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and the fission process: Formalism

P. D. Bond*
Kernfysisch Versneller Instituut, NL-9747AA Groningen, The Netherlands

{Received 29 May 1984)

The theory of fission fragment angular distributions is examined and the universally used expres-
sion is found to be valid only under restrictive assumptions. A more general angular distribution
formula is derived and applied to recent data of high spin systems. At the same time it is shown
that the strong anisotropies observed from such systems can be understood without changing the
essential basis of standard fission theory. The effects of reaction mechanisms other than complete
fusion on fission fragment angular distributions are discussed and possible angular distribution sig-
natures of noncompound nucleus formation are mentioned.

I. INTRODUCTION

Much of the understanding about the fission process
has come through the successful application of theory
based upon the assumptions that (1) fission arises from
decay of a deformed compound nucleus and (2) the essen-
tial fission parameters and compound nuclear shapes at
the saddle point are given by the rotating liquid drop
model (RLDM). Recently, however, several experi-
ments found large anisotropies in fission fragment an-
gular distributions from nuclei of high angular momen-
tum, which were interpreted as conflicting with those as-
sumptions. These findings prompted the suggestion of a
new process called quasifission (noncompound nucleus
formation ' ) and a reexamination of the basis of the
RI.DM. ' ' In a subsequent publication it was pointed
out that the angular distribution formula which was used
in those analyses and has been universally used for many
years in analyses of all fission fragment angular distribu-
tions, is not generally valid and fails dramatically for de-
cay of high spin, near-spherical saddle point systems. It
was concluded that the suggested failure of the standard
hypotheses given above, if based on angular distribution
information alone, was premature. In this work, a more
in-depth discussion than Ref. 9, a reexamination of fission
fragment angular distributions and the fission process is
made. This investigation is divided into two successive
works, the present one in which the formalism is
developed and the succeeding one in which analysis of
several experimental results is made.

The pioneering work on fission fragment angular distri-
butions' ' from low spin nuclei in the late 1950's was
based on the transition state theory of fission. The deriva-
tion of the angular distribution formula, which has been
used for 25 years, relies upon the assumptions that: fis-

sion proceeds along the symmetry axis of a deformed
compound nucleus, a statistical density of states is
reached at the saddle point, and the value of K (the pro-
jection of J along the symmetry axis) is frozen from the
saddle point to scission. For a deformed nucleus the den-
sity of states is given by
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The values of W,tt have historically been taken for saddle
point shapes from the RLDM.

For compound nuclei formed with spin projection
M =0 along the beam direction this choice of p(K) for the
weighting of K leads to the angular distribution formula,
which has been universally used and found to work well
for many cases of fission, '

where R is the component of the angular momentum J
perpendicular to the symmetry axis and K the component
along the symmetry axis, ~& and WII are the correspond-
ing moments of inertia, T is the nuclear temperature, and
J =R +K . Substitution for R in Eq. (1) leads to the
normalized density of states expressed in terms of K at
the saddle point'
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of transmission coefficients and the density of states avail-
able in the fragments avoids this potential problem and is
the general way to calculate angular distributions for eva-
poration of light particles from nuclei. When applied to
fission from low spin systems, however, it has been be-
lieved that this method does not reproduce data. ' It will
be suggested below that this failure has arisen at least par-
tially from an inappropriate choice for the density of
available final states. While Ref. 9 emphasized fission
from high spin nuclei, the discussion here will be more
general.

This work is organized as follows. In Sec. II a deriva-
tion of the general angular distribution formula for decay
of a compound nucleus into two arbitrary, spherical frag-
ments is given [Eq. (6)], and the approximations made in
obtaining a practical formula [Eq. (9)] when a statistical
density of final states is available, are discussed. In Sec.
III the unique features of fission are examined and ap-
proximate formulae for fission fragment angular distribu-
tions are developed [Eqs. (10) and (11)]. In Sec. IV the an-
gular distribution formulae for fission which result from
analysis at the saddle point and at scission are discussed
and it is suggested that with a more appropriate choice of
p(K) in the transition state model they give nearly identi-
cal results. In Sec. V the sensitivity of fission fragment
angular distributions to processes other than complete
fusion are investigated. It is concluded that at this point
there is no need to invoke other than standard processes to
account for fission fragment angular distributions from
low and high spin systems, although it is suggested that
the standard analysis of fission fragment angular distribu-
tions, which has been made for 25 years with Eqs. (2) and
(3), must be modified. Possible signatures of fission
without compound nucleus formation are mentioned.

II. ANCxULAR DISTRIBUTIONS
FROM COMPOUND NUCLEI

The general angular distribution formula for a com-
pound nucleus to decay into two arbitrary spherical frag-
ments has been discussed by many authors' ' and is
based upon explicitly treating the exit channel. It is
rederived here primarily because the result is written in a
different form from that which is generally given. This
form allows a direct comparison of Eq. (3) and also makes
the dependences on various parameters more obvious. An
analytic formula for high spin systems is also presented
for the case of a statistical density of available final states.

We consider the case of a compound nucleus formed
via complete fusion and decaying into two arbitrary frag-
ments in specific states whether they be fission fragments,
neutron plus residual nucleus, etc. Following Ref. 19 we
write

The term (2J+ l)TJ reflects the formation cross section
for a compound nucleus of spin J (Tz is the transmission
coefficient), the factor [(2J+1)/2]

~
Do, (g)

~

is the prop-
erly normalized angular distribution function' for the
state of spin J to decay at an angle 9 to the beam direc-
tion if the projection of J along the direction of emission
is v. The assumptions that a deformed nucleus fissions
along its symmetry axis and L is frozen leads to E=v.
The exponential term generally gives an unequal weight-
ing to the different values of X.

At high angular momentum, J, or at high fissility, the
RLDM (Ref. 2) predicts that the saddle point shapes be-
come near-spherical, (W~~=Wj ) which leads to ICO +ao. —
This produces a nearly uniform weighting of K, and
hence, from Eq. (3) a nearly isotropic angular distribution
of fission fragments, since gx ~

Do+
~

= 1. This predict-
ed tendency toward isotropy for fission fragments from
nuclei at high spin is not seen in experiments and led
to the suggested failures of the standard fission theory
mentioned above. Under these circumstances (high J and
near-spherical saddle points shapes) there are several prob-
lems with the standard angular distribution prescription.
The condition Eo~ oo leads to the conclusion that fission
is equa/ly probable in the direction parallel to the spin
J (IC =J) of the compound nucleus as perpendicular to it
(E'=0). This result is in sharp contrast both to the classi-
cal expectation and to a basic condition of the RLDM
that K=O. Since W,ff has generally been taken from the
RLDM, there is a serious inconsistency in its use with the
p(K) of Eq. (2) for high J cases. This problem, together
with the expectation that angular distributions from high
spin compound nuclei should approach 1/sin8, prompted
the present and previous investigations of the standard
fission fragment angular distribution formula. It has only
been in recent experiments that the conditions necessary
to observe a breakdown of Eq. (3) have been acheived.

A potential problem with the transition state model is
that the saddle point is part way through the fission pro-
cess so that one must be generally very clever in choosing
the correct distribution of E to reproduce the realistic
physical situation (which includes dynamics). Implicit in
the use of the transition state model [Eqs. (2) and (3)] is
that whatever fission fragment spin distributions are
necessary to conserve angular momentum will be realistic.
It will be shown below that the assumed p(IC) of Eq. (2)
leads to an unphysical division between the angular
momentum in relative motion and the spins in the frag-
ments for fission from nuclei formed at high angular
momentum. Specifically, the prediction of Eo~ cz im-
plies it is equally probable to have all of the compound
nuclear spin in the fragments with none in relative motion
as it is to have a large amount in relative motion with a
lesser amount in the fragments.

The explicit treatment of the exit channel' ' in terms
I
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where Iz and I, are the spins of the projectile and target and s is their channel spin. The final fragments have spins
I~,I~ and couple to channel spin s, the relative orbital angular momentum in the initial and final channels are denoted
as l and l, and the total spin of the compound nucleus is J with projection M along the quantization axis (chosen here as
the beam axis). The scattering matrices between channel c and c' are denoted as S„.The quantum numbers carried by
c include l and s. The index c will also eventually denote the specific nuclei and their excitation energy. Note that the
initial and final M states are summed over incoherently.

In carrying out the square in Eq. (4) it is common to replace the combination of Clebsch-Gordan coefficients with Ra-
cah coefficients and then'Z coefficients. However, the dependence of the angular distributions on essential parameters is
more obvious if that is not done. For reasons which will become obvious below, we rewrite the last two factors in Eq. (4)
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and then square. The incoherent sum in Eq. (4) over initial and final M states means that the sum over m, and m, is
also incoherent as is the sum over M (since m, =M). We also have

g (I,M, I„M
~
sm, ) (I,M, I„M„~s "m, ) =5„

i.e., the sum over channel spin s is incoherent. Similarly, the sum over Mb makes the sum over the exit channel spin s
incoherent.

The assumption of a compound nucleus, i.e., that there are many states of a given J,m which are populated with ran-
dom phases, leads to

g J~J
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d

where the left-hand side denotes an average over a finite excitation energy (b,E && level spacing) in the compound nu-
cleus and we have dropped terms not dependent upon angular momentum. The sum in the denominator extends over all
available decay channels d. The compound nucleus assumption [Eq. (S)] then removes all interferences between partial
waves in both the entrance and exit channels and produces the following angular distribution formula
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where Q = (0,0,0). Note that because of the incoherent
sum over m,' and M, the P dependence has been removed.
The sum over m, can be performed and gives

~ ~

I

, D', D', , =5~, i.e., the sum over v is incoherent.

When, as in fission, there are many unresolved final
states which are populated, a density of states for I& and
Iz is introduced which leads to a density of available final
channel spins, p(s') (see Appendix A). Some considera-
tion must also be given to the denominator in Eq. (5).
This term is the total width for the state J to decay into
all channels

I'(J)= g ~
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Under the assumption that T,- depends only upon I" this
reduces to a more familiar form. The angular integral
gives 8~ /2J+1, and after rewriting the Clebsch-Cxordan
coefficient as
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and summing over v", we obtain

r(J) = g z -p(s") .

For reasons which will be clear below we use the full ex-
pression for r(J).

%'e finally arrive at the general angular distribution for-
mula for a compound nucleus to be formed by complete
fusion and to decay into two arbitrary, spherical frag-
ments.
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Since s' is also not very small either, we write'
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and change the sums over s' and s" to integrals in Eq. (6).
We assume that all T, are functions of l only and that a
single process dominates the decay of the compound nu-
cleus so that the sums over l' and l" are the same.

The integrals over s' have the form

which will be valid for reasonably high values of E .
The angular distribution which results from this density

of states can be approximated when the angular momen-
tum (J ) & sp and the values of l' are not restricted severe-
ly by T,'. These conditions limit s' &J,l'. The expression
for p(s') given above is substituted into Eq. (6) and the
Clebsch-Gordan coefficient is approximated as in Appen-
dix 8 for J,l' & s' as

(6)

As stated earlier this is not the usual form in which the
angular distribution generally appears but it demonstrates
more clearly the influence of the important physical quan-
tities. The cross section splits into parts which reflect the
Bohr hypothesis of a formation cross section times a de-
cay probability. The vector coupling coefficients ensure
angular momentum conservation; the D function serves to
rotate the coordinate system which originally defined the
quantization direction as the beam axis to the new coordi-
nate system, which the direction of emission is defined as
the Z axis. Thus v is just the projection of J (and s')
along the emission axis. Although it no longer explicitly
appears, the value of s' is determined from the spins of
the final states. For large values of s' (and hence Ib and
I~) the sum over v is limited by J, but when s' is less than
J, clearly the sum over v is limited to s' via the Clebsch-
Gordan coefficient. Finally, if the transmission coeffi-
cients depend only on l we can write TI, but that will not
always be valid.

The derivation of an analytic form for the angular
correlation becomes complicated as a result of the factor
p(s'). When a uniform density of states p(s') =(2s'+1) is
available for all states

~

J—l'
~

&s' &J+l' the sum over s'
can be made in Eq. (6) (provided the transmission coeffi-
cients have no s' dependence), which then allows the sum
over v to be made. Since g ~

DM„~ =1, this results in
an isotropic angular distribution and demonstrates the
well-known fact that anisotropy requires a nonuniform
density of final states.

It is not surprising that the approximation of a uniform
density of states is generally not valid and particularly not
for decay of high spin systems. In Appendix A a form
for the density of states p(s') for two spherical nuclei is
derived and it takes the form

p(s ) —(s'+ I/2)2/2so2=8
2$ +1

I(J,l', v) = 1
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min [(s'+
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where

s';„+—, =+v +(J—l')

and, in principle, s',„=J+1'. The approximation for the
Clebsch-Gordan coefficient is only valid for s'& J,l', so,
properly, the integral should be limited to s',„=J and a
second integral whose limits are s;„=J and s,„=J+l'
and in which the Clebsch-Gordan coefficient is approxi-
mated for J&l', s', should be added. Since we have as-
sumed p(s') limits s'& J, we can instead extend the in-
tegral (8) to J+l'.

The density of states [Eq. (7)] is then inserted and the
integral I [Eq. (8)] becomes, after a change of variable

—v /2$O —(J—I') /2$0

I(J,l', v)= ~(2J+1)
[(4Jl' —v )/2s ]

X e dx
0

The exponential in front of the integral favors J=l' and
we have assumed J& so, v so the integral (which is the er-
ror function) is approximately independent of v. This as-
sumption will be made throughout this work and is valid
as long as (2J/so) )2. The function I can then be ap-
proximately written as

—v /2s2I(J,l', v)=e 'f(J, l'),
where f(J, l') is a function only of J,l'. Substitution of I
into the sums over l' and l" (which are presumed to be
equal) in Eq. (6) leads to the generalized angular distribu-
tion formula for compound nuclei with (J))$0,
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which holds for spherical final fragments. It should be
remembered that v is the projection of J along the emis-
sion axis. Equation (9) shows a remarkable similarity in
form to Eq. (3) and yet no special consideration of the fis-
sion process has been made (see also Ref. 14). The projec-
tion of angular momentum along the emission axis is re-
stricted by the spin distributions in the final fragments,
and the anistropy observed in standard compound nucleus
decay results.

To summarize this section, the major points-in deriving
Eqs. (6) and (9) are that conservation of angular momen-
tum has been ensured and the important parameters
which determine the angular distributions are identified.
We now turn to the unique features of the fission process.

III. FISSION FRAGMENT
ANGULAR DISTRIBUTIONS

A. General discussion

There are several aspects of fission which modify the
considerations which went into the derivation of Eq. (9).
The RLDM, as well as earlier models, predict that the fis-
sioning nucleus becomes deformed on its way to fission.
Thus, in addition to J and M, the quantum number K,
which is the projection of J along the symmetry axis, is
introduced. The connection between the parameter X and
v, which is the projection of J along the direction of emis-
sion of the fission fragments in Eq. (6), can be made if the
assumption is made that fission proceeds along the sym-
metry axis. This leads to K=v (the frozen K assumption)
since the angular momentum in relative motion has pro-
jection 0 along this axis. Note that in general K may not
be defined because of nonaxial symmetry, but v always is.

In Eq. (6) the nonuniform distribution of v (or K) for
fission, required to produce anisotropic angular distribu-
tions, can arise in two ways. Of course, it can arise
through the density of states of the final nuclei, but it. can
also result from the fact that the fission barrier prevents
all values of E: from contributing equally to fission, i.e.,
there is a K dependence (equivalently an s' dependence) of
the transmission coefficients. Since the emphasis in this
paper and the succeeding one is on fission from fairly
high spin systems at high excitation energy, the K depen-
dence from T, is expected to be weak and is neglected
here, but this possible dependence is potentially important
and is discussed in Appendix C.

The crucial factor is the density of available final states.
In Sec. II the density of states at scission was calculated
for' two spheres; however, at least for extended saddle
point shapes this is certainly a questionable assumption.
More generally we assume that fission fragments are de-

formed and are emitted with their symmetry axis aligned
along the direction of emission. This assumption seems
reasonable, but it should be noted that it contains an im-
plied dynamics. In the derivation of the density of
states for spherical nuclei there was an implicit assump-
tion that each projection of s' along the quantization axis
had equal weight. For deformed nuclei this is not the ease
since the density of states depends upon the projection of
spin along the symmetry axis of the deformed nucleus (for
example see Ref. 14). As is shown in Appendix A we
more generally replace p(s')/(2s'+1) in Eq. (6) by

—(s'+i/2) /2of —v /2+~ii 7')

where

oi =(Wi, Ti+Wi Ti)/fi

1 1 1
2 2 2

and

Jmax & j.

Under this condition it is clear from Eq. (6) that it is J
rather than s' which will restrict the sum on v (or X) and
the standard transition state model [Eq. (3)] is likely to be
valid. We approximate that all values of s' from

~

1—J
~

to I+J are available so that the sum over s' can be made.
This results in
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This reduces to the spherical case [Eq. (7)] when
o ~~=oi=so. In Ref. 9 it was assumed incorrectly that the
v (or K) dependence was given by Xo of Eq. (2) and the s
dependence by so, but the effect on the cases studied there
is not major.

B. Approximate forms of angular distributions

In general the complete expression [Eq. (6) with Eq.
(7')] could be used to calculate the angular distributions,
however, there are two limits for which good approxima-
tions can be made to produce analytic forms which allow
more physical insight to be made. In a/1 of the following
it is presumed that for partial waves from 1;„&1'&1
fission is the dominant decay channel. This means that
the sums over 1" in I and 1' in the numerator in Eq. (6)
are the same and allows us to obtain closed form expres-
sions. More generally, a factor I /(J)/I (J) can be intro-
duced. It is also assumed that I' is allowed to take on
values up to l'-J. The general procedure to obtain an
angular distribution formula follows that of Sec. II in
deriving Eq. (9), but the criterion now depends upon the
relative size of J and cri. As a practical rule of thumb
o.i—10—20.
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which is seen to be essentially identical to the transition
state model [Eq. (3)], except that here the moments of in-
ertia and temperature are determined from the final frag-
ments, whereas in the transition state model these quanti-
ties are determined at the saddle point. In the limit of
spherical fragments (a,rf= oo ) the condition J,„&(T re-
sults in an isotropic angular distribution since there is a
uniform density of states s'. Under this angular momen-
tum condition there is no problem with the fact that iso-
tropic angular distributions may be predicted since the
available spin distributions are greater than J and it is the
deformed nature of the nuclei which produces an aniso-
tropy. Finally, for this condition of J &az, which might
be the case for low energy neutron capture, the excitation
energy may be near the fission barrier so that the IC or (v)
dependence of the transmission coefficients may also be
important, and the assumption of 100%%uo fission probabili-
ty may not be valid.

which is a rather narrow range. The perpendicular mo-
ments of inertia of the fragments would not be so easily
estimated since W is approximately the sum of these
moments and the moment of inertia associated with rela-
tive motion of the two fragments. A more comprehensive
discussion of fragment shapes is given in Appendix D.

For deformed fragments, o.
ll &sp and stronger anisotro-

pies are expected than for near-spherical fragments if the
two systems are formed at the same angular momentum.
For very high spin J the value of J/o. is very large and
angular distributions quickly become 1/sinO rather in-
dependent of shape except at the most forward angles.
This latter conclusion is in sharp contrast to the predic-
tion of the traditional transition state model.

Note that no approximate expression has been given for
the case of (J)=(T~ because several of the approxima-
tions break down. However, the result should lie between
the two expressions [Eqs. (10) and (11)]given above.

2. & J & ) (Tj

If the fragments are near-spherical the angular distribu-
tion formula will be given by Eq. (9). For the more gen-
eral case of two deformed fission fragments we obtain for
the function I [Eq. (8)],

( I, )
—v [()/crf)+()/cr, ff)]/2

( (, )

where we have assumed (J ) /oq & 1. Since (1/o') )

+(1/(T,ff)=1/o.
~~,

the general angular distribution formu-
la for fission from fairly high J systems is

[ (sMEO
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JM ) i
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W(O)= g
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l

Mv
v= —J

x /D'„(O) /'.

The form of W(O) is nearly identical to that of Eqs. (3),
(9), and (10) except that the width parameter of the v dis-
tribution is given by O.ll.

Equation (11) then is the expected angular distribution
formula for a compound nucleus to be formed at high
spin by complete fusion and decay into two deformed fis-
sion fragments. The v weighting depends only upon the
sum of the fragment moments of inertia parallel to their
symmetry axes. The connection to parameters of the
RLDM would come in the transmission coefficients and
perhaps in the estimate of o.

ll. If we assume two frag-
ments of equal temperature, then (T((=(W(( +W~) )T/A' .
When a liquid drop has a very extended saddle point
shape a reasonable expectation is that ~l

l
+~I

I

For near-spherical saddle point shapes the sit-
uation is more complex since the saddle point configura-
tion and the scission point configuration are very dif-
ferent. For near-spherical fragments an estimate of

~RLDMg22/3 0 63~RLDM

is more appropriate. As a practical limit

0.45Wp&Wll +Wll &0.63Wp,

IV. DISCUSSION

As was noted above, angular distributions for evapora-
tion of particles from a compound nucleus and for fission
have historically been treated quite differently. It has
been suggested here that generally they should be treated
in the same way with proper account taken of the unique
features of fission. Equation (6) together with Eq. (7') is a
general angular distribution expression for a compound
nucleus to decay into two deformed fragments with their
symmetry axes aligned along the direction of emission.
Under the conditions that the compound nucleus is
formed with an average spin larger than the spin cutoff
parameter (o) in the final nuclei, and at high excitation
energy so that the exit channel transmission coefficients
are approximately 1, the general expression for decay can
be approximated by Eq. (11). As in standard compound
nucleus decay, the anisotropy of fission fragment angular
distributions is governed by the ratio of J „/o., where o.
is determined by the bombarding energy, Q value, and nu-
clear shape. It should be emphasized that the general an-
gular distribution formula does not depend upon axial
symmetry of the compound nucleus. Rather it is the pro-
jection of J along the emission axis which is the crucial
quantum number.

We now return to a discussion of the transition state
model. As has been pointed out above, there are condi-
tions where the v distribution may be better determined by
the traditional density of states at the saddle point [Eq.
(2)], but there are also cases where it clearly can not be.
While the standard transition state model is likely to be
valid for the low spin cases for which it was initially pro-
posed, ' " there is little reason to believe that generally
one knows how to make the correct choice for the weight-
ing of E at the saddle point, which is part way through
the fission process. Nevertheless it is worth reconsidering
the transition state model for high spin systems.

Much of the recent controversy about fission fragment
angular distributions and nonfrozen E distributions has
arisen because it has been stated in the recent literature
that Eq. (2) expresses a statistical distribution of the K
mode at the saddle point. In fact, Eq. (2) was derived
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from Eq. (1) and so represents the K dependence when
there is a statistical distribution of both K and R. The
procedure of normalizing in Eq. (2) has given the in-
correct impression that one is assuming that only the K
mode is statistically distributed. As can be seen in Eq. (6),
the value of K at the saddle point must appear in the in-
trinsic spins of the fragments. The orthogonal R mode,
however, generally divides between the fragment spins and
the angular momentum of relative motion. By using Eqs.
(1) and (2) one is forcing R to go entirely into intrinsic
spin for near-spherical saddle point shapes and certain
emission angles. The cases for which Eq. (2) was original-
.ly proposed' '" were ones where the fragment spin distri-
butions were larger than the compound nuclear spin, so
Eq. (2) was not an unreasonable assumption. For high
spin systems it is much more reasonable to assume, as the
RLDM does, that dynamics leads to R=J and K=O. At
the saddle point one allows the K mode to be statistically
distributed, i.e., the K dependence given in Eq. (1)
(Ko ——SHIIT/fi ) is the proper p(K) to be used in Eq. (3).
This assumption makes the use of the RLDM to calculate
shapes at the saddle point a reasonable procedure since
consistent assumptions are made.

The change of the parameter Ko in Eq. (3) from
Ko =W ffT/A to Ko WI

I

T/h as ——a function of the com-
pound nuclear spin would be expected to be rather quick
but a specific analytic form is not obvious. It is reason-
able to expect that

SHIIT(saddle) =WII, Tg+WII T2

so with the choice of Ko ——SHIIT/A' the transition state
model and the general formula from scission [Eq. (11)]be-
come essentially identical and there is no problem with ei-
ther model in reproducing the anisotropic angular distri-
butions from high spin, near-spherical saddle point nuclei.
Note that for extended saddle point shapes

WII +WII =JrII and thus T(saddle)=T(fragments). For
compact (near-spherical) saddle point shapes this is not
the case»nce J

I I

saddle) & Wl
I

~l Iq
so it is ~~p~ct~d that

T(saddle) & T(fragments).
Since the angular distribution expressions from- either

method are expected to give essentially identical results at
high spin, it is a matter of choice as to which one should
be used. The general form for the angular distribution,
which has been derived above, is less model dependent —it
is not necessary to have a stable configuration from the
RLDM, the expression is generally valid for all angular
momentum conditions and it is valid for processes other
than fission. The difficulty is knowing what the exit
channel transmission coefficients and the fragment shapes
are. On the other hand there is clearly an appealing tie to
saddle point parameters through the use of the transition
state model, and for low spins and excitation energies near
the barrier it may be preferable.

We now see that a consistent picture of fission frag-
ment angular distributions for low and high spin systems,
for deformed or near-spherical saddle point shapes can be
built which is based upon the standard assumptions of fis-
sion: compound nucleus formation, the use of the RLDM

for essential fission parameters, fission along the symme-
try axis (or in general along the longest axis), a frozen K
distribution, and a statistical distribution of angular
momentum modes at the saddle point which evolves from
both K and 8 being statistically populated at low spin to
only K being statistically populated at high spin.

Of course, if data are found to be in agreement with the
calculations, it does not prove these assumptions; rather,
that the data are consistent with such assumptions. In
light of suggestions of noncompound nucleus formation it
is worthwhile to identify experimental angular distribu-
tion signatures of such a process. In cases where specific
masses are not identified, fission fragment angular distri-
butions are guaranteed to be symmetric around 90 no
matter what the formation mechanism is. Thus a
minimum requirement for conclusively demonstrating
noncompound nucleus formation is an unequal yield for a
specific mass at angles symmetric around 90'.

V. EFFECTS OF M&0 AND INCOMPLETE FUSION

The effects of these conditions on the angular distribu-
tions will be covered in some detail, since improper con-
clusions have been reached in much of the literature.
There are at least three ways that the fissioning system
can have M+0. The most obvious one is when the target
or projectile have spin. In addition, prefission particle
emission might change M and, perhaps most importantly,
reaction mechanisms which lead to incomplete fusion of
the projectile and target can leave the compound nucleus
in M&0.

The effect of M&0 relative to M =0 can be seen from
the form of the normalized D function, which is

(J+ 2 )
I
DM~(~)

I

'

J+—1

[(J+—, ) sin 8 M K+2M—K co—s8]'~

At 90 the square of the D function is larger for M&0
and hence the cross section is larger than for M=0. At
very forward angles the square of the D function can be
the same for M=O and M&0 if M=K. However, values
of K&0 are suppressed [see Eq. (11)] so that W(8) is
smaller at small angles for M&0 than for M=O. Thus
the effect of M&0 is to reduce the anisotropy of the
correlation. Similarly, if less angular momentum is
transferred to the nucleus, i.e., J is smaller, more isotropic
angular distributions result. These conclusions will be
modified if the value of cr in Eq. (11) reduced due to a
lower temperature or a reduced value of W, but these
latter two effects will be most important at low excitation
energies.

Ground state spins are generally (4 and the orientation
is averaged over so except for very low values of J, the
consequences for the angular distribution are negligible
(see also Ref. 11). Prefission particle emission may pro-
duce a reduction in the angular momentum of the fission-
ing system and a change in the projection M. For high
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spin systems the effect of the reduction in J due to prefis-
sion evaporation particle emission is not likely to be major
and will not be dealt with here. The effects of other reac-
tion mechanisms can be quite significant. In particular,
we now consider processes other than complete fusion for
compound nucleus formation. Clearly the effects of pree-
quilibrium particle emission and these reaction mecha-
nisms are not always easy to separate.

In systems formed by bombarding with high energy
heavy ions (& 10 MeV/A), processes other than complete
fusion can compete in producing compound nuclei which
will fission. For fissile targets simple transfer or inelastic
scattering may contribute, while for lighter targets more
massive transfer will be required to exceed the fission bar-
rier. In experiments which detect fission fragments not in
coincidence with outgoing particles the effects of both
complete fusion and noncomplete fusion will be present so
that it is useful to know what to expect from both pro-
cesses. Note that compound nucleus formation is still as-
sumed.

The process of incomplete fusion ' (or massive transfer)
is viewed as capture of only a fraction of the projectile
with the remaining part continuing on at roughly beam
velocity. We define the captured mass as m„„t and can
then estimate that the average angular momentum
transferred to the nucleus is J=m„ztl&/mz where l& is
the incident angular momentum and mz the projectile
mass. Thus the angular momentum brought into the nu-
cleus is less than if complete fusion took place. The M
distribution is also changed relative to complete fusion be-
cause there is an outgoing particle which generally does
not travel along the beam axis. This means that values of
M&0 are populated. Both of these effects serve to reduce
the anisotropy over what would have been obtained for
complete fusion of the same partial waves. This con-
clusion is opposite to that of Ref. 4.

Since at high angular momenta the effect of target and
projectile spin is small let us consider spin 0 projectile and
target and spin 0 ejectile for the incomplete fusion pro-
cess. Calculating the angular distribution for this process
is not as straightforward as for complete fusion because
the formation amplitude is not known. We define the am-
plitude for formation of the state J,M as aJ (8„,$„)
where 8„,p„ indicate the angle of the continuing projec-
tilelike fragment. The expected form of

-~r2~2~~

W(8)= g a, (8„,y„)uJ '*(8„,y. )

XDw„(pf, 8f, O)D~ „(pf,8f,O) . (13)

I.O—

Note that an azimuthal angle dependence
i (M —M')(Q„—Pf )

(e " f ) exists because the projectilelike frag-
ment is presumed to be detected in coincidence with the
fission fragments. In cases where the outgoing particle is
not measured in coincidence an integration over P„can be
made and one obtains 5~~, and the P„and Pf depen-
dence vanishes. Then Eq. (13) reverts to a form very simi-
lar to Eq. (11) except that the M projection of the angular
momentum brought into the nucleus is no longer M=O
and J is less than for complete fusion.

In order to proceed, further assumptions must be made
about aJ . Limits on M are easily obtained. If the outgo-
ing particle x is presumed to go at an average angle 0~
relative to the beam with average angular momentum
/„=(1—m„~, /mz)/~, the maximum value of M is re-
stricted by the minimum of M & (1—m„~, /m~)/zsin8 or
by M &(m„„,/mz)/z. Thus for light particles emitted at
very forward angles the former restriction will limit M
and if light particles are captured the second will be the
restriction. The dynamics of the reaction will determine
the specific relative population of the M population. We
make some simplifying "reasonable" approximations.

The kinematical conditions for incomplete fusion gen-
erally lead to differences between /z and /„ being large.
This condition results in the transferred angular
momentum being oriented approximately perpendicular to
the plane determined by the outgoing particle x and beam
axis. Thus along the beam axis ~aq

~

a ~D~~(m/2)
~

or
using Eq. (12) and the approximation in Appendix B

Mi2 1

(J+—,
' —M')'"

which peaks at M=& J (see Fig. 1). This can only be-

ag (8„,$„)=(/„MJ M
i
/p0)—

X [2/~+ 1 ]j' Y, (8„,$„)A», O. 6

J = IOO

oJ ——Ig ~
a~

~

d Q„=(2/~ + 1)= 2m' J +1 . (12)~ capt

We replace the formation amplitude in Eq. (4) by
aJ (8„,$„) and square. As before we assume interferences
between different partial waves vanish due to the com-
pound nucleus assumption and obtain

where 2 does not depend upon the M quantum number
but influences /„. We consider only one type of particle x
so A —1 and have

0.2—

-8
I I

0
M

l2

FIG. 1. Relative M population along the beam axis for
J=100 if J is assumed to be normal to the plane determined by
the beam and outgoing particle axis.
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FIG. 4. Same as in Fig. 3 except for rn„~, /m~ =0.6 and, e,
one-half of the fission cross section is due to incomplete fusion.
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FIG. 2. The maximum values of M for J=100 as a function
of the captured mass determined for the following assumptions:
(a) M =J {J is normal to the beam-outgoing particle plane), (b)
M =0.95J, and (c) the outgoing particle exits at 20' to the beam
axis. Note that for high captured mass curve c determines the
maximum value of M, while for low captured mass curves a or
b determine M,„.

valid when the restriction on M from the outgoing parti-
cle does not supersede it. Shown in Fig. 2 are curves
which demonstrate limits on M as a function of
tD capt /mp o

Shown in Fig. 3 are several calculations including in-
complete fusion with I,», /mz ——0.8 for a system with
J .„-1006 and ~II-11 together with a calculation for
complete fusion only. With the assumption M=O the
curve for incomplete fusion hardly differs from that of
complete fusion. Clearly the effect of the reduced J alone
in this case is a small effect, the major influence is caused
by the angular momentum orientation which serves to
reduce the anisotropy.

Of course, the assumption that M„„~ ~

=J is not
reasonable as there will be a width to the distribution.
Very small changes in that restriction, e.g.,

~
M~,~ ~

=0.98J produce large changes in the angular dis-
tribution. Included in Fig. 3 is the calculated angular dis-
tribution for

~
M~,~ ~

=0.98J and a large decrease of the
anisotropy is seen.

If the average captured mass corresponds to
m, »„/mz ——0.6 the effects on the fission angular distribu-
tion are stronger. Figure 4 shows several calculations of
fission fragment angular distributions for this condition.

In summary, the effects of compound nucleus forma-
tion by processes other than complete fusion can be sig-
nificant and generally lead to reduced anisotropies. Only
through complete measurements will the individual con-
tributions be unraveled.

20
I

40
8(deg )

I

60
I

80 VI. CONCLUSIONS

FIG. 3. Calculated angular distributions for J,„=100 for,
a, complete fusion and for several cases of incomplete fusion.
Curves b, c,d all presume 3 of the fission cross section (the

highest partial waves) is due to incomplete fusion withI pt /m~ =0.8; b, the outgoing particle goes at 20'; c, the angu-
lar momentum is oriented normal to the plane (M~~=J); d,
M~,p

——0.98J.

A general angular distribution formula for fission fol-
lowing compound nucleus formation has been derived and
it has been shown that the previously used angular distri-
bution prescription is valid only for a restricted range of
conditions and fails dramatically for high spin systems.
Thus conclusions, based on analysis with that formula,
about noncompound nucleus formation or failure of the
RI.DM, are suspect. At the same time it has been demon-
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strated that with a more reasonable choice for the K dis-
tribution at the saddle point the transition state model and
the general expression derived from scission give essential-
ly the same result for high spin systems so that there is no
need to change the essential assumptions about the fission
process to produce strongly anisotropic angular distribu-
tions. For low spin, extended saddle point shapes, the an-
gular distributions are sensitive to RLDM parameters (or
fission fragment shapes), but for high spin systems the an-
gular distributions quickly become 1/sinO, rather indepen-
dent of shape. It has been shown that incomplete fusion
can have a considerable impact on fission fragment angu-
lar distributions and so must be considered in analysis of
singles data. In the succeeding work several experiments
are reanalyzed in order to demonstrate the substantial im-

pact of the results of this work on the recent interpreta-
tions of data from high spin compound nuclei.
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APPENDIX A: DENSITY OF STATES
FOR CHANNEL SPIN

The density of states for two spherical nuclei of spins j&
and j2 coupled vectorially to channel spin s is given by

p(~)= g p(j~)p(j2), (Al)

~(j)e[j+(1/2)] /2aJ2djdQ

After substituting for the 6 function, we carry out the in-
tegrations and obtain

p( S ) —[s+(1/2)]2/2s&~
ne

2$ + 1

where so cr&+oz——(see also. Ref. 14). The values of o.
&

and o.
2 are given by

2T, 2 m~, T
g2 5 g2

where m is the fragment mass, r is the radius of that frag-

'2 2—j; /2~)
where p(j;)=(2j;+ l)e ' ' and the sum is restricted so
s=j~+j2. Classically, we can write'

p(s) = f ~(ii)p(i2»'(s —ii —i2),

where

Since the density of states depends upon the K quantum
number the calculation is somewhat more involved than
for the spherical case but follows the same line. The spins

j& and j2 are allowed to have arbitrary orientation with
the constraints s=j~+j2 and E=E&+E2 where
E;=j;cosO;. The integrations are made with the result
that the corresponding expression to p(s')/(2s'+ 1) is

—[s'+(1/2)] /2vf —K2/2cr~ff'e

where o.z ——(Wz, T&+W~ T2)/A' and

1 1 1

(~~~]T&+~(~2

(A2)

A more model dependent way of estimating the density
of final states can also be obtained from the model of two
touching nuclei. It is assumed that these nuclei rotate as

complex so that J
) )

——J
( ~

+W~
)

and Wz —— J,
+J y +W ). The total angular momentum J is divided

2

up as in a deformed nucleus into A, the component nor-
mal to the axis through the nuclei, and X, the component
along that axis. Under these assumptions the angular
momentum in the relative motion and in the fragments
can be derived in terms of J and JcC. The result for the
fragment spins is identical to (A2). This latter model has
been used to suggest specific collective modes of excita-
tion of the fission fragments.

In general the parameters cr for the two fragments
could be appreciably different and depend in a more com-
plicated way on T. In particular for some systems the
fragment masses may change as a function of E*, for ex-
ample in fission from uranium where there is a change
from asymmetric to symmetric fission as E' increases.
Properly, o.

&
and o.z should be averaged over all final

channels. It should also be noted that T should be calcu-
lated for excitation energies after prefission particle emis-
sion but before particle emission from the fission frag-
ments.

For spherical fragments the average value of the magni-
tude of the spin j (or j+—,) is given by
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f je J~2 jdjdQ

f e J ~2 j'djdn
which gives ( j I

) =4o/v'2m. An estimate of so can be
obtained from multiplicity measurements since in such ex-
periments (

I j I
) is determined and we can derive so

from

where E„,and E„,are the rotational energies of the de-
formed nucleus at the saddle point and in its ground state
(with moment of inertia Wo). Substitution for the last two
terms gives

Bf(J,K) = Bf(J=0)+Pi J 2'
so ~1+~2

16 I:& IA I
&'+ &

I jz I
&'j

which if (IjqI)=(Ij2 ) gives so ——4m/16(IjI). A
more realistic calculation to compare to experiment would
involve using Eq. (6) to calculate (

I
s

I
).

APPENDIX B: USEFUL APPROXIMATIONS

Summarized here are various approximations which are
used in this paper. For Clebsch-Gordan coefficients
whose angular momenta are large compared to I but
where one value of the angular momentum is less than the
other two,

1/2
2I +1

(,l(p)12pq LM )—
21i+1 dM, I i (8) ~

+/2+2
II

Since Wz & Wo the effect of nonzero angular momentum J
is to reduce the fission barrier. The RLDM (Ref. 2) as-
sumes rotation perpendicular to the symmetry axis
(K=O), so that rotation about an arbitrary axis serves to
produce an increase in the barrier over what the standard
RLDM predicts (see also Ref. 30). This implicit K depen-
dence (which can also be translated into an s' dependence)
of the fission barrier then gets reflected in the transmis-
sion coefficients. The situation is, of course, much more
complex and full calculations should be made for rotation
around an arbitrary axis. Substituting Eq. (C2) into (Cl)
we obtain

T (K)=
1+exp [Bf(J) E' jexp(—+K /2K& )

where 8=cos 'p2/+12(i&+1) and L & l„lz. In fission,
a large number of partial waves are generally important so
that an average value of

I
d~x(8)

I
is all that is needed.

For angles 8»
I

M —K
I
/(L + —, ) this is given by'

where

(C3)

I
dMx(8)

I

'
1 1

~ [(L+ 2 ) sin 8 M K—+2M—Kcos8]'~

(B1)

APPENDIX C:
TRANSMISSION COEFFICIENTS

The transmission coefficients obviously play a crucial
role for excitations near and below the fission barrier and
less of a role far above the barrier. In order to show the
possible problems we consider a parabolic fission barrier,
although analytic expressions for more complex shapes
have also been given. For a simple parabolic barrier the
transmission coefficients have the form

J 1
I

2m.(Bf E)—
1+exp

(Cl)

where E is the excitation energy, Bf is the fission barrier,
and ~ is the barrier curvature. Clearly for energies far
above the fission barrier T, =1 and the effect of the bar-
rier is small. At energies far below the barrier

—2m. /%co(B ~ —E )
Tc' —e

Thus for high values of E* the transmission coefficients
have a weak K dependence which is neglected here but it
should be noted that it is potentially a problem.

It should be added that in Ref. 2 it was concluded that
a compound nucleus is not formed when Bf=0. While
that is certainly plausible, it is suggested that condition
ensures T —+1 so there will be no survival of the com-
pound nucleus, but it may still be formed in the sense of
Eq. (5).

APPENDIX D:
ESTIMATE OF FISSION FRAGMENT SHAPES

The estimates of the fragment moments of inertia
described here are based on rigid body values for ellip-
soidal shapes. From consideration of constant mass and
density we have

26 a =rpA

where b is the minor axis and a the major axis of each el-
lipsoid and rpA' is the radius of the spherical com-
pound nucleus.

The sums of the parallel and perpendicular moments of
inertia of the two identical fragments, if they are emitted
with their major axes aligned, are

The J dependence of the fission barrier, Bf, can be ex-
pressed in the RLDM (Ref. 2) as

Bf(J)=Bf(J=O)+E„, E„, , —

', Ab-
g Jr~= ,'A(a +b ), —

(D2)
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where A is the mass of the compound nucleus. The value
of a can be estimated from the fragment kinetic energies
(or Viola systematics) as

2
Ze
2

for the ratio of a/b is considerably smaller than that of
Ref. 31.

Finally, we arrive at the values for the sums of the frag-
ment moments of inertia

g J ~~=0.28A fm

=Ex2a+6 g Wg —0.48A. fm
(D3)

where Ex is the sum of the fragment kinetic energies, Z is
the compound nucleus charge, and 6 is a distance which
accounts for the fact that the nuclei have a diffusivity.
With the commonly used choice of 6=2 fm and the defi-
nition a =ao(A/2)'~ we obtain ao —1.63. This value of
ao in conjunction with Eq. (Dl) and the RLDM value of
ro ——1.225 leads to bo-1.062 and a/b =1.53. The value

Expressed as a fraction of the spherical compound nu-
cleus moment of inertia W,ph these values correspond to
QW~~=0. 47M,„h and g Jr& ——0.79M,vh. It should be em-

phasized that there is nothing magical about the value of
ro ——1.225 and the moments of inertia need not be rigid or
the shapes ellipsoidal. Thus the extracted moments of in-
ertia might be expected to differ somewhat from (D3).

'On leave from Brookhaven National Laboratory, Upton, NY
11973.

See, for example, R. Vandenbosch and J. R. Huizenga, Nuclear
Fission (Academic, New York, 1973)~

S. Cohen, F. Plasil, and W. J. Swiatecki, Ann. Phys. (N.Y.) 82,
557 (1974); also see F. Plasil, Phys. Rev. Lett. 52, 1929 {1984).

B. B. Back et al. , Phys. Rev. Lett. 46, 1068 (1981); and B. B.
Back et al. , ibid. 50, 818 (1983).

4H. Rossner et al. , Phys. Rev. C 27, 2666 (1983).
5K. T. Lesko et al. , Phys. Rev. C 27, 2999 (1983).
M. B. Tsang et al. , Phys, Lett. 129B, 18 (1983).

7A. Gavron et al. , Phys. Rev. Lett. 52, 589 (1984).
L. Vaz and J. Alexander, Phys. Rep. 97, 1 (1983); Z. Phys. A

312, 163 (1983).
9P. D. Bond, Phys. Rev. Lett. 52, 414 (1984); 52, 1254 (1984).

A. Bohr, Proceedings of the International Conference on

Peaceful Uses of Atomic Energy, Geneva, l955 (United Na-
tions, New York, 1956},Vol. 2, p. 151.

t~I. Halpern and V. M. Strutinsky, Proceedings of the Interna
tional Conference on Peaceful Uses ofAtomic Energy, Geneva,
1957 (United Nations, New York, 1958), Vol. 15, p. 408.
J. J. Griffin, Phys. Rev. 116, 107 (1959)~

J. A. Wheeler, in Fast Neutron Physics, edited by J. G. Marion
and J. L. Fowler (Wiley-Interscience, New York, 1963), Part
II.
T. Ericson, Adv. Phys. 9, 425 (1960).

tsV. M. Strutinsky, [Zh. Eksp. Tear. Fiz. 30, 606 (1956) [Sov.
Phys. —JETP 3, 638 (1956)].

6T. Ericson and V. Strutinsky, Nucl. Phys. 8, 284 (1958); 9, 689

(1958)~

L. Wolfenstein, Phys. Rev. 82, 690 (1951).
W. Hauser and H. Feshbach, Phys. Rev. 87, 366 (1952).
J. M. Blatt and L. C. Biedenharn, Rev. Mod. Phys. 24, 258
(1952).

2 A. M. Lane and R. G. Thomas, Rev. Mod. Phys. 30, 257
(1958).
J. Wilcynski et al. , Phys. Rev. Lett. 42, 1599 (1979).
See, for example, P. D. Bond, Phys. Rev. C 22, 1539 (1980}.
V. E. Viola, Jr., At. Data Nucl. Data Tables 1, 391 (1966).
L. G. Moretto, Nucl. Phys. A247, 211 (1975).
L. G. Moretto and R. P. Schmitt, Phys. Rev. C 21, 204 (1980)~

A. R. Edmonds, Angular Momentum in Quantum Mechanics
(Princeton University, Princeton, N.J., 1960), p. 122.
P. Brussaard and B. Tolhoek, Physica {Utrecht) 23, 955
(1957).
D. L. Hill and J. A. Wheeler, Phys. Rev. 89, 1102 (1953).

9J. R. Nix, Ann. Phys. (N.Y.) 41, 52 (1967).
0M. Prakash et al. , Phys. Rev. Lett. 52, 990 (1984).

3 H. Rossner et al. , Phys. Rev. Lett. 53, 38 (1984). The con-
clusion of this reference that the angular distribution depends
only upon the perpendicular moment of inertia is in sharp
contrast to what has been found here.

3 If it is not assumed that the fragment symmetry axes are
aligned along the emission direction the sum over EC can be
made in Eq. (A2) and the angular distribution is given by Eq.
(9) with 1/so replaced by 1/3cr~ ~+2/3' j.

See for example K. Lutzenkirchen et al. , Z. Phys. A 320, 529
(1985).


