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The cross sections for elastic and rearrangement four-nucleon reactions have been calculated

above the breakup threshold in the K-matrix approximation to the Grassberger-Sandhas integral
equations. In the first order K-matrix approximation we find that the *H(d,p)*H and 2H(d,n)*He
cross sections at low energies are sensitive to the properties of the nuclear force and to its tensor
component even at higher energies. At higher energies good agreement is obtained with experiment,
but there is quantitative and qualitative disagreement with the data at lower energies. We also per-
formed K-matrix calculations including the principal value part of the (2+2) propagators by means
of the generalized-unitary-pole-expansion/energy-dependent-pole-expansion for the (24 2) subampli-
tudes. At lower energies this improved the agreement with data in the H(d,n)*He reaction consider-
ably, and in the case of p+>He elastic scattering even resulted in a spectacular improvement in the
forward direction. The lack of structure in the differential cross section [e.g., absence of a second
maximum in the 2H(d,n)’He cross section] persisted, however. This qualitative disagreement is
probably mainly due to the omission of the contribution of the p-wave three-body subsystem ampli-

tude in the calculations.

I. INTRODUCTION

A practical integral equation approach to four-body
scattering and breakup has been developed by Grassberger
and Sandhas! (GS). In this formulation the original
operator relations were reduced to effective two-body
equations in two steps by employing separable expansions
both for the two-body and for the three-body subampli-
tudes. After partial wave decomposition, the GS equa-
tions are then reduced to manageable one-variable integral
equations.

The first four-nucleon -calculations based on this
method have been performed by Alt, Grassberger, and
Sandhas (AGS).2 There, using separable Yamaguchi po-
tentials, the rearrangement reaction d-+d—p+t
(n 4+ *He) and elastic p + *He scattering have been con-
sidered at energies above the breakup threshold. The final
effective two-body equations were solved in first-order
K-matrix approximation, and, as a further simplification,
an approximate analytical representation was used for the
(3+ 1) and (2 + 2) subamplitudes. In view of the rather
drastic approximations made, the results obtained were
encouraging. As expected, they improved with increasing
energy of the incident particle, but failed to reproduce the
second maximum in the differential cross section of the
2 +2—3 4 1 rearrangement scattering, and were quite
unable to reproduce the data in a forward direction for the
3+ 13+ 1 case.

These calculations have been repeated in a rather care-
ful way by Becker for separable potentials with Gaussian
instead of Yamaguchi form factors.* Despite this modifi-
cation, his results were in fair agreement with the ones of
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Ref. 2. The general trends, in particular the discrepancies
between theory and experiment just mentioned, occurred
again. A further calculation using this formalism, which
goes up to second-order K-matrix approximation but uses
the Bateman expansion, is due to Sawicki and Namys-
lowski.> Their first-order results, however, completely
disagree even qualitatively with the calculations in Refs. 2
and 3. And, as we will see, similar disagreement is found
between their second-order results and the ones obtained
in this paper. We will return to this point when compar-
ing different methods in Sec. IV. Finally, we mention the
field theoretical model to four-nucleon scattering by
Fonseca and Shanley,® which has been applied also above
the breakup threshold.” Being structurally similar to the
GS formalism, it adopts simple three-body subamplitudes
with adjustable parameters fitted to three-body on-shell
data.

A more accurate calculation based on the semirealistic
local Malfliet-Tjon potential has been performed by Tjon,?
however, for energies below the breakup threshold only.
For the (3 4+ 1) and (2 + 2) subamplitudes the Hilbert-
Schmidt expansion (HSE) was employed at the expense of
great numerical effort. An alternative calculation per-
formed by Kréger and Sandhas,” which avoids this expan-
sion by employing Padé techniques for the two-variable
integral equations, is extremely time consuming as well.
In both calculations the importance of the p-wave contri-
bution to the (3 + 1) subamplitudes has been recognized.
Further details and additional references can be found in
Ref. 10.

In view of the complexity of the problem and the ex-
treme computational effort needed, more efficient
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methods are required. Hence, most recent work on four-
nucleon collisions has concentrated on the development
and testing of new approximation schemes. As compared
to the HSE,? considerable improvement in speed and rate
of convergence of the calculations is gained by using the
energy-dependent pole expansion'! (EDPE) or the general-
ized unitary pole expansion'? (GUPE) to represent the
(3 + 1) and (2 + 2) subamplitudes. It has been shown that
both EDPE and GUPE are about 15—20 times faster than
the HSE for a converged calculation.!* Calculations con-
firm that the EDPE is very accurate in bound state calcu-
lations.!* With only two separable terms per subampli-
tude, a four-nucleon binding energy is obtained which
agrees to better than 1.5% with the results of Gibson and
Lehman,'> who solved the corresponding two-variable in-
tegral equation numerically. The efficiency of these ex-
pansions has, moreover, been demonstrated in molecular
bound state calculations,'® as reviewed by Lim at the
Karlsruhe Conference.!” In the scattering region, success-
ful applications of the EDPE and GUPE and their modi-
fications'® denoted SE1 and SE2 have been performed
very recently by Fonseca,'” for energies below breakup
only.

It is the purpose of the present investigation to calculate
elastic and rearrangement four-nucleon processes above
the breakup threshold along the lines developed in Refs. 1
and 2, however, taking into account the new techniques
and experiences discussed above. We first solve the GS
integral equations for four-nucleon scattering in the first-
order K-matrix approximation for a variety of nucleon-
nucleon interactions, including the Malfliet-Tjon potential
and a separable force with a tensor component, which is
taken into account in the ¢y, approximation. For the
(3 + 1) and (2 + 2) subamplitudes we employ the GUPE
and EDPE, instead of the HSE or Bateman expansion.
Subsequently, we go beyond the first-order K-matrix ex-
pansion: While the (3 + 1) propagator, as in the case of
the first-order K-matrix approximation, is replaced by the
discontinuity along its cut,> the (2+ 2) propagator is
evaluated using the EDPE-GUPE. This procedure is
practically equivalent to the exact inclusion of the (2 + 2)
propagator proposed by Haberzettl and Sandhas,?® fol-
lowed by a first-order K-matrix approximation to the sin-
gle remaining channel.

In Sec. II we present the four-body formalism and the
equations to be solved once the EDPE-GUPE separable
expansions have been introduced. Section III deals with
the first-order K-matrix approximation and its extension
by a full evaluation of the (2 + 2) propagator. The results
of the first-order K-matrix calculations are presented in
Sec. 1V, followed in Sec. V by those obtained by means of
the complete evaluation of the (2 + 2) propagator. We
discuss our results and draw some conclusions in Sec. VI.
Finally, the numerical treatment of the integral over the
2 + 2 propagator is discussed in the Appendix.

II. FORMALISM

In the AGS theory, four-body scattering is described by
the equation’
Ugh=8,88aG5 'Ta 'G5 '+ 3 8,,Up,Go T, Go U, ,

Ty (2.1)

where, as usual, the labels @, 3, and y denote two-body
subsystems, while the labels o, p, and 7 denote two-cluster
partitions of the four particles. There are four partitions
of the (3 + 1)-type (ijk,]) and three of the (2 + 2)-type
(ij,kI). The presence of the anti-Kronecker symbol

Sap=(1“50p) guarantees the characteristic property of

Faddeev-type equations, that they exclude diagonal contri-
butions from the inhomogeneous term and the kernel of
the set of integral equations (2.1).

The operators appearing in Eq. (2.1) are defined as fol-
lows:

Go(z)=(z—Hy)™! (2.2)

is the resolvent of the four-particle kinetic energy operator
Hy, and T,(z) is the two-particle transition operator,
which satisfies the two-body Lippman-Schwinger equa-
tion

Ty(2)=Vy+VaGo(2)Tg(2) , (2.3)

where V, is the interaction between the constituents of
pair a. The transition operators Up,(z) describe the
scattering within the three-body subsystem contained in
cluster 7 and solve the three-body AGS equation,’

Upa(2)=84,G5 ' (2)+ 3,85, Ty (2)G(2) U4 (2) . (2.4)
Y
For (3 4+ 1) clusterings 7=(ijk,l), this is the usual three-
body equation for the subsystem (ijk) considered in the
four-body space, whereas for a (2 4 2) partition 7=(ij,kl),
it is only an auxiliary equation necessary in the context of
Eq. (2.1). In the latter case, Eq. (2.4) describes the col-
lision of two noninteracting pairs (ij) and (k!) in such a
way that the corresponding on-shell solution does not
have any immediate physical meaning. In contrast to
physically observable systems of this type, it only con-
serves the total energy of the system, but permits an ener-
gy flux between the pairs. Therefore, it does not conserve
the pair energies individually.
A separable representation of the T,(2),

T,(2)=2 |yn)ty wmiym| , (2.5)

is well known to reduce the three-body AGS equation
[Eq. (2.4)] to an effective two-body Lippman-Schwinger
equation, i.e., to a one-variable equation after partial wave
decomposition. Repeated application of this procedure al-
lows us to reduce the four-body AGS equations to effec-
tive two-body LS equations in two steps.

Inserting Eq. (2.5) into Eq. (2.1) leads, after multiplica-
tion with {an |G, and G, |Bm ), to the effective three-
body equation

8 aan+22T¢m yIGOYIy,UyIBm

an pm —
T#0 vl
(2.6)
with
~amﬁm—<‘7‘"’G0U %Go|Bm) , (2.7a)
Tan m={an |G UasGo | B ) » (2.7b)
Ognpm — =08088mmtan- (2.7¢)
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In this way the four-body problem is formally reduced to
a three-body problem. To obtain effective two-body equa-
tions it is only necessary, therefore, to insert a separable
expansion of the effective three-body T-matrices:

=22

.
an,Pm

into Eq. (2.6). Multiplication of the resulting equation by
oS | _ ~ |ph
<,u ‘Go and Gy I v>
leads to the effective two-body LS equation

T=V+VG,T (2.9)

with matrix elements

os pr
TS = 3 <p Go,anU o, pmGopm | Vv >, (2.10a)
anBm \ gpn Bm
pr
VP =85, 2( 7 |Go an > , (2.10b)
an an
G5 =85,85rG Sy - (2.10c)
Explicitly written, Eq. (2.9) hence reads
Tos,pr Vvs,pr+2 Evas rtGo # VTTt,pr .
Tt u'v
(2.11)

For a correct description of four-nucleon scattering, we
have to include spin and isospin and have to antisym-
metrize. In what follows we only consider central
nucleon-nucleon potentials (in one case we include tensor
forces, but only in the #y, approximation). The total an-
gular momentum J, the total spin S and isospin I and
their corresponding three-components, as well as the total
orbital angular momentum L, are therefore conserved.
With the inclusion of spin and isospin, Eq. (2.11) can,
after antisymmetrization and partial wave expansion, be
written as
ISLTas,pr ISLvas,pr + 2 2 21Svars , Tt GTf”T J ISLT‘I’I ,Pr

T TepY
(2.12)
|

ISLTL’dd 4,9 ,Z) ISLBtdd q q ,Z +2 2 47rf dqnanISLct,J (q q Z)G()‘uv'(z

u'v j=t,qu

and

ISLT;;L(q,q';Z)=ISLCtt(q q z)_*_z 2 47Tf dququZISLCI:J (q q ’Z)GO,uv(z _‘q'IZ)ISLT{}:,(q”,q';Z)

uv j=t,qu

where for simplicity we define
A= 34 1v3 +1
B= 34+ 1v2+2

B 2+2y3+1
B=2ty3+1

Tt Tt ‘
,u>G6f,w< v (2.8)
t W lan m

0 - L0 - _ T
FIG. 1. Graphical representation of the effective two-body
Lippman-Schwinger equations of the four-body system [see Eq.

(2.13)]. Note the absence of the Born term in the 2 +2—2 + 2
reaction.

with
T, T __ aTt
GO N72Y '—GO,‘U,VSTT'SH' .

The indices o,p now refer to either a (2+2) or a
(3 4+ 1) clustering only, not to a specific partition of these
clusters. We can, therefore, schematically write Eq. (2.12)
in the form

TTP=VP+ Y V' G{T? (2.13)

\

with o,p,7=(2 + 2), (3 4+ 1). From symmetry considera-
tions it follows that 2*2V2+2=0. Graphically Eq. (2.13)
can be represented as shown in Fig. 1.

It is obvious from the diagrams of Fig. 1 that by elim-
inating the 2+2T2+2 apd 2+273+! components we arrive at
the two independent relations,

3+1T2+2=3+1v2+2+3+lv 3+1 G(3)+1 3+1T2+2

(2.14)

and

3+1T3+1:3+lv3+1+3+1v3+ng+13+1T3+l (2-15)
where the 3 + 1—3 + 1 potential 3>tV 3+! is now of the

more complex form

3+1v3+lE3+1V3+1+3+1v2+2G2+22+2v3+l . 2. 16)

More explicitly, for the reaction dd—pt and pt—pt
(n*He—n’He), Egs. (2.14) and (2.15) are one variable in-
tegral equations of the form

22 ISLTSdd(g0 atiz) (2.17)

(2.18)

[

and
—3+1573+1
C="7TV ,

while
ISLptt — 3+ 1341

etc.
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Equations (2.17) and (2.18), as well as the effective in-
teraction 3tV 3+1 are depicted in Fig. 2.

We recall that the indices I, S, and L are the total spin,
isospin, and the partial wave number, respectively, while
p and v indicate the different terms in the separable ex-
pansion of the three-body amplitudes. The three-body
spin channels corresponding to the triton (spin %) and the .
quartet states (spin 5) are denoted by t and qu, respective-

ly. =
In the following investigation the effectlve potentials 4, ; - E.;/E * Eg/ /" * 3/D=C\£

B, and C, as well as the propagators G3*! and G3*2, are ©
calculated by means of the EDPE (Ref. 11) and GUPE.'?
In terms of the form factors |T'Y) [or |T*(E))], the po-
tentials 4 and B are given by

FIG. 2. The reduced equations for (a) the 2 + 2—3 + 1 [Eq.
(2.14)]; (b) the 3+ 1—3 + 1 [Eq. (2.15)]; (c) the effective in-
teraction *+!V 3+! [Eq. (2.16)].

+1 ;
BLgrs(q,q2)= 3 AL S f_l dx Pp(x)T i (Q152)tym (Z — W3, :(Q132) (2.19)
i=¢,d nm
and
ISL ru L. 2.20)
B q’q Z)—Aur f dXPL(x pmz QZ’Z)tmn(z—WZ)va QZ,Z) 2.

and similarly for B. The explicit values of arguments are given in Ref. 13. The index i refers to d or ¢ channels [the in-
dices (2 +2) or (3 4+ 1) are fixed by s, r, and ii and can be omitted]. The n,m refer to the expansion of the two-body
transitions given by (2.5). For the GUPE the z dependence of the form factors should be omitted. The explicit form of

the propagator t,,,(z), as well as the corresponding form factors, can also be found in Ref. 13.

For potential > CJ;} we find

BLeps(q,q5z)=""4p5(q 9'52)

+2 E 47Tf dqnanISLBH r(qq Z)GO# (z—

p'v'i=d, ¢

The graphical representatlon of this potential is shown in
Fig. 2. The spin-isospin coupling coefficient A,s, and

A,f,, resulting from the antisymmetrization of the
3+1-53+41 and the 2+42—3 4 1 transition ampli-
tudes, respectively, are given in Refs. 3 and 21.

III. THE K-MATRIX APPROXIMATION

In the first part of this section we solve the GS equa-
tions after their reduction to one variable integral equa-
tions [Egs. (2.17) and (2.18)] in the first-order K-matrix
approximation. In this approximation the p -+t and
d +d propagators are replaced by the discontinuities
along their cuts. In this way all channels corresponding
to unphysical particles are eliminated.

The Green’s functions Gj of Eq. (2.13) can be split into
two parts

Go=G3+G¢ , 3.1)
a 6 function, and a principal value part. The LS equation,
T=V+VG.T, (3.2)
can then be written in the form
T=K+KGST,
(3.3)

K=V+VGIK

1g")SLBIs (g".q'52) . (2.21)

In the first-order K-matrix approximation we set K=V,
and Eq. (3.3) then reduces to

T=V+VGT. (3.4)
It 1s obvious that the neglect of the principal value part
Go of Go is an approximation which should improve with
increasing energy E.
In Eq. (2.13) this approximation means that we set

Gi®
Gg= 8 (3.5)
0 0 G§ .
with [see Eq. (2.17)]
G§5i(z—%¢*)=—inRS(EA+E—2q")
=—%1R d(g—q") (3.6)
and
dd,8 1 2 . q”2
Go,it(z—759")=—imR 448 E._~—2-—+Edd
R
=—i7r—q‘fd 8(g'—q"), (3.7

where R, and R4y are the triton and (d + d) residues.
The on-shell momenta g and g’ are fixed by the energy re-
lation
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2 Similarly,

E=—E+3¢’=—Egq+ qz . (3.8) Y

Inserting Eqgs. (3.6)—(3.8) into Eq. (2.17) reduces it to an
algebraic equation with solution

"SLB{(g,4";E)

14i37%R SLCYY (q,q"E)

BLchig,qE)
1 i3mgR SLCl{(q,qE)

SLTY (q,q9";E) = (3.10)
In the first-order K-matrix approximation the potential
ISLCYl is obtained from Eq. (2.21) by replacing G39 by its
8-function part G3%%, with the result that

BIT1q,q )= (3.9

BECYi(g,q' E)=""4}(q,q"E)—i4m’Rasq’ "B {%q,q";E V" B}{*(q,q';E) . (3.11)
It is obvious that the unphysical qu and ¢¢ states have dropped out because they do not possess a bound state and hence
no corresponding cut contribution. In the same fashion all the G, pv With u,v> 1 are eliminated due to the fact that the
bound state is only present in G6,11—>G{)’,511, and similarly GS,"“—>G8:’1’?, if we employ either the GUPE or the EDPE.
The two expansions, therefore, reduce to a single term, the energy-dependent pole approximation (EDPA) or generalized
unitary pole approximation (GUPA), which, however, are identical (in this case), since the energy dependence of the form
factor of the EDPA is fixed at E=E,, or Ey 4 by the 8 function.

The simplest improvement of the first-order K-matrix approximation is obtained by incorporating in the potential
ISLCY1(g,q';E) the principal value parts by means of the EDPE-GUPE. Explicitly,

ISLCYg,q'52) =" A%} (q,q";2) — i4m°R 4q' "B 414 q,q";2)"SLB Y (q,q";2)
_'_417. fo dq”q"ZISLEt]’ldd(q,q”;z)Ggfiff(Z"‘%ql,z)]SLde’t(q”,q,;Z)
+ E 47 fo dqnqNZISLﬁtl,:d(q’qu;z)Ggva(Z————;-quZ)BS?,t(qu,ql;z)

Copv>1

+247T fo dqnquZISLEllﬁﬁb(q’qu;z)Ggiv(z__%qNZ)Bﬁf,t(qu,ql;z) X
uv

The importance of the ¢¢ states for the cross sections can
easily be estimated by omitting them in Eq. (3.12). The
(2 + 2) effective potentials contained in Eq. (3.12), unlike
the effective (3 + 1) potentials (see Ref. 10), have no loga-
rithmic singularities. The principal value term and the
other ones occurring in Eq. (3.12) can therefore be
evaluated numerically using subtraction techniques even
above breakup threshold (see the Appendix).

IV. FIRST-ORDER K-MATRIX CALCULATIONS

In the first-order K-matrix approximation we differ
from the previous calculations of Alt, Grassberger, and
Sandhas,? Becker,® and Sawicki and Namyslowski5 in that
we employ the EDPE and GUPE, which in this case
reduce to their lowest order term, the EDPA or GUPA.
We, moreover, employ a variety of two-nucleon potentials,
including the local Malfliet-Tjon potential and a separable
potential with a tensor component. In the latter case,

(3.12)

I
however, we restrict ourselves to the #y approximation.
The potentials employed are given in Table 1.

As already emphasized in Ref. 2, the best results should
be obtained in first-order K-matrix approximation for the
2+2—-3+1 reaction [d+d—t+p (n+>He)]. This
approximation, on the other hand, cannot be expected to
provide reasonable results for processes where the Born
term vanishes, which is the case for elastic deuteron-
deuteron scattering. For the elastic t+p (n—+ 3He)
scattering one cannot expect too much either, since here
the Born term only contributes to the backward scatter-
ing. The results of Refs. 2 and 3 confirmed these expecta-
tions, and so do our present calculations, which are
displayed in Figs. 3—6 (Refs. 22 —25, respectively) for the
reaction d + d—p + t and in Figs. 7 and 8 (Refs. 26 and
27, respectively) for elastic p + *He scattering.

13.8, 25.3, 51.5, and 83 MeV are similar to those obtained
in Refs. 2 and 3 (no second maximum in the differential
cross section), and too high values compared to experi-

TABLE I. Nucleon-nucleon interactions Vyn.

Vnn aq ay rd ra Eyq E,
Shape Symbol (fm) (fm) (fm) (fm) (MeV) (MeV)
Yamaguchi Y, 5.396 —20.34 1.73 2.84 4.452 10.3
Yamaguchi Y, 5.416 —23.68 1.75 2.67 4.450 11.04
Yamaguchi ) Y; 5.48 . —23.57 1.92 2.28 4.5774 10.26
Gauss G 5.43 —23.57 1.87 2.82 4.5428 9.07
Local MT 5.48 —23.57 1.92 2.82 4.544 8.59
Tensor P, 5.397 —17.0 1.727 2.84 3.8322 8.187%

In the ¢y approximation.
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ment in the forward direction. However, with increasing
energy the agreement with experiment improves consider-
ably. Our results for the Gaussian separable potential G
are in agreement with those obtained by Becker® at 51.5
and 83 MeV, but are higher for E <25 MeV. (This may
be due to the fact that Becker used the same approxima-
tions to obtain analytical form factors as Alt et al.,?
while the present calculations are based on EDPE-
GUPE.) For the Malfliet-Tjon (MT) potential we em-
ployed a UPE with three terms at 13.8 MeV and UPA
(one term) otherwise. Comparison at 13.8 MeV showed a
discrepancy between the three-term UPE and the UPA of
less than 2%. The agreement between the results for the
MT and Gaussian potentials is remarkably close at all en-
ergies, a feature previously noticed. In Refs. 2, 3, and 5,
terms containing x =cos@ in the effective (3 + 1) poten-
tials were omitted to simplify the calculations. We tested
this approximation and found a maximum error at
6..m.=0 of less than 6% at 13.8 MeV increasing with en-
ergy to 20% at 83 MeV. In addition to the central separ-
.able potentials Y,, Y3, and G we also employed a separ-

able Yamaguchi potential P,, with a tensor component.

The four-nucleon calculations in this case are performed
in the to approximation. It is seen from Figs. 3—5 that
this potential produces cross sections, which decrease fas-
ter with energy than any of the others. While the cross

90
\-
80 -
N Eigp = 13.8 MeV
\ od+ d—=—p + ¢
70 A '
\'-\\ o d + d—~n+3He
2\ vz
\‘\ (Brolley et al.” ")

do/dfl (mb/sr)

ec.m.

FIG. 3. The differential cross sections for d +d—t+p
(n + >He), at E;,,=13.8 MeV in the K-matrix approximation of
order one. — — —, (Y); —-—+—+, (¥3); =ev=ee=eo=, (¥3); s
(G); =+eemeee, MT); — — —, (Py); A (Ref. 3).

60 R,
Ejgp = 253 MeV
50 4
: + d—-p +
N, od + d t
A\ 3
N\ ed + d—n + SHe
— \
= 404 M\ ,
§ X\\ (Van Oers and
1S AN “\ BrockmannZ3)
= 304 M
: \
S N\
< \
i \
g 20 °
'S
10 1
o Qo.'q.cmpu. .
) 20 40 60 80 Ocpm.

FIG. 4. The same as Fig. 3 but at E},, =25.3 MeV. The dot-
ted line is that of Ref. 5. :

sections of all the different central potentials closely ap-
proximate each other and the data (from above) with in-
creasing energy, the cross section for the tensor force
drops even below the data at 83 MeV in the forward
direction. However, at least in the ?y, approximation,
there is no indication of a second maximum in the cross
section. »

We also compare our results with those of Sawicki and
Namyslowski,> who employed the Bateman expansion
(two terms), but with simplified off-diagonal Bateman
form factors, constructed from the diagonal ones (this ad-
ditional approximation reduces the triton binding energy
of their potential Y, from the correct value of 11.04 to
7.36 MeV). It is seen from Figs. 4 and 5 that there is a
qualitative and quantitative disagreement between our
cross sections and those of Ref. 5, for potential Y,. This
disagreement increases rapidly with energy. Instead of

25

Ejgp = 5.5 MeV

od +

d—p +1t

(Briickmann et a??)

do/d (mb/sr)
o

FIG. 5. The same as Figs. 3 and 4 but at Ej,,=51.5 MeV.
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Ejgb = 83.0 MeV

od+ d——p+t

(Roy et ul.zs)

do/df) (mb/sr)
H

O o o

ec.m.

(o) 20 40 60 80

FIG. 6. The same as Fig. 3 but at E},;, =83.0 MeV.

improving with energy, as in all other cases, the first-
order K matrix of Sawicki and Namyslowski becomes
worse at higher energies. They also obtained a second
maximum in the differential cross section in disagreement
with all other calculations.

The results show considerable sensitivity to the proper-
ties of the nucleon-nucleon interaction especially at low
energies. This is not surprising in view of the widely dif-
ferent values of the triton and the a-particle binding ener-
gies these potentials produce, implying considerable
differences in the subamplitudes, used in the scattering

Elab © 10.38 MeV

° p+3He-p+ 3He

(Clegg et al.zs)

200
ey

w

~

0

E o

S

A

b o
© oo- o °

) 50 100 150 Gcm.

FIG. 7. The differential cross section for p + *He—p + *He
at Ej;,=10.38 MeV in the K-matrix approximation of order
one. , (Y3).
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FIG. 8. The same as Fig. 7 but at Ej,;, =31 MeV.

calculations, particularly at low energies. In our approach
we do not have the possibility of fitting the form factors
to the three-nucleon bound state data; consequently low
energy four-nucleon scattering is quite sensitive to the
nucleon-nucleon potential. This feature is well known in
three-nucleon scattering, where a good fit to the triton
binding energy (n-d doublet scattering length) is required
for a good fit to the scattering data.

As mentioned before, the first-order K-matrix approxi-
mation is less well suited for the calculation of elastic
p + 3He scattering, since in this case the Born term only
contributes to the backward scattering. In agreement with
the calculations of Refs. 2 and 3 we find for p + *He
scattering at Ej,,=10.38 and 31 MeV, using potential Y3,
that our calculations only show a vague similarity with
the experimental data at forward angles (see Figs. 7 and
8). Even at backward angles the fit is not good at 10.38
MeV but improves at 31 MeV as expected. In the forward
direction, the calculated cross sections lie far below the
data. Higher order terms are needed to improve upon this
result. A first step towards this direction is the treatment
of the principal value part performed in the next section.

V. INCLUSION OF THE PRINCIPAL VALUE PART
OF THE (2 + 2) PROPAGATOR

In this section we present the results of our calculations
with the inclusion of the principal value parts of the
Green’s function in the (2 + 2) channels by means of the
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EDPE-GUPE. We calculate the potential SLC%{(q,q',E)
of Eq. (3.12), including all terms, not only those obtained
in first-order K-matrix approximation, given by Eq.
(3.11).

In view of the computational effort required for in-
clusion of the principal value part of the (2 4 2) propaga-
tors, these calculations were only performed with the
Yamaguchi-type potential Y; (see Table I) with
E,=10.26 MeV and E43=4.5774 MeV. This is suffi-
cient, however, for the investigation of the qualitative ef-
fect of the inclusion of the principal value contributions
to the (2 4+ 2) channels. We have seen that in the first-
order K-matrix approximation the EDPE and GUPE
both reduce to a single term, the GUPA. However, when
including the principal value part of the (2 4 2) propaga-
tor in our calculations, the two expansions differ. Both
the dd and the ¢¢ channels are incorporated. The numer-
ical details are discussed in the Appendix.

The results of our calculations with potential Y3 are
shown in Figs. 9—14. For the d + d—p + t (n + >He) re-
action comparison with Figs. 3—6 shows that the in-
clusion of the (2 + 2) channels improves the result of the
first-order K-matrix approximation of Sec. IV. At 13.8
MeV (Fig. 9) the improvement is particularly pronounced
in the forward direction. The results for the EDPE and
the GUPE converge in general to each other after two

80
13.8 MeV
°©c d+d—p+t

6C 3
® d+d = n+ “He

(Brolley et ul.zz)

(mb /sr)

do/d§l

—
80 8cm,

FIG. 9. The differential cross sections for d + d—t+p
(n + He), at Ej,=13.8 MeV with the principal value parts of
the propagators included in 2 + 2 channel for the Y3 potential.
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FIG. 10. The same as Fig. 9 but at Ej,, =25.3 MeV.

terms. Since, according to Fig. 10, the first-order K-
matrix approximation already leads to a better fit to the
data, at 25.3 MeV the correction due to the principal
value part is less pronounced but still substantial. The
same comments hold for 51.5 MeV and Fig. 11. Note
that for the these higher energies the EDPE and GUPE
converge to each other already after two terms. At 83
MeV the effect of the inclusion of the (2 + 2) channels
has practically become negligible as is seen from Fig. 12.
The reduced importance of the principal value contribu-
tions to the (2 + 2) propagators is, of course, in accor-
dance with physical expectations. The improvements
achieved have to be contrasted with the fact that not the
slightest indication of the second maximum could be ob-
tained in these calculations, however. We should also
mention that the good agreement for 6 <40 at 13.8 MeV
may be partly due to the special choice of potential Y;.

In Figs. 13 and 14 the effect of the inclusion of the
principal value part of the (2 + 2) propagators on elastic
p +t (p + *He or n + 3He) scattering, is shown. There is
a dramatic improvement in forward direction at both en-
ergies 10.38 and 31 MeV, although the calculated curves
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FIG. 11. The same as in Fig. 9 but at E},;,=51.5 MeV.
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FIG. 12. The same as in Fig. 9 but at E},, =83.0 MeV.

still lie far below the data at these angles. In the back-
ward direction the (2 + 2) channels produce no perceptible
change and the position of the minimum in the cross sec-
tion is only slightly shifted to larger angles. Both the
EDPE and GUPE appear to have converged and nearly
coincide already after two terms.

Finally in Fig. 14 we compare the results of calcula-
tions with and without inclusion of the ¢¢ contributions
to the potential L CY%{(q,q";z) in Eq. (3.12) at 31.8 MeV.
Similar results were obtained at other energies. The ¢¢
channels contributions are clearly negligible and can be
omitted.

VI. CONCLUSIONS

Our present results for the d +d—p + t (n + *He) re-
action and elastic p + >He scattering in first-order K-
matrix approximation are in good agreement with the
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FIG. 13. The differential cross section for p + *He—p + *He
at Ej,, =10.38 MeV. For explanations see Fig. 9.
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FIG. 14. Same as Fig. 13 but at E,=31.10 MeV; O, ¢¢
channels only (one term).

original work of Alt, Grassberger, and Sandhas and un-
published calculations of Becker. They are, however, in
quantitative and even qualitative disagreement with those
of Sawicki and Namyslowski. Unlike previous work, we
have employed the separable GUPE-EDPE for the (2 + 2)
and (3 + 1) subamplitudes. In the first-order K-matrix
approximation these expansions both reduce to a single
term, the GUPA. We, moreover, have employed a variety
of nuclear forces including the local Malfliet-Tjon poten-
tial and a separable nucleon-nucleon potential with a ten-
sor component. At 13.8 MeV the d + d—p + t (n + 3He)
differential cross section is quite sensitive in forward
direction to the nucleon-nucleon force. This is related to
the different triton binding energies and wave functions
produced by these potentials. (It should be recalled that a
similar phenomenon is found in n-d scattering.) At
higher energies this sensitivity is considerably reduced, ex-
cept for the separable potential with a tensor component
P,. In forward direction the agreement with experiment
steadily improves with increasing energy and becomes ex-
cellent at 83 MeV.

To determine the origin of the quantitative and partly
even qualitative disagreement between our first-order K-
matrix calculations and the experimental cross section
found already in Refs. 2 and 3, we also performed K-
matrix calculations which include the principal value part
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of the (2 + 2) propagators. For this purpose we employed
the EDPE-GUPE separable expansions for the (2 + 2)
subamplitudes and found rapid convergence. In the
(2 4+ 2) channels the effective interactions do not contain
logarithmic singularities, which simplifies the application
of the EDPE-GUPE in four-nucleon scattering above
breakup. Our calculations also show that the contribution
of the ¢¢ channel can be neglected, an additional useful
simplification.

The cross section of the d + d—p +t (n + He) reac-
tion is considerably diminished in the forward direction,
resulting in better agreement with experiment. The
corrections become less important with increasing energy
and at 83 MeV the effect of the inclusion of the principal
value part of the (2 4 2) propagator becomes nearly negli-
gible, as expected. The inclusion of the principal value
parts in the (2 + 2) channels also does not change the re-
sults for larger angles. There is not the slightest hint of a
second maximum in the cross section between 45° and 75°,
as required by the data.

For elastic p + 3He scattering the effect of the full in-
clusion of the (2 + 2) channel turned out to be more spec-
tacular. In the forward direction the differential cross is
raised by a factor of the order of 5, but it still lies far
below the experimental data, while the minimum is slight-
ly shifted to the right in better agreement with experi-
ment. For backward angles, however, the influence of the
full inclusion of the (2 + 2) channels is practically negligi-
ble.

We can therefore only conclude that the lack of struc-
ture in the calculated differential cross section, in particu-
lar in first-order K-matrix approximation for the
d+d—p -+t (n+ 3He) reaction, is not a result of the
neglect of the full contribution of the (2 + 2) channel.
The additional structure in the cross section (second max-
imum) must come from information present in the (3 4 1)
channel, which is not incorporated in our calculations.
This argument is supported by the fact that the first-order
K-matrix approximation at higher energies in general ap-
pears to be excellent but, nonetheless, does not show this
maximum. This lack of structure in the differential cross
section is not unexpected ir view of the work of Tjon and
of Fonseca’s recent results below breakup. Tjon showed
that one can expect the p-wave three-body subsystem am-
plitudes to contribute strongly to the d +d—p + °H
(n + *He) observables, a fact confirmed in a different way
by Kroger and Sandhas. It is, therefore, natural to expect
that the absence of the p wave (3 + 1) subamplitudes in
our K-matrix calculation is mainly responsible for the
disagreement with experiment.

The neglect of the principal value part of the (3 + 1)
propagators may be responsible for some other quantita-
tive disagreements with the data, at least at lower ener-
gies. At higher energies [e.g., 83 MeV for d +d—p +t

(n + 3He)] it seems likely that this contribution will be
unimportant, as was the case for the (2 + 2) propagator.
In this case the p waves in the (3 + 1) subamplitude are
most likely to be mainly responsible for the second max-
imum in the differential cross section. Investigations on
this question are in progress.

The importance of the principal value part of the
(2 + 2) channel to the forward angles in the differential
cross section in p + He elastic scattering is quite en-
couraging. In this case the principal value part of the
(3 + 1) propagator can also be expected to provide an im-
portant contribution to the forward cross section. To in-
vestigate this point a second-order K-matrix calculation
would be required, however.

APPENDIX

In this appendix we discuss the numerical treatment of
the integral over the (2 + 2) propagator. One has to
evaluate the integral

Iig'q;2)= [~ dg"q"*"Blq',q";2)

XGom(z—79" ) Bii(q",q;2) . (A1)
For ii —¢ the calculation is stralghtforward as the prop-
agator G&¢ wu has no poles. The same is true for the dd
channels w1th vXu>1. However, in the latter case with
v=p=1, Go 11 has a pole and direct subtraction tech-
niques cannot be applied. We treated this problem by
splitting the propagators into their principal value and 8-
function parts:

Go 1 —G(d)dl? 8d1’f .
Then we have
I =198 4 15P .
The integral I3, is the part used in the K-matrix calcula-
tions of order one. For the principal value part we write
1997 = [ Faalg'a;4")G8 11 (Egr)dg”
=p [~ Fdd<q-',q;q">Go,1ua»—%ﬁj—}jﬁ

with Ejn=E —q""?/2. Tt should be noted here that g =g’
and that €3g= | Eg4q | . Further
lim  (Ep+€30)Goh1(E;)=Ryq

Equ—> —€4q

(A2)

or
"2
lim [E—}-edd— q_ }Ggf’“ (Eg)=Ryq , (A3)
(4]

where q%:Z(E +€4q)-
we obtain

Inserting Eq. (A3) into Eq. (A2)

(A4)

f dg” [Faa(q,9")G 041 (Eq")(qd—q""*) —2R 44F 4a(4,90)]

95—q"

and therefore we may proceed to evaluate (A4) using subtraction techniques.
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