertex to describe the
excitation of the dibaryon state D. The detailed structure
of this dibaryon coupling form factor must be related to
the complicated hadronization mechanism of quark de-
grees of freedom. Clearly, we can only treat this object
phenomenologically at the present time. Our approach is
clearly different from the P-matrix approach proposed by
Jaffe and Low, and explored by Mulders. It is also
different from the approach by Henley et al. We will see
that our model is the most economic way to obtain a
theory which is directly related to the existing unitary
~NN models. Many existing numerical methods which
take into account the essential two- and three-body unitar-
ities can then be readily applied in the study of dibaryon
resonances;

In accord with the above arguments, we now assume
that the most general model Hamiltonian for the coupled
NN+ ~NN system takes the following form

IIo+II (2.1)

int mB~B'+ B B B' B' + B B ~D
1 2~ 1 2 1 2

(2.2)

where Ho is the sum of kirietic energy operators, D
denotes the dibaryon states, and 8 can be N or 5 (the
theory can be extended' to include higher mass isobars).
Because of the vertex interaction h B B, one sees that the
one-particle states

~

N) and
~

5) are not stable, and the
model can generate multipion states. This nature of the
model causes difficult theoretical problems in deriving a
mathematically rigorous but also manageable ~NN
scattering theory. In particular, in order to rigorously de-
fine the asymptotic m.NN and NN wave functions, an ap-
propriate approximation must be introduced to derive
from the vertex interaction h B B a consistent descrip-
tion of both the mass of the grhysical nucleon and nN
scattering in the P&~ channel. In addition, the same
derivation must also lead to a ~NN scattering theory
which satisfies the essential two- and three-body unitarity
relations. As seen in a series of lengthy publications by
Afnan and Blankleider, ' and also by Avishai and Mizu-
tani, it is not easy to resolve the complexities involved in
achieving these theoretical requirements even for the tra-
ditional model containing only a aN+ N vertex. Needless
to say, by considering a general h B B vertex, the prob-
lem will be even more complicated.

In this work we take a somewhat less ambitious ap-
proach. Following Ref. 4, the first simplification is to
keep only the ~N+-+5 part of the vertex interaction h.
This approximation drastically simplifies the ~NN
scattering theory, because no mass renormalization prob-
lem of the nucleon will ever occur. However, some im-
portant mN physics is omitted by this simplification.
First, ~N scattering can only occur through the process
~N~A~mN in the P33 channel. Second, pion absorption
or production by two nucleons cannot happen except
through the formation of 5 resonance, i.e., NNn
~Nh~NN. To correct this shortcoming without com-
plicating the scattering theory, we add a two-body poten-

tial U N to describe mN scattering in channels other than
P33, and introduce a transition operator E NN NN to
describe the nonresonant pion absorption mechanism.
Then the interaction H;„, Eq. (2.2) takes the form

~int~~int 7TN~h+ UKN+ ~B B
1 2' 1 2

++m NN~NN +HB )B2~D (2.3)

A few words are needed to further justify the model de-
fined by Eq. (2.3). Methods exist in the literature for con-
structing U N and F NN N&. For practical calculations,
it is simple to construct a separable model of U N to fit
the mN phase shifts. One can also apply the conventional
reduction method to derive U N from the field theoreti-
cal amplitudes. The same method can also be used to
derive the nonresonant pion production operator
F NN NN from the mesonic processes. For example, the
earlier work by Koltun and Reitan had constructed an
effective operator F NN NN from the pion rescattering
processes. Their work was later extended " by several
authors. A detailed model based on the chiral Lagrangian
can be found in the work by Hachenberg and Pirner.
These classical works can be taken as a reasonalbe starting
point to define the operator F NN NN in our model.
Therefore, the structure of each term in Eq. (2.3) is to a
large extend known within meson theory. Our model is
therefore not completely phenomenological in nature.

The rest of this paper is devoted to deriving, from the
model Hamiltonian Eq. (2.3), a set of scattering equations
for the study of all processes listed in Eq. (1.1). The
essential two-body (NN) and three-body (mNN) unitarity
cuts are built into the scattering theory by considering all
of the ~NN interactions in the model space spanned by
NN, NA, b,b„and n.NN states. Because of the absence of
the nucleon mass renormalization problem, the derivation
of srNN scattering equations is straightforward. The
main point of our derivation is to cast the scattering
theory in a form such that numerical calculations can be
efficiently carried out within the capacities of the existing
computers. This is achieved by employing the projection
technique to decompose the calculation into two parts.
The first part is to solve a familiar Faddeev-type three-
body equation. The solution is then used to do the nd cal-
culation and to construct an effective baryon-baryon in-
teraction which contains all of the dynamics due to the
coupling of the baryon-baryon states to ihe ~NN state.
The second part of the calculation then only involves the
solution of a set of coupled two-body scattering equations.
The advantage of this decomposition is thai the important
meson-exchange baryon-baryon interactions which, as
shown in Refs. 13—17, are essential for a correct descrip-
tion of NN scattering, can be treated exactly within the
capacity of most existing computers. In carrying out cal-
culations based on the unified formulation of Refs. 1 and
3, separable NN and mNN interactions have been used,
mainly due to the fact that the number of the coupled NN
and mNN channels is too large to be handled numerically.
The use of the separable representation could be the
reason why the NN results of Refs. 1, 2, 5, and 6 are not
satisfactory.
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III. MESONIC EXCITATION MECHANISM

H =Hp+H;„, , (3.1)

where Ho is the sum of kinetic energy operators for m, N,
and the 6 isobar. The interactions between these -three
elementary degrees of freedom of the rrNN system are de-
fined by

H int ~ ~N~Q +U ~N + ~BB++~NN~NN (3.2)

where VBB is the simplified notation of VB B B,B, of Eq.
1 2' 1 2

(2.3), which defines all possible direct interactions between
NN, Nb„and b, b, two-baryon (BB) states. Each term of
Eq. (3.2) is graphically represented in Fig. 1. To simplify
our presentation, we will sometimes use shortened nota-
tions, h for h N ~, and F for F NN

Since single pion production is the dominant inelastic
channel in NN collision up to -2 GeV, it is reasonable to
assume that all processes listed in Eq. (1.1) can be
described in the subspace BBNNm, where the baryon-
baryon (BB) state can be NN, Nb„or b, b. states. The ef-
fects of ~NA, +4', and multipion states are neglected
(all of the following derivations can be easily extended to
include m.NA and nkvd. For notational simplicity, we
keep only rrNN in our presentation). Our task is to con-
struct a set of dynamical equations which determine the
transitions between the following three channels:

Channel

BB
NNm

7Td

Note that only the NN state of the BBchannel (i = 1) can
exist asymptotically. The NA and AA states only exist in
the interaction region.

(Bl= N or 6)

F~ NN —NN

FIG. 1. Graphical representations of the mechanisms con-
tained in the model Hamiltonian Eq. (3.2).

In this section, we apply the formal scattering theory
to develop mNN scattering equations governed by the
mesonic excitation mechanisms. Neglecting the coupling
to the dibaryon state D, the remaining model Hamiltonian
can be written as the following form

The channel Hamiltonians H; for the i =1,2, 3 channel
are chosen to be

Hl ——(Ho)1,

H2 ——(Ho)2,

H3 (Ho)3+ VNN, NN

(3.3a)

(3.3b)

(3.3c)

+&a'+k')
I pl P»k&

H,
I
ud, k& =(Qm2+d2+&p2+k2)

I
ad, k&,

(3.4b)

(3.4c)

where p; a&id k are, respectively, the momentum of
baryon and pion,

I
ad& is the deuteron state, m;, p, and

Md denote, respectively, the mass of baryon, pion, and
deuteron.

Following formal scattering theory, the transition ma-
trices between the considered three channels are defined as

w;J(E)=V +V V~, i,j,=1,2, 3, (3.5)' E —H+ie
where V; =H —H; is the interaction in the channel i.
From the definition (3.3), we have

(3.6a)

V3 ( VBB VNN, NN)+hnN~a +URN +FvzNN~NN

Because of the presence of vertex interactions h N ~ and
F~NN NN, the main feature of the transition amplitude is
to provide mechanisms connecting two-particle baryon-
baryon (BB) and three-particle mNN states. Clearly, Eq.
(3.5) leads to a very large number of coupled integral
equations. As an example, we list in Table I all channels
of J =2+, T =1 which can couple to each other in NN
and md scattering. Unless one makes drastic simplifica-
tions, such as the use of a separable representation of the
baryon-baryon interaction VBB, it is very difficult (if not
impossible) to solve these coupled integral equations.
Since the main objective of our subsequent work will be to
explore the extent to which the mNN data can be
described by meson theory, it is necessary to develop a
scheme in which this kind of simplification of the
meson-exchange dynamics can be avoided in our numeri-
cal calculation. The main point of the derivation present-
ed in this paper is to cast Eq. (3.5) in a form such that the
dynamics in the BB and vrNN subspaces can be calculated
separately. Then we will see that well-established numeri-
cal methods for solving the two-body coupled-channel in-
tegral equation" and the Faddeev-type three-body equa-
tion can be applied within our present computational
power. The core of our formalism is a baryon-baryon
coupled-channel scattering equation. We derive this equa-
tion in subsection A for the study of NN scattering. In

where VNNNN is the NN~NN part of VBB. (Ho);
denotes the part of Ho of Eq. (3.1) which is just the sum
of kinetic energy operators of particles in the channel i.
The channel wave functions (omitting spin-isospin in-
dices) are defined by

Hl
I pl P2& (+I1+pl ++m2+P2 )

I pl~p2& (34a)

H2
I Pl P2 k& (+m1+Pl ++I2+12



520 T.-S. H. LEE AND A. MATSUYAMA 32

T J NN NA hh l
mNN

NN

1 2+ 'D S
D

3D

6

S
'D2

3D
'D
76
5G

P2+ F2
~0~ D2~ ~1+ Dl~ D2

1D 3g +3D 3D
3P +3F

TABLE I. The baryon-baryon and mNN states which must
be included in solving the n.NN+NN coupled equation in the
J =2+, T= 1 eigenchannel. I is the pion angular momentum
relative to the NN pair. Only the l (3 NN pair in the m NN
state is considered.

TNN NN(E) = & NN
I
~i i«)

I
NN )

=&NN
I
T(E)

I
NN) .

T(E)= V(E)+ V(E) V(E),P
E —H, —V(E)

where the effective BB interaction is

(3.10a)

We will see in subsections B and C that other parts of the
matrix elements of T in P space are the basic inputs to the
calculations of all NN and hard reactions listed in Eq. (1.1).

By employing the standard Feshbach projection pro-
cedure, we get from Eq. (3.9) that (from now on, +is in
the propagator will be omitted)

subsections B and C, we show that the resulting BB am-
plitudes are basic inputs to the formalisms for the md

scattering and pion absorption or production.

TNN NN(E) =
& NN

I

M ) $(E)
I
NN) . (3.7)

We will show that this amplitude can be obtained by solv-
ing a two-body integral equation. To proceed, we define
the projection operator on the baryon-baryon (BB) space

P= IBB)&BB
I

PNN +PNA +PA, b,

=
I
NN) &NN

I
+

I
NdE) &NA

I
+

I

hdL) &b,h I, (3.8a)

A. NN scattering

According to Eq. (3.5), the NN scattering amplitude is
defined by

V(E) =PH, „,P+PH;„,Q QH;„,P .E —HQ

By using Eq. (3.2), we have

PII;„,P = V~~,

QHin(P="~N a+P'~NN NN

QHQ =Ho+ vmN+ VNN, NN

(3.10b)

The above relations allow us to write Eq. (3.10) explicitly
as

VBB + (h aN~a +Fn'NN~N'N ) E —HO —U~N —~NN, NN

X(A N 5++ NN NN) ~ (3.11)

Using the following well-known operator relations for
any two operators 3 and 8,

with

1=P+Q, (3,8b)

where
I
NN),

I
Nb, ), and

I
Ab, ) are the eigenstates of

the kinetic energy operator Ho [as defined in Eq. (3.4a)].
Since mNN is the only three-particle state considered, the
numerator of the propagator of Eq. (3.5) can be decom-
posed as

with

1 1 1+ 8—
A —B

1 1 1——+—7—

(3.12a)

(3.12b)

(3.12c)

Q =1—P =
I
~NN& & ~NN I, (3.8c) w=B+B B,1

3 —8 (3.12d)

where
I
mNN) is also the eigenstate of Ho [as defined in

Eq. (3.4b)]. The next step is to write Eq. (3.5) in such a
way that the interaction in the mNN Q space can be
separately handled by the standard three-body method.

Let us introduce a baryon-baryon transition operator
which is defined by projecting the operator u, ~(E) of Eq.
(3.5) on the P space

we can write the propagator of Eq. (3.11) in Q space as

80 UmN ~NN NN

+ tg(E), (3.13a)
0 0 0

T(E)=Pm ii(E)P,
where, according to Eq. (3.6a) for V'& and Eq. (3.8),

(3 9a) where

tg(E) =( VNN NN+VmN)+( VNN NN+ VgN)

w ))(E)=H;„,+H;„, . H;„, .P+Q
'" E —8+I'.e (3.9b)

X ( VNN, NN +VAN )00 VNN, NN Un N

The on-energy-shell matrix element of T between
I
NN)

states defines the NN elastic scattering, i.e.,

(3.13b)

t~(E) is the mNN —+vrNN amplitude which can be dealt
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with by employing the standard three-body method.
Substituting Eq. (3.13a) into Eq. (3.11), we can write the

effective two-baryon interaction as

scattering equation (3.9) in terms of X~, V'zz, and V, .
This can be done straightforwardly by finding algebraic
relations between the following resolvents

V(E)= V~g+ Xg(E)+ VF(E)+ V3(E)+ V, (E),
where

Xg(E)= Q h; h;,
i=1

VF(E)= gh; hJ,
i~j

2

V3(E)= gh; tg(E) h~,
i,j 0

V. (E)=F' ~ + ~ t~(E)F —Ho E —Ho ~ E —Ho

(3.14)

(3.15a)

(3.15b)

(3.15c)

PR(E)= E Ho—V(—E)
P

E Ho——Vgg —V, (E)—Xg(E)

R, (E)= P
E Ho ——Xg(E) —V, (E)

Rg(E) = P
E —Ho —Xg(E)

(3.18a)

(3.18b)

(3.18c)

Note that the only interaction in R~(E) is the 6 self-
energy X~(E). The "connected" BB interaction V, is iso-
lated in R, (E). R(E) is the exact BB propagator in Eq.
(3.9). By using the operator properties Eq. (3.12), it is
easy to see that

Q + Q, Q
E —Ho E —Ho ~E —Ho

(3.15d)

R (E)=R, (E)+R,(E)V~~R (E),
=R,(E)+R(E)VggR, (E),
=R,(E)+R, (E)To(E)R, (E),

where

(3.19a)

(3.19b)

(3.19Q)

h; and F are, respectively, the shortened notation for the
transition operators h N ~ and F NN NN. Each term of
the above effective BB interactions is graphically illustrat-
ed in Fig. 2. Clearly, X& is the b, self-energy, V@ is the
one-pion-exchange interaction between NA states,
V3 and V, contain all of the dynamics in the m NN inter-
mediate state.

To emphasize the b, resonant effect, we regroup the
terms of V(E) into

V(E) = Vgg+ Xg (E)+ V, (E),
where

~BB ~88 ~Nb, Nh

(3.16)

(3.17a)

V, (E)= V~g ~g+ VE(E)+ V3(E)+ V, (E) . (3.17b)

VNa N~ is the Nb. —&NA part of the BB interaction Vzz.
V, clearly contains all of the "connected" BB interactions
due to the coupling to m.NN. Our next task is to write the

To(E)= Vgg + VggR (E)V~~ . (3.20)

V~g (E)R (E)= To(E)R, (E),
R(E)Vgg(E)=R, (E)TO(E) .

(3.2 la)

(3.2 lb)

Substituting Eq. (3.21) into Eq. (3.20), we get the follow-
ing integral equation form of To

To(E)= Vag+ Vg~R, (E)To(E),
= Vgg+ To(E)R, (E)V~~ .

(3.22a)

(3.22b)

Because R, contains the interaction V, in the denomina-
tor, Eq. (3.22) is not useful for a practical calculation. A
more useful form can be derived by using the following
relations

R, (E)=Ra(E)+Rg(E) V, (E)R,(E),
=Rg(E)+R, (E)V, (E)Rg(E),
=R g(E)+Rg(E) T, (E)Rg(E),

where

(3.23a)

(3.23b)

(3.23c)

By comparing the second terms on the right-hand sides of
Eq. (3.19) it is evident that

v, (E)

v (E}

v, (E) T, (E)= V, (E)+V, (E)R,(E)V, (E) .

Equations (3.23) leads to

V, (E)R,(E)= T, (E)Rg(E),

R, (E)V, (E)=Rg(E)T, (E),
and hence,

(3.24)

(3.25a)

(3.25b)

FICx. 2. Czraphical representations of the effective baryon-
baryon interactions defined by Eq. {3.15).

T, (E)= V, (E)+ V, (E)Ra(E)T,(E),
= V, (E)+T, (E)Rg(E) V, (E)

(3.26a)

(3.26b)
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Substituting Eq. (3.23c) into Eq. (3.22), we obtain the fol-
lowing integral equation [recalling Eq. (3.18c) for Rz(E)]

P
Tp(E) = VBB+ VBB Tp(E)

p

consequence of the ~NN unitary cut, as discussed in Ref.
16.

We now show that the full BB scattering T matrix, Eq.
(3.10), can be expressed in terms of Tp and T, . To facili-
tate this derivtion, we need to relate R (E) to Ra(E) by
[using Eq. (3.12) again]

E —Hp —Xg(E)
T, E

X
P

Tp(E),E Hp ——Xg(E)
(3.27a)

R (E)=Rg(E)+Ra(E)[VBB+Vc(E)]R(E), (3.28a)

=Ra(E)+R(E)[VBB+Vc(E)]Rg(E), (3.28b)

or
P

Tp(E) = VBB + Tp(E) +BBE Hp ——Xg(E)
where

=Ra(E) jR~(E-)TBB(E)Ra(E), (3.28c)

+ Tp(E)
P

T, (E)E Hp —Xs(E—)

P
X ~BBE Hp —Xg(E—)

BB(E) [ VBB + Vc (E) l + [ VBB + Vc (E)]

XR (E)[VBB+V, (E)] .

It follows that

(3.29)

If we set T, to zero, Eq. (3.27) reduces to the form of the
conventional coupled-channel equation. ' ' It is impor-
tant to note here that, in our approach, the "width" X~(E)
is the propagating off-shell 6 is defined in terms of the
rrN~b. vertex as described by Eq. (3.15a). This is the

R(E)[VBB+ V, (E)]=Rg(E)TBB(E),

[ VBB+ V, (E)]R (E)= TBB(E)Ra(E) .

(3.30a)

(3.30b)

By using all of the above properties, it is straightforward
to express TBB in terms of Tp and T, as follows

TBB ( VBB + Vc ) + ( VBB + Vc ) ( VBB + Vc )

( VBB + VBBR VBB ) + ( Vc + VcR VBB + VBBR Vc + VcR Vc )

= Tp + Vc + VcRc Tp + TpRc Vc + Vc (Rc +Rc VBBR ) Vc

To+ V, +T,RaTo+ToRsT, +T,RaV, +T,RaToRaT

=( V + T RgV )+(Tp+TcRaTp+TpRgTc+T RgTpRaTc)

=T (E)+[1+T(E)Ra(E)]Tp(E)[1+Ra(E)T (E)] . (3.31)

Defining the scattering operators

0,'+'(E) =1+Ra(E)T,(E),

0,' ' (E)=1+T, (E)Rg(E),

(3.32a)

(3.32b)

we can write Tzz as a familiar distorted-wave form

TBB(E)= T,(E)+0,' ' (E)Tp(E)A, +'(E) . (3.33)

The physics of Eq (3.33) is clear The connected operators T, and n,'-" describe pion multiple scattering between two
baryons. The operator To couples this multiple scattering process to other mNN dynamics through the transition in-
teraction VBB ——VBB —VN~ Na [see Tp in Eq. (3.27)].

The last step of our derivation is to use Eq. (3.16) for the effective BB interaction V(E), and the above operator rela-
tions to write the BBscattering operator T(E) Eq. (3.10) as
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T(E)= V(E)+ V(E) V(E)1

E —Ho —V E

=( VBB+Xa+ V, )+(VBB+Xa+ V, )R( VBB+Xa+ V, )

[( VBB + Vo ) + ( VBB + V )R ( VBB + Vo ) ]

+[Xa+XaR(VBB+V, )]+[(VBB+V, )RXa+XaRXa]

=TBB+(Xg+XaRgTBB)+ [TBBRgXa+Xa(Rg+R gTBBRa )Xa]

= [Xa(E)+Xa(E)R g(E)Xa(E)]+[1+X'(E)R t, (E)]TBB[1+R a (E)Xg(E) ]

E —Ho Ho
=tt, (E)+ TBBE —H, —Xa E —Ho —Xa(E) ' (3.34)

where

ta(E) =Xa(E)+Xt,(E)Ra(E)Xt,(E)
E —Hp

Xg(E)E Ho —Xa(—E)

n,'+'INN&- INN&,

&NN
I
T,

I

NN)~0 .

The NN scattering amplitude becomes

TNN, NN=&NNI o(E) INN& .

(3.37a)

(3.37b)

(3.38)
describes the "disconnected" Nh interaction. We will see
later that t~ plays an important role in deriving equations
for the study of the md reaction.

It is evident from the definitions of Xa [Eq. (3.15)] that

&NNltalNN&=0

INN)= INN) .

Therefore, the NN elastic scattering amplitude is simply

TNN, NN & NN
I
~ f i«) I

NN &

=&NN T(E)INN)

&NNI T, +0,' ' T0Q,'+'I NN) . (3.36)

Recalling the definition Eq. (3.32) for 0,'-', we see that
the NN amplitude can be completely expressed in terms
of T, and Tp, which can be obtained by solving two
separate integral equations, Eqs. (3.26) and (3.27). We
note that the ~NN branch cut is isolated in T, which only
diverges logarithmically. Therefore, the kernals of the in-
tegral Eq. (3.27) for To are compact. This equation can
be solved by using standard matrix methods on the real
momentum axis. Of course, care must be taken to handle
the ~NN branch cut in evaluating T, . The standard con-
tour rotation method is most convenient in our ap-
proach. Since only two-baryon states are coupled to each
other in Eq. (3.27) for To, the size of the resulting integral
equation can be handled by most existing computers. In
this way, calculations with meson-exchange models of
VBB, such as the one derived from the Paris potential, can
be done exactly. No separable approximation is needed.

If we neglect the nonresonant pion production interac-
tion F NN NN, then

Equation (3.38) is precisely the equation used in the study
by Betz and Lee. This approximation should be reason-
able to study NN and md scattering in the region where
the nonresonant pion production is not important.

B. md scattering

H =HF+ V ff,
where

(3.39)

~F ~0+Un'N+~nN~h+ NN, NN+ VNa, Na ~ (3.40)

Voff ( VBB VNN, NN )++nNN~NN

( VBB VNN, NN VNa, Na ) ++nNN~NN

= ~NN+ Nh+F~NN~NN . (3.41)

The main feature of HF is that it does not couple the
mNN channel to the NN state. Therefore, HF defines the
standard pion or 6 multiple scattering process which can

The md scattering has been extensively studied by using
the well-studied three-body method. A more useful and
practical approach to study md reactions is, therefore, to
separate the three-body multiple scattering process from
the rest of the mNN dynamics. In this section, we intro-
duce such an approach to show that all md amplitudes
listed in Eq. (1.1) can be expressed in terms of the solution
of a Faddeev-type equation and the BB amplitude T of
Eq. (3.34). For notational simplicity, we neglect the less
important AA state in the following presentation. Includ-
ing the Ah state is straightforward.

The only tool needed in the following derivations is
again the operator relation Eq. (3.12). The first step is to
decompose the total Hamiltonian Eq. (3.1) into two parts
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be handled by a three-body method (such as the method
described in Refs. 45 and 46).

In the considered space BB~NN, the md reaction am-
plitudes determined solely by HF can be formally written
as

F F F 1 F
T;, =v;+v; VJ,E—Hp

F (+)=V; uz

(3.42a)

(3.42b)

( —)+ F=co; VJ, (3 42c)

where i,j= 1,2, 3 denote, respectively, the NA, ~NN, and
~d states. Note that the NN channel can be excluded in
solving Eq. (3.42), because there is no pion absorption
mechanism in HF. The channel interactions V; are de-
fined by

(~d
I
~ 33 I

rrd, ) (3.48)

where

~ 33 ( V3 + Voff ) + ( V3 + Voff ) ( V3 + Voff ) (3 49)F F - I F
E —H

The next step is to use Eq. (3.39) to write [via Eq. (3.12)]

Ted', d = & hard
I T33

I
~d &

d, Nd '( ~d
I T31 I

Nb, ), etc.

Methods of calculating these amplitudes have been widely
discussed in the literature and will be described in our
subsequent papers in which we present our numerical re-
sults. Here, we focus on the role of V,ff.

According to Eqs. (3.6) and (3.44), we see that the chan-
nel interaction V defined previously in Sec. IIIA is
V = V; + V,rf. Then, the scattering amplitude Eq. (3.5)
for n.d scattering can be written as

F F
V) ——V2

=HF —Ho

~ m N~h +UaN + VNN, NN + VNA, Nh

V3 ——Hp —E —Hd
p

~ mN~A + U ~N + VNb„Nb,

1 1 1 1+ +offE —H E—Hp E—Hp
' E—HF

where

1
Toff off+ Voff Voff .E —H

(3.44) It follows that

(3.50)

(3.51)

where Hd Ho+ VNN NN
——is the Hamiltonian for the

deuteron. The scattering operators are defined by
1 1

off E H off E F
(3.52a)

E—Hp+EE

The channel wave function can be written as

(3.45)

By using Eq. (3.50), we have

(3.52b)

I&J)+=~,' 'I j)
1 p=+Ii) n,, +

l

(3.46)

VF+ VF Vp= VF+ VF 1 VF1

E —H E—HF

p 1 1+ V3 Toff V3 .E—HF E—HF
where H; has been defined in Eq. (3.3).

For our later calculations, we need to solve Eq. (3.42) in
order to determine the following Faddeev amplitudes Equations (3.50)—(3.53) lead us to obtain

(3.53)

1 p 1
M 33 — V3 + V3 V3 + V ff + Voff V ff

+ 3 E H off+Voff E H V3+ 3 E H ToffVF 1 F
V3E—Hp E—Hp

F p 1 1 - F F 1 1= T33+T.ff+ V3 E H T.ff+ T.ff E H V3+ V3 E—Hp E—Hp

= T33+ 1+V3
F F 1

E—HF
off + 3

1 Vp

( —)+ (+)= T33 +QP3 ToffM3 (3.54)
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where co3
—' have been defined in Eq. (3.45). By using Eqs.

(3.46) and (3.47) we then can write the md amplitude Eq.
(3.48) in a compact distorted-wave form

( VNN~N&+FNN~NN )
I &Ird

'
&

~NN( VNN~Nh++NN, mNN) I ~Ird (3.57)

Ted, nd Trrd, rrd + &~Ird I Toff
I
+rrd (3.55)

where PNN is the projection onto the NN state. It then
follows that

The above derivation can be readily extended to obtain the
amplitude for breakup process

&x.' I v.« I
x.'+'& =—0 .

By using Eq. (3.51) and the above property, we get

F ( —) (+)
TrrNN, rrd TENN, 1rd + &~7rNN I

Toff I ~rrd (3.56) I'
&&md "off I+md &= +md Voff E Voff +md

( —) (+) ( —) N (+)
E —H

We now need to evaluate the second term of Eqs. (3.55)
and (3.56). Since the Faddeev wave function

I

X' d'& or
X' N'N& does not have NN, AND, , or vrhb. components, it

is obvious from Eq. (3.41) that
Making use of Eq. (3.8) for the definition of the BB tran-
sition operator, we have

NN NN NN 1 NN

E-H E-H. E-H. E-H E-H.+ int + int int

~NN ~NN ~NN+ TNN, NNE—Hp E—Hp ' E—Hp
(3.59)

Note that TNN NN is the exact NN amplitude defined by Eq. (3.36).
By Eq. (3.59), we get

&+1rd I Toff
I
& d & = && d I

( VNh, NN++nNN, NN)GNN(+)( VNN, Nd +FNN, nNN) I &rrd

where

(3.60)

NN E H E H NN, NN ET

The physical meaning of Eq. (3.60) is clear. It describes the effects of pion absorption on m.d scattering because of the
appearance of an intermediate NN (no pion) state.

Substituting Eq. (3.60) into Eq. (3.55), we get the final form for ~d scattering

rrd, rrd = Trrd, md+ &+ d I
( VNh, NN+FmNN, NN) E ~ + E TNN NN E H

( VNN, Nh+ NN, mNN) I +rrd„'+'
E—Hp E—Hp ' E—Hp

Recalling Eq. (3.46), we see that Eq. (3.61) can be com-
pletely ~~pressed in t~r~s of T„d „d, T~d», and T~d ~».
These amplitudes can be calculated by using the numeri-
cal method recently developed by one of us. The same
calculation will also yield the breakup amplitude T d

Ted NN &~d ~ 31 I
NN&

'lT'd V3+ Voff Hjnt NNF 1

E —H

+&~dIFnNN NN INN& .

By using Eq. (3.50), we get

(3.62)

C. Pion absorption and production 1
T~d NN

——nd V~ff Hn, NN

Following the above derivations, we will show that the
n.NN~NN transition amplitude can be calculated from
the Faddeev amplitudes T~ defined by Eq. (3.42) and the
BB amplitude T defined by Eq. (3.34). First, we consider
the vrd~NN process. Since the interaction Eq. (3.6) in
the NN channel (i =3) can be written as V3 —V3+ V ff,
where V,ff and V3 are given in Eqs. (3.41) and (3.44), we
can write, according to the definition Eq. (3.5),

T

+ wd V3 1+V,ff Hjnt NNE—HF
' E —H

+& dl~.NN NNINN& (3.63)

Neglecting the contribution from DNA and mmNN states,
the first term on the right-hand side of Eq. (3.63) can be
evaluated as follows
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(
1

~off Hint +N ~ mNN~NN HintE —H

~NN 1
+~NN~NN Hint +Hint HintE—Ho E —H

1
+md, NN (T)NN, NN ~

0
(3.64)

where

+md, NN ~~d
I +~NN~NN

l
NN& . (3.65)

By using the definitions of Faddeev amplitudes [Eq. (3.47)], the second term of Eq. (3.63) can be evaluated as follows

F 1 F ~Nb, ~n.NN
~3 Hint NN Ted, N5 ~Nb„NN + Tmd, g NN +~NN, NN

F E—Hp E—Hp
(3.66)

1 1 F 1 1
d V3 Voff Hint NN = T ~Nb, , NN E TNN, NNE-H, E-H E —Hp ' E—Hp

p+ md, mNN mNN, NN NN, NN
0 0

(3.67)

Substituting Eqs. (3.64)—(3.67) into Eq. (3.63), we obtain

F 1 ., 1
m.d, NN Ted, Nb, E H

" Nh, NN + H NN, NN
0 E—Hp

+ + md, mNN mNN, NN 1+ ~NN, NN
F 1 1

0 E—Hp
(3.68)

Equation (3.68) can be obviously extended to describe
pion production from NN scattering

TENN, NN TENN, NE ~ H
( )Nh, NN

F ' 1

0

~F 1+ TENN AN m'NN NN
0

1
X 1+ ( T)NN, NN + mNN, NNE—Hp

matrices Eq. (3.5) between the considered three reaction
channels NN, md, and vrNN then take the form

w;J (E)= V,'- + V,' Vj, (4.2a)E—Hp —H' t
—HD BB+i e

V' = V' +HD (4.2b)

where V has been defined in Eq. (3.6). Note that with
the choice of channel Hamiltonian Eq. (3.3), all channel
wave functions do not have a dibaryon component.
Therefore, we have

+ ( )NNNN (3.69)
HD aa lg &

—O, for s,j=1,2, 3 . (4.3)

This completes our deviations of vrNN scattering equa-
tions for the study of all NN and 7rd processes listed in
Eq (1.1), as.suming that the coupling to dibaryon state D
can be neglected. ~;,(E)=~;,(E)+~~, '(E), . (4Aa)

By using Eq. (4.3) and the properties of Eq. (3.12), it is
straightforward to write Eq. (4.2) as

IV. COUPLING TO DIBARYQN STATE D

In this section we introduce the coupling of a dibaryon
state D to NN and m.d reactions. Following the notations
of Sec. III, the considered total Hamiltonian Eq. (2.3) is of
the form

'(F) =co,'. "(F.)HD„s~ QJ+ '-(E),

where the scattering operators are defined by

~I-"(E)=1+
~ v, ,Z —H, —H,„t+i~

(4Ab)

(4.5)

K =Hp+Hlnt+H (4.1) 0 int D~BB —~ ~

where H;„, has been defined in Eq. (3.2). The transition T (4.6)
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u,j and to;'+'(E) are only determined. by mesonic process-
es and can be computed by using the formalism developed
in Sec. III. The task now is to develop a practical method
for calculating the second term of Eq. (4.4a).

By using Eq. (4.5) and the operator relation Eq. (3.12),
we can write Eq. (4.6) as

AJ (E)= 1+ HDE—Hp —H;„,—HD BB

+ ~j' +1

E—Hp —H' t
~ E—Hp —H' t

—HD

XH 1
D~BB E H —H J

p int

1 (+)
1 + - HD~BB co&

Hp Hint HD~BB

(4.7)

1

E—Ho —Hln~ —HD BB
(4.9)

Since the dibaryon state D does not couple directly to the
mNN state in our model (see Ref. 38), a straightforward
operator algebra yields

RDD E —ED BD(E)— (4.10)

Since co,' '
HD BBco~+'=0 [because of Eq. (4.3)], we can

use Eq. (4.7) to write Eq. (4.4b) as

w;j~'(E) =co,' ' (E)HD BBQJ+'(E)

(E)HBB DgDD (E)HD BBcoj+ (E), (4.8)

where

P
HD~BB r. rr BB~D

L' —Xg p

+HD BB T(E) HBB D, (4. 1 1)- E-H. ' E-H,
where T(E) is the 88 scattering matrix defined in Eq.
(3.9) or (3.34).

By using Eqs. (4.8)—(4.10), we finally obtain

W;J(E)= W,J(E)+co,' ' (E)HBB D E KD —BD—(E)

XHD BBci)j~+ (E) (4.12)

Equation (4.12) has a familiar form employed in many
studies ' of the dibaryon resonance. However, our
Hamiltonian formulation of the problem has clearly
separated the "trivial" mesonic processes from the cou-
pling to the six-quark state D. Our approach rigorously
satisfies the essential two-body (NN) and three-body
(n.NN) unitarity relations and is, therefore, distinctly dif-
ferent from the existing prescriptions. '

To illustrate the structure of the above equations, let us
evaluate BD for the special case that only the Nb, state is
coupled to the dibaryon D state HD BB =HD N~. This is
the case which will be explored first in our subsequent ca1-
culation. By using Eqs. (3.34) and (3.33), we can exphcit-
ly evaluate the NANNA T matrix needed in calculating
the second term of Eq. (4.11).

where KD is the kinetic energy of the dibaryon D T. he ef-
fects of all mesonic interactions on the propagation of D
are contained in

P
~D(E) HD BB E H H HBB D

1
&D= HD

p

1 1
HNb, —+D+HD~Nh E tb, HNA~DE—Ho E-Ho

E—Ho E—Hp+H+ D —+NhE H E H g NA, N, h E H y E H Nh~D .T

Recalling Eq. (3.35) for tz, it is simple [use Eq. (3.12)] to see that

1 1 1 1 1 1 1+ + Xg+Xg XgE-Ho E-Ho E-Ho E—Ho E-Ho E-Ho-rs E-Ho

(4.13)

1 1 1+ XgE—Ho E—Hp E—Hp —Xg

1

Ho —X
(4.14)

From Eq. (3.33), we have

1
NANb Tc+ 1+ c E 0

To 1+ Tc
1

E—Ho —Xg Nh, Nh

(4.15)
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Substituting Eqs. (4.14) and (4.15) into Eq. (4.13), we then have

BD(E)=XD(E)+ YD(E)+ZD(E)+ 8'D(E.),
where

1&a«) =HL Nh —+D ~E—Ho —Xg

(4.16)

Y (E=H E H ——X 'E H ——X
T

o — 6 —. o—
1 1

ZD( )=HD-x~ ~ 0 Hx~-D— E-H. -X.' E-H. -X,
D D~Nh+ H ~ c + H + 0+ + Nh~D

1 1 1+Ha xz To C DE—Ho —Xs E—Ho —Xs ' E—Ho —X

1 1 1 1+Ha-x~ TQ To TQ Dao —rs ' E—ao —rs E—IIo —rs ' E—ao —r
Finally, it is instructive to see the structure of Eq. (4.8) in NN scattering:

T~~ ~~ = & NN
~

u ] ~ ~

NN&

(4.17)

=&(t'~w'I N~&Hx~D HD, ~~&N~
I
Axe'&E—LD —BD

1= (T)xx,xa E—Ho —Kg+is
1+(T )+ c Nk~NA E H y +

1
NA~D E ~ g D~Nk

D D

1 1
X 1+ (T, )~a ~z (T)xa, xx .E—Ho —2~+i e ' ' E—Ho —2~+i e

(4.18)

Similar-forms can also be obtained for describing the dibaryonic excitations in other ~NN processes. As seen in this ex-
ample, all of the matrix elements of u;J ' can be calculated entirely from the matrix elements of To, T„and the Faddeev
amplitude T . This completes our derivations.

V. SUMMARY

%'e have presented a theory of mesonic and dibaryonic
excitations in the ~NN system. The theory not only ex-
tends our conventional meson theory of nuclear force to
include the 6 excitation and the production of on-mass-
shell pions, but also makes contact with six-quark dynam-
ics. Taking into account the complexities involved in for-
mulating a rigorous and tractable scattering theory for a
practI'cal calculation, we postulate that the vrNN dynamics
can be described by the model Hamiltonian Eq. (2.3). As-
suming that the coupled m.NN and NN dynamics can be
described in the subspace NNNAhh~NND, we
have derived the m.NN scattering equations for a unified
study of all NN and md processes listed in Eq. (1.1). By
employing the standard projection techniques, we show
that all NN and ~d amplitudes, given explicitly in Eqs.
(3.36), (3.61), (3.68), and (3.69), can be expressed in terms
of three basic matrix elements of To, T„and T . Equa-
tion (3.26) for T, and Eq. (3.42) for T contain the three-
body m.NN branch cut, Both can be handled by using the
three-body method. ' The two-body Eq. (3.27) for To

can be solved by using the standard matrix method.
With this decomposition of the three-body and two-body
dynamics, we plan to demonstrate, in future work, that all
NN and ~d scattering can be studied starting from the
most sophisticated nucleon-nucleon potential, such as that
done in Ref. 16, based on the Paris potential.

Our approach to the bibaryon resonance is different
from existing studies. ' In a Hamiltonian formulation
presented in Sec. IV, our theory separates the effects due
to the "trivial" mesonic processes from the six-quark
dynamics. In addition, our formulation respects the
essential two-body (NN) and three-body (rrNN) unitarity
relations. Our study of the dibaryon resonance will be
discussed in future work.

To close this paper, we want to mention that the
baryon-baryon Eq. (3.27) can also be used with a suitable
modification" to calculate the matrix elements of NA in-
teraction in nuclear matter, which can be used to study
both the phenomenological 6-nucleus spreading poten-
tial extracted from pion-nucleus scattering, and the so-
called 6-hole Landau parameter, which plays an impor-
tant role in the application of the Landau-Migdal theory



32 THEORY OF MESONIC AND DIBARYONIC EXCITATIONS IN. . . 529

of nuclear excitations. In the near future, we will make.
our first attempt to use the n.NN matrix elements generat-
ed from our theory to carry out a microscopic study of
pion-nucleus reactions. In particular, we will reexamine
the work by Ohta, Thies, and Lee, ' in order to resolve the

most fundamental problem of pion physics: How the pion
gets absorbed by nuclei.
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