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The optical-model potential at low energy is defined by the requirement that it yields a suitably

defined energy average of the scattering function. It is argued that the quantities which appear in

the expression for this energy average derived by Lane and Thomas in the framework of R-matrix
theory can be identified with those which appear in a convenient parametrization of the fine struc-
ture cross section. The accuracy of this identification is illustrated with the help of various picket-
fence models. We discuss the independence of the results with respect to the size of the energy
domain covered by the experimental data and to the nature of the R-matrix boundary parameters.
Also we discuss terms that can be included if one wishes to discuss fluctuations about a smooth

average.

I. INTRODUCTION

Neutron elastic scattering cross sections exhibit narrow
resonances for bombarding energies smaller than a few
MeV. From an analysis of these cross sections one can
determine the contribution of individual partial waves.
This yields information on the average neutron-nucleus
potential at low energy and in a specific angular momen-
tum subspace, provided that one can relate this potential
to the measured fine structure cross section. The latter
problem was discussed many years ago' and, because of
the availability of accurate measurements which extend
up to a few MeV, has recently received renewed attention,
see, e.g., Refs. 4—15.

The main purpose of the present paper is to show that
one can easily and accurately determine the optical-model
scattering function from the analysis of the resonance
cross section, provided that one defines the average
neutron-nucleus potential in such a way that it is a
smooth function of energy. The latter property is in keep-
ing with the definition adopted by most authors, who con-
sider that possible dynamical structure effects should be
treated explicitly, e.g., via the use:of a coupled-channel
analysis.

The existence of a simple algebraic relationship between
the average scattering function and a convenient
parametrization of the fine structure cross section is intro-
duced in Sec. II and its accuracy is demonstrated in Sec.

II. THE AVERACiE SCATTERING MATRIX

Let us for the sake of notational simplicity consider the
case of s-wave elastic neutron scattering by a spin zero
target. The R-matrix formulation of the scattering func-
tion reads

z;k, 1+ikaR (E)S E=e.
1 ikaR (E)— (2.1)

where —ka in the exponential is the hard sphere scatter-
ing phase shift $0, the coefficient ka is the penetrability
Po, and the R function is given by

R(E)=g (2.2)

The y& and Ez are the reduced width and energy of the

III. That discussion is carried out in the framework of
picket fence models which allow us, using numerical in-
tegration, to determine accurately a smooth average
scattering function and thereby to make detailed tests of
our algebraic prescription. In Sec. IV we discuss experi-
mental fluctuations from the idealized picket fence
models. In Sec. V we show the relation to the optical
model scattering function and in Sec. VI we discuss the
insensitivity to the assumed boundary conditions. Section
VII is our summary.
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level p, and the summation runs over all levels.
Lane and Thomas' have derived an algebraic expression

for the energy average of S(E) under the following main
conditions:

(a) The quantity ka is not averaged over; this is dis-
cussed in Sec. V.

(b) The strength function is a smooth function of ener-

gy. The strength function s(E) is defined by

.(E)= &y„'& )d, (2.3)

where ( y ) and d are average values of y& and of
(E +, E„)—in an interval of size I centered on E. This
condition will be fulfilled if one can choose the averaging
interval I in such a way that

R'"'(E) =R(E)—Pf, dE' . (2.13)

1+i kaR~(E)
e zi—ka (2.14)

where

2

R~ (E)=R~"'(E)+
E,~DE~ —E (2.15)

One can calculate (S(E))l from Eqs. (2.5) and (2.7) by
identifying R(E) and s (E) with the quantities R(E) and
s(E) determined by parametrizing the experimental data
with the following expressions:

d « I« s (E)I
i
ds ldE

~

(2.4) with

If these conditions are fulfilled, the average (S(E))1 of
S (E) is given by'

Rp"'(E) =R (E)—P
Er E' —E (2.16)

(S(E)) = 2;k, 1+ikaR(E +iI)
1 ikaR—(E +iI)

with

R (E +iI)=J, . dE' .—~ E' —E —iI
One has'

R (E +iI)=R (E)+i mrs (E),

R(E)=Pf

(2.5)

(2.6)

(2.7)

(2.8)

The strength function s(E) is that observed in the
domain D, and R (E) is a simple parametric function
which makes R~"'(E) a good approximation to R'"'(E).
The subscript p denotes "parametrization. " The logarith-
mic singularities of Rg"'(E) at the extremities Ei and E„
of the domain approximately account for the property
that the energy derivative of R'"'(E) increases near Ei
and E„because of the energy dependence of the tails of
the resonances associated with poles E which lie outside
of, but close to, the experimental domain. The accuracy
of this approximation is demonstrated in Sec. III E.

III. PICKET FENCE MODELS

where

2;„, 1+ika [R'"'(E)+R'"'(E)]
1 ika [R'"'(E)+R—'"'(E)] (2.9)

Here, P denotes the principal value integral.
As pointed out in Ref. 11 the problem encountered

when trying to apply Eqs. (2.5)—(2.7) is that s(E) is only
known for energies between a lower energy EI to an upper
energy E„covered by the experimental data. We shall
denote this "experimental domain" by the letter D. We
now describe how (S(E))l can nevertheless be deter-
mined from the analysis of the experimental data. Let us
write

A. Defcnctions

Since the hard-sphere phase shift and the penetrability
are kept fixed in the averaging process (see Sec. V), we
may set ka=1 and consider the following model for
values of E contained in the experimental domain
D = (Ei,Eu ):

1+iR~ (E)
S(E)=

1 iR~(E)— (3.1)

The following picket-fence models are characterized by
the property that the poles E~ are equidistant

2

R int(E)

E~ ED
(2.10)

Ez+& —Ez ——d, 1 & A, &iV,

E& ——Er+d/2, E&——E„—d/2,
(3.2a)

(3.2b)
2

R ext(E) (2.11)

The data determine S(E) and related quantities in the ex-
perimental region D only; they do not yield the values of
y~ and E~. However, one can use the property that the
strength function is smooth and write for E contained in-
side D

N =20,
EI ——0, E„=1MeV.

(3.3a)

(3.3b)

and that the strength function s(E) is either a constant
(Sec. IIIC) or an increasing function of energy (Sec.
III D). For each model we assume 20 levels in the experi-
mental domain,

(E) ( )dE+ ( ) dEE E& E
Equation (2.8) shows that

(2.12)
Finally we must parametrize R(E) in order to fully speci-
fy the experimental cross sections. Specific values of
R(E), s(E), and yi„are given in the following sections for
each model.
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1+i [R(E)+ivrs(E)]
1 i [R—(E)+imrs(E)]

(3 4)

we shall compare it with a numerical average of the quan-
tity S(E) defined by Eqs. (3.1), (2.15), and (2.16). This
numerical average is computed from the following formu-
las

B. Numerical average

In order to check the accuracy of the algebraic prescrip-
tion

C. Constant strength function

y~ ——5 keV, (3.12)

whence

s(E)=0.1 . (3.13)

We first investigate the case when all the widths y~ are
equal, i.e., when s(E) is independent of energy. For the
purpose of illustration, we choose

S(E)=f Fg(E,E')S (E')dE',

where

E= J Fg(E,E')E'dE'

(3.5)

(3.6)

For this model and with the boundary radius a =5.5 fm,
for example, we find the conventional strength function
I „/d to be 2.4&&10; this is a typical value for nuclei
near A =60. Figure 1(a) shows the picket fence of y~ and
Fig. 1(b) shows the corresponding s(E). For R(E) we as-
sume a linear function,

E
1= I'I E~E dE (3.7)

Here I'1(E,E') is a weighting function centered on E'=E
whose width 2I is identified with the size of the averaging
interval. Unless otherwise specified, we shall take the
Lorentzian shape

L, (E)
(E E') +—I (3.8)

where fI (E) is determined by the normalizing condition
(3.7). We emphasize, however, that the precise shape of
the weighting function does not matter. We shall illus-

trate this property by also using the box weighting func-
tion

R(E)=0.1+0.2E . (3.14)

Linear functions with similar parameters have been used
previously for actual data. ' In Fig. 1(c) the dashed line
shows R(E) and the solid curve shows the R'"'(E) calcu-
lated from Eq. (2.16).

We performed the numerical average of S(E) using a
Lorentzian weighting function with I=100 and 3QQ keg
and also using box weighting with I =200 keV. In Fig. 2
the solid curves show the resulting average in form (3.11),

Fg (E,E')=fg8(I —
~

E E'
~

) . — (3.9)

E,+I (Z &E (3.10)

Note that in this interval one has E=E in the case of the
box average (3.9).

The quantity S(E) is complex. It can be represented by
plotting the quantities R(E) and s(E) defined by the rela-
tion

The average of S(E) cannot be uniquely defined for E
close to EI or E„. Hence, we sha11 calculate the quantity
S(E) only in the domain of E which corresponds to the
energy interval 0

0.2

t~ 0.&

1+i [R(E)+iris(E)]
1 i [R(E)+in—s(E)]

(3.11)

This notation is in keeping with the one used in Sec. II. It
is important to note that this expression in terms of a
complex R function uses the same constant $0 and Po as
used in the averaging process. Qther representations of
S(E ) are also of interest; we use one of those in Sec. Vl.

We note that when averaging numerically the particular
parametrization chosen to represent the function R'"'(E)
is irrelevant. A11 parametrizations which yieM approxi-
mately the same R~"'(E) for EE:D will yield approxi-
mately the same average of S(E). We have checked this
numerically for several parametrizations.

K
0.2

O

-0.2
0.5

E (Mev)

FIG. 1. Uniform picket fence model: (a) equally spaced lev-

els of uniform reduced widths, (b) the strength function, (c) the

external R function (solid) and R (dashed).
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FIG. 3. Rising picket fence model: (a) reduced widths, (b)
the strength function, (c) the external R function (solid) and R
(dashed).

FIG. 2. Numerical averages of the uniform picket fence
model: (a) average for Lorentzian weighting with I=100 keV,
(b) Lorentzian weighting with I=300 keV, and (c) box weight-
ing with I=200 keV. In each case the quantities s(E) and
R(E) are shown, respectively, by horizontal and sloping solid
curves for E between EI+I and E„—I. Dashed curves show
s(E) and R(E) reproduced from Figs. 1(b) and (c).

i.e., as R(E) and s(E). The good agreement between
these various averages confirms that the average of S(E)
is well defined and is practically independent of the shape
of the weighting function and of the value of the averag-
ing interval. Henceforth, we shall always use the
Lorentzian weighting factor with I= 100 keV ( =2d).

The dashed lines in Fig. 2 show R(E) and s reproduced
from Fig. 1. The good agreement between R(E) and
R(E) for E=E and between s and s demonstrates the ac-
curacy of the algebraic approximation (3.4) for the aver-
age of the scattering function. In this mode1 with con-
stant s the approximation (3.4) coincides with the one pro-
posed in Ref. 6.

D. Energy-dependent strength function

We now consider an example for which s(E) is an in-
creasing function of energy. For simplicity we could as-
sume a linear function; however, we consider a quadratic
form in order that our example can be used in Sec. VI to
demonstrate the invariance of S(E) relative to boundary
conditions for s-wave neutrons. If the picket fence model
of Fig. 1 is assumed for s waves then the transformation
to a larger boundary radius, as discussed in Sec. VI,

yields s and 8 which are well described as quadratic in
energy. For the strength function we have

s(E)=0.069+0.018E+0.05E (3.15)

where E is in MeV. This function is plotted in Fig. 3(b)
and the corresponding y~ are shown in Fig. 3(a). The E~
are slightly less than the corresponding E~ of Fig. 1(a)
and have d=49. 8 keV. (These slight variations are neces-
sary for the example in Sec. VI.) The R(E) is also quad-
ratic,

R (E)=0.38+0.14E+0.07E2, (3.16)

and is shown by the dashed curve in Fig. 3(c). The solid
curve shows R'"'(E) from Eq. (2.16). The difference in
the shape of R&"'(E) relative to Fig. 1(c) results primarily
because s(E) is an increasing function of energy.

In Fig. 4, we compare R(E) and s(E) with the quanti-
ties R(E) and s(E) defined by Eq. (3.11), where S(E) is
calculated numerically with the Lorentzian weighting
function with I= 100 keV. The good agreement between
R(E) and R(E) and between s(E) and s(E) for E=E
confirms the accuracy of the prescription (3.4).

We note that this prescription differs from the one
which had been proposed in Ref. 6. The latter is inaccu-
rate when the energy dependence of s(E) is not negligible.
The reason of this inaccuracy is reflected in the fact that
the right-hand side of Eq. (3.28) of Ref. 6 is not a smooth
function of E' as had been assumed there. Indeed, for E'
close to E„ this quantity has a logarithmic singularity
equal to [s(E)—s(E„)]in(E„E'). —
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FIG. 5. A comparison of R external for two experimental
domains. For the full domain the short-dashed and long-short
dashed curves show, respectively, the R and R'"' from Fig. 3(c).
For the lower half domain, the solid and long-dashed curves
show R'"" calculated, respectively, from discrete and continuous
distributions in the upper half domain.

FIG. 4. Numerical average of the rising picket fence model
for Lorentzian weighting with I=100 keV. Solid curves show
the average quantities s {E ) and R (E ) plotted from EI +I to
E„—I. Dashed curves show s(E) and R{E) reproduced from
Figs. 3(b) and (c).

R2"'(E)=R (E)—Pf, dE' . (3.20)

If the replacement of the sum over A on the right-hand
side of Eq. (3.19) by an integral is accurate, the values of
R 2"'(E) should be approximated by

E. Dependence upon the size of the experimental domain

In the present section we illustrate the accuracy of the
replacement in Eqs. (2.12) and (2.13) of the contribution
of the external poles a&A, by a continuous distribution.
By the same token, we demonstrate the innocuous charac-
ter of the logarithmic singularities which appear in the
parametrization (2.16) at the end points Et and E„of the
experimental domain.

Let us consider the example discussed in Sec. III D, i.e.,
20 resonances with a rising strength function in the inter-
val D~ (Et,E„~) with E——t=0 and E„&——1 MeV. The cor-
responding value of the external R function is given by
Eq. (2.16), namely

R i"'(E)=R(E)=P, dE',E' —E (3.17)

where R(E) and s(E) are quadratic functions, see Eqs.
(3.15) and (3.16). In Fig. 5 the short-dashed curve shows
R(E) and the long-short-dashed curve shows R &"(E).
Both have been reproduced from Fig. 3(c). If this external
R function is exact for the domain D~, then for the small-
er domain Dq ——(E~,E„2) with E„2——0.5 MeV, the scatter-
ing function is given exactly by the expression (3.1), with

10 y~2
R (E)=R',"'(E)+g

A. =1
(3.18)

where now

20 2

Rp"'(E)=R ("'(E)+ g E (3.19)

These values of R 2"'(E) are represented by the solid curve
in Fig. 5.

The latter quantity is represented by the long-dashed
curve in Fig. 5. The close agreement of the long-dashed
and solid curves establishes the accuracy of our treatment
of the poles lying outside the experimental domain. It
also implies that Eq. (3.4) yields an average scattering
function which is independent of the size of the experi-
mental domain, provided the domain contairis enough res-
onances to enable one to determine the strength function
s(E) with sufficient accuracy.

IV. FLUCTUATION CONTRIBUTIONS

The picket-fence models are idealizations of the physi-
cal reality. In practice the existence of statistical fluctua-
tions of the resonance parameters does not always enable
one to obtain a very accurate value of s(E) in the experi-
mental domain. We now describe how the effect of the
fluctuations of (y~) /d about its average s(E) can be tak-
en into account in the algebraic prescription for calculat-
ing the average scattering function.

The contribution to the quantity R (E +t'I) of the reso-
nances contained in the experimental domain D can be ex-
plicitly taken into account by rewriting Eq. (2.6) as

2

Eg GD

(4.1)

where s(E) is a smooth function which is approximated
by s(E) within D. Under condition (2.4), the last term on
the right-hand side of this equation is approximately
equal to
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(4.2)

The first two terms on the right-hand side of Eq. (4.1) ac-
count for possible deviations of (yi )/d from the smooth
value assumed for s(E).

Equation (4.1) leads to the following modification of
the prescription (3.4):

1+i I [R (E)+RI(E)]+im [s(E)+sI(E)] I

1 i—I [R(E)+RI(E)]+in[s(E)+s (E)]I

(4.3)

200

)0

0
0.2

where

and

I )'i. I . s (E')
(E~ E)2+I2 ~ Ei (Ei E)2+I2

(4 4)

0
QA

0.5lX
+'~ oa—

o& ~

(c)

, (E&—E)'+I' ~1 (E' E)'+I'—
(4.5)

0.5
E or E (MeV)

&.0

In the picket fence models considered in the preceding
section, the fluctuation corrections (4.4) and (4.5) are
negligible because we used the exact s(E) in the calcula-
tion of the right-hand side of Eq. (3.4). To demonstrate
the effects of fluctuations, we now consider an example
where the Ei, s, R(E), and R'""(E) are each the same as
in Fig. 1 but where the uniform picket fence is replaced
by the fluctuating structure of Fig. 6(a). These reduced
widths were selected at random from a Porter-Thomas'
distribution with the constraint that the sum of reduced
widths in the domain be the same as for the picket fence
of Fig. 1(a). The short-dashed curves in Figs. 6(b) and (c)
show the s and R(E) reproduced from Fig. 1.

Using this example we averaged with I= 100 keV both
numerically and by the algebraic prescription Eq. (4.3).
The solid curves in Fig. 6 show the numerical average in
terms of R(E) and s(E) and the long dashed curves show
[R(E)+R (E)] and [s(E)+s (E)]. The good agreement
between the two sets of curves confirms that the prescrip-
tion (4.3) is a good approximation to the numerical aver-
age.

The use of expression (4.3) with the fluctuating terms
included allows one to study nonstatistical effects (e.g., in-
termediate structure). However, actual physical scattering
functions are often similar to the present example for
which the fluctuations are merely statistical. In that case
it is useful to average over the fluctuations in order to
produce a smooth function for comparison to an optical
model scattering function. This is accomplished in (4.3)
by making I very large so that the fluctuating terms are
negligible. Thereby, expression (4.3) is reduced to (3.4) to
give the same smooth average for this example as for the
original picket fence of Figs. 1 and 2. Alternatively, we
can describe the smoothing process by two steps in which
we first replace the fluctuating structure by a picket fence

FIG. 6. Effects of fluctuations: (a) shows reduced widths for
equally spaced levels. (b) and (c) show (short dash) R(E) and
s(E) from Fig. 1, (solid) R(E) and s(E) from the numerical
average for Lorentzian weighting with I=100 keV, and (long
dash) [R (E)+R (E)j and [s(E)+s~(E)j from prescription (4.3).

V. OPTICAL MODEL SCATTERING FUNCTION

The general form of the % level plus background
R-matrix parametrization of the elastic part of the
scattering function reads

Sp~(E) =eI' 2;y (z) 1 Ll*(E)RiJ(E)—
1 Li(E)Rtj(E)—

with

(5 1)

with the same average strength function and we then aver-
age with a small I=d. For the latter description the
averaging process with small I is consistent with the dis-
cussion in Sec. II.

The statistical fluctuations for an actual nucleus usually
make it difficult to detect an energy dependence in s(E)
similar to our second example of Figs. 3—5. The in-
clusion of the fluctuating terms might help to show a
dependence; however, it is important also to include the
information available from the quantity R'"'(E), which is
less influenced by statistical effects. In our example of
the rising picket fence the R'"'(E) of Fig. 3(c) could have
been described with the assumption that s in Eq. (2.16) is
a constant equal to 0.095, as deduced from the sum of yi,
but the corresponding R (E) would have a relatively
strong energy dependence. Such a strong dependence
would be inconsistent with an optical model interpreta-
tion.
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y~
R~~(E) =R)j"(E)+g)Eg —E (5.2)

preceding section and then express the average using the
same constants:

Here, PI(E) is the hard sphere scattering phase shift, while

Ll(E) Sl(E) BI+i"I(E) (5.3)

where SI(E) is the shift function, BI the boundary param-
eter, and PI(E) the penetration factor.

The reasoning carried out in Sec. II and the examples
considered in Sec. III lead one to define in the (i,j) sub-

space the spherical optical-model potential P"(M(r;E) by
the following requirement. For E contained inside the ex-
perimental domain D=(E(,E„), 7"$M(r;E) must be
determined in such a way that the asymptotic value for
large r of the optical-model wave function foM(r;E) de-
fined by the wave equation

h + ~0M(r E) POM(r E) E POM(r E)
2m

(5.4)

yields the following value for the optical-model scattering
function:

z;y, (~) 1 L~ (E)R)& —(E)
1 L~(E)R~~ —(E)

(5.5)

where

R) (E)=R) (E)+its~(E), (5.6)

with

E„s'~(E')
R(j(E)=Rf,"'(E)+f. (5.7)

s~z(E) is the observed strength function for E~D. We
note that the variable E at which the quantities P)(E) and
Lj(E) on the right-hand side of Eq. (5.5) are evaluated is
the same energy at which Eq. (5.4) is solved. This corre-
sponds to the fact that in Sec. II the quantities $0(E) and
Po(E) have not been averaged over. Physically this re-
flects the property that the penetration factor and related
quantities are automatically evaluated at the energy E
when solving Eq. (5.4). Qur summary in Sec. VII includes
a comment on the parametrization of the optical model.

j$2/p)(g) 1 L—(*(E)[Ri)(E)+&~'Ij(E)IS (E)=e j j (61)
1 L((E—) [R~ (E)+its, (E)]

We expect R)j(E) and Y~z(E) for a given R function to be
insensitive to the particular partial wave or boundary con-
ditions.

To demonstrate this insensitivity we repeated the nu-
merical averages of the models of Sec. III using various
assumed partial waves and boundary conditions (i.e.,
l=0, 1, and 2; a=5.5 and 8 fm; Bj——S) and —1). In
each case we used the constants P((E), P((E), and SI(E)
not only in Eq. (5.1) for averaging but also in Eq. (6.1) for
expressing the averages in terms of a complex R function.
The resulting Rlj(E) and s(j(E) showed only slight varia-
tions from the curves already plotted in Sec. III. For ex-
ample, in Fig. 7 the solid curves show R(E) and s(E)
reproduced from Fig. 6 and the dashed curves show these
quantities calculated for 1=2 with the boundary condi-
tions a =8 fm and B( ——S(. The two sets of curves are
nearly identical.

On the other hand, in order to compare the numerical
average of SP (E) to the function SgM(E) of Eq. (5.4), we
must use the same boundary conditions as used for the
original R-function expansion (5.1). We expect these
average scattering functions, and consequently F"(M(r;E),
to be approximately independent of the choice of the
boundary conditions. This independence has been dis-
cussed in Ref. 17.

In order to present an example of this independence, we
actually chose the two R functions of Figs. 1 and 3 such
that they give the same s-wave scattering function for two
different boundary radii, i.e., a =5.5 fm for the uniform
picket fence of Fig. 1 and a =8 fm for the rising picket
fence in Fig. 3. (For both cases Bo=0.) The 5.5-fm radius
corresponds to 1.4 3 ' for A =60 and the 8-fm radius to
the distance at which a typical real Woods-Saxon poten-
tial has fallen to about 1% of its central value. To illus-
trate that the scattering function S(E) is the same for the

0.4

0.3

VI. INSENSITIVITY TO THE BOUNDARY
CONDITIONS

From the preceding section we conclude that the nu-
merical average of the general scattering function (5.1)
should be performed for the assumed boundary conditions
with the quantities P'(E) and L((E) fixed at the average
energy E. Actually, for our examples in Sec. III we chose
the constants $) =0, P~ ——1, and SI B~=O. That was-
permissible because we then used the same constants in
Eq. (3.11) to express the averages in terms of the quanti-
ties, R(E) and s(E) In the more general case we average
the function (5.1) with the constants as stated in the

—0. 1

0.0
(

0.5

E (Ne Y)

1.0

FIG. 7. An example for a given R function of the insensitivi-
ty of R and s to the particular partial wave and boundary condi-
tions. The solid curves are reproduced from Fig. 6 and the
dashed curves are for l =2, a =8 fm, and BI=SI.
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p;y (~) I +iPO(E) [R (E)+i mrs (E)]S(E) =e
1 —iPo (E)[R (E)+ i res (E)]

(6.4)

0
50

I

75 100 900
E (aev)

925 950

where Po and Po are evaluated at the assumed radii for
the respective R(E) and s(E). In Fig. 9 the dashed curves
show the resulting o„(E) and o, (E) which have been cal-
culated by analogy with Eqs. (6.2) and (6.3) with S(E) re-
placed by (S(E)). Again the differences for the two radii
are negligible. Also, as expected, the numerical average
and algebraic prescription are in good agreement for

FIG. 8. Examples of s-wave resonances for the uniform
model (see Fig. 1) with a 5.5-fm boundary radius and for the ris-
ing picket fence model (see Fig. 3) with an 8-fm radius. Both
models give the same curves.

o, (E)=mkg[1 —.
~

S(E)
~ ] (6.2)

cr„(E)=ak g ~

1 —S(E)
~

(6.3)

where g is the spin statistical factor. In Fig. 9 the solid
curves show these quantities plotted for the two R func-
tions and corresponding radii. There are negligible differ-
ences between the two.

For the corresponding algebraic prescription we have

co 2
l
O

Xh

ben

0

two boundary radii we show in Fig. 8 the quantity
[1—ReS(E)] for both radii for the 75- and 925-keV reso-
nances. The curves for the two radii and corresponding 8
functions are identical.

Using Lorentzian weighting with I = IOO keV we have
averaged these two equivalent scattering functions with
Po(E) and Po(E) fixed at E, as stated above. To present
these results we plot the compound and shape elastic cross
sections:

VII. SUMMARY

At low neutron energies of less than a few MeV a
scattering function which has been deduced by an
E,-matrix analysis of experimenta1 cross sections can easi-
ly be energy averaged for each individual partia1 wave in
order to compare to an optical model scattering function,
provided the external R function is parametrized as in Eq.
(2.16). In that equation s(E) is the observed strength
function, (y~) /d, and R(E) is a simple parametric func-
tion. Given this parametrization the comparison to the
optical model is made simply by Eq. (5.5). The analysis is
insensitive to the assumed boundary conditions provided
that these conditions are used consistently. In general the
strength function s(E) varies slowly with energy. Ex-
pressing the external R function as in Eq. (2.16) can help
to reveal this energy dependence, which may otherwise be
obscured by the statistical fluctuations in y~. An experi-
ment which shows clear evidence for intermediate struc-
ture might require the addition of fluctuating terms to
R(E) and s(E) [see Eqs. (3.25)—(3.27)]. Such effects
would require explicit treatment beyond the scope of the
spherical optical model.

The description of the averaged scattering function
with a phenomenological optical model potential requires
the adjustment of model parameters. However, the fact
that the scattering function is to be fit for individual par-
tial waves requires a different procedure than is usually
used at higher energies. To achieve a fit for a given par-
tial wave one can usually ' adjust one parameter for the
real potential and another for the imaginary potential.
Thus one may find an I-dependent or parity-dependent
model which should then be compared to models deduced
at other energies.

C/l 2
O
Xl
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FIG. 9. Compound and shape elastic cross sections for the
s-wave model for either Fig. 1 with a 5.5-fm radius or Fig. 3
with an 8-fm radius. Solid curves show o.„(E) and o.,(E) for
I =100 keV. Dashed curves show o.„(E) and o.,(E) calculated
from A(E) and s(E). In each case, dashed or solid, the curves
for the two radii are nearly identical.
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