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The Hilb formula, an asymptotic continuous approximation in / for the Legendre polynomials that is valid
from forward angles to nearly 180°, is tested numerically in semiclassical summations of scattering ampli-
tudes. It works remarkably well even when the amplitude oscillates and falls by many orders of magnitude
so long as the S matrix varies slowly with /. We generalize the Hilb formula to the associated Legendre

functions.

Semiclassical methods are enjoying a great resurgence in
physics. However, most widely used semiclassical approxi-
mations are only simply realized in one dimension and are
hence not directly applicable to scattering problems. For the
one dimensional or partial wave scattering problem, most
methods, be they Feynman path integral! or stationary
phase applied to transformation brackets,? lead to the tradi-
tional WKB answer for the scattering amplitude. In some
applications, for example, heavy ion scattering, the partial
wave sum for the full scattering amplitude is then summed
numerically using these WKB amplitudes.! In other applica-
tions, for example, most studies of rainbow scattering,’ an
asymptotic expression for the Legendre polynomials is used
with the WKB amplitudes to extract a particular scattering
phenomenon. In this paper we emphasize the availability of
a bridge between those approaches in terms of an integral
form for the partial wave sum that is valid for all angles
between 0° and nearly 180°. This form reproduces with re-
markable accuracy cross sections evaluated by partial wave
sum, even when the cross section oscillates and falls by
many orders of magnitude over the angular range.

The formula is based on the Hilb form,* an asymptotic
formula for the Legendre polynomials that, although known
in the context of semiclassical scattering methods, particu-
larly in atomic physics,® does not seem to be widely appreci-
ated or used in nuclear physics.® The Hilb form for the
Legendre polynomials is related to the better known asymp-
totic expression,’ but has the great advantage of being valid
for small angles. It also has an easy extension to the associ-
.ated Legendre functions.?

The Hilb approximation for the Legendre polynomials of
order [ carries corrections of order 1//%2, but we find that
when used to sum (as an integral) the partial wave series
the corrections are exponentially smaller than that, so long
as the scattering amplitudes are smooth in /[ It is this re-
markable ability of the Hilb approximation to provide an ac-
curate closed form expression for the scattering amplitude
in the semiclassical limit, that is the major message of this
Brief Report.

An integral form for the full scattering amplitude not only
provides an alternate way to do the partial wave sum but
also gives a powerful starting point for approximate analytic
methods and insights, for example, use of the method of
stationary phase. The Hilb formula also gives promise of
wide generalization of the data-to-data formulas® we have
obtained in the context of the eikonal approximation. Many
of these applications would not require an explicit analytic
form for the partial wave scattering amplitudes, although in
applications such as heavy ion physics, the WKB provides
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just such a form.

The semiclassical approximation assumes that contribu-
tions to the cross section come mainly from large angular
momenta so that / can be treated as a continuous variable.
It also assumes that the amplitudes are relatively smooth
functions of . Thus the derivation of the analytic form,
which is the goal of this paper, requires a continuous
representation of the S matrix and the Legendre polynomi-
als, allowing the partial wave sum for the scattering ampli-
tude
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to be expressed as an integral. Here k is the wave number
and §; is related to the phase shift for the /th partial wave
by S;=exp(2i8;).

We consider first the Legendre polynomials, taken as a
special case of the associated Legendre functions. For
[>> |m| and [/ >>1 the Legendre functions have asymp-
totic forms given by!®
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We note that the cosine function which appears in Eq. (2) is
part of the asymptotic expansion of the Bessel function of
argument (/+1/2)6 and order (—m). Exploiting this con-
nection to Bessel functions, using large / approximations for
the gamma functions and the small angle approximation in
Eq. (3) we can combine the two forms to obtain
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which is valid for all m and all angles except when 7 —#
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=<1// The asymptotic form Eq. (4), for the special case
m=0 was first derived by Hilb,* who showed that correc-
tions to it are of order (1/)¥2. In fact, it is remarkably ac-
curate for all /> 1. For arbitrary m, Eq. (4) is given in
Szego.®

The scattering amplitude can now be written as an integral
over impact parameter b, using the Hilb formula and mak-
ing the replacement (/+1/2) — kb,

1/2 oo
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= _ul-9_
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This is the formula we test for the semiclassical scattering
amplitude.

Tests of Eq. (5) require some continuous approximation
for the S matrix. As a first example we choose an eikonal
form for S(b), an approximation frequently used in medi-
um energy nuclear physics,

(6)

S(kb)=exp[ =im [* v+
with k=3.777 fm~! (corresponding to a 300 MeV proton
incident on an 4 =150 target). For V we take a Wood-
Saxon form V=V,(1+e"~9/8)~1 with ¢=6fm, 8=0.5
fm, and a complex potential strength Vo= — (20 440))
MeV. The grazing angular momentum is about /=22. We
emphasize that we are not implying that the eikonal form
(6) is valid in physical situations to all angles, but rather
that it is a convenient analytic form with which to check the
relative performance of the partial wave sum (1) and the
Hilb integral (5) for the scattering amplitude. We find that
for large angles where the cross section falls by 17 orders of

BRIEF REPORTS 32

magnitude, the numerical integration is very delicate, and
requires careful evaluation of the Bessel function. The par-
tial wave sum, of course, has a corresponding delicate can-
cellation of terms for large angles. ‘

For the eikonal form (6) the Hilb integral can also be
done by the stationary phase method of Amado, Dedonder,
and Lenz!! with only a trivial kinematic replacement. Since
that method is a large momentum transfer approximation, it
is not valid at small angles but can be used to check and sta-
bilize the large angle integration.

The results comparing the partial wave sum and the Hilb
integral for the eikonal S matrix are shown in Fig. 1. The
Hilb form agrees with the partial wave sum out to 170°.
This is remarkable. A detailed examination of the numbers
reveals that the agreement is at the 5% level or better for
the large angles ( > 90°) and considerably better than that
at smaller angles. In the first 20° agreement is better than
0.4%. Thus the Hilb summation is not simply qualitatively
correct, which would in itself be noteworthy given the oscil-
lation and enormous range of exponential fall off, but is in
fact quantitatively correct. Note that to achieve this accura-
cy, cancellation in the integral of Eq. (5) must be correctly
reproducing the corresponding cancellations in Eq. (1) to
one part in 107 or 10%. (The cross section falls by 16 orders
of magnitude, between zero and 170°; the amplitude must
decrease by 107 or 10%.) However, the Hilb formula for a
given [ is supposed to be correct to one part in (1/)*¥2 or
for the grazing of / of 22 to one part in 103. In fact the
Hilb formula is capable of doing five orders of magnitude
better than that.

- As a second example of the accuracy of the Hilb integral
we chose for our S matrix a form obtained from the WKB
approximation. We use the same kinematics as in the
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FIG. 1. Comparison of partial wave sum and Hilb integral for an eikonal S matrix [Eq. (6)]. The parameters for the potential are given in
the text. Note the 16 orders of magnitude of change in cross section. Where not explicitly shown, the Hilb results coincide with the partial
wave form. On the scale of this graph, differences between the Hilb and partial wave forms are only apparent at the largest angles.
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FIG. 2. Comparison of partial wave and Hilb integral for the WKB S matrix [Eq. (7)]. The potential shape parameters are given in the

text. The strength is — (20+40/) MeV. Where not explicitly shown, the Hilb result coincides with the partial wave form. Differences are
only apparent at the largest angles.

eikonal case and a Wood-Saxon potential of the same where rq is the classical turning point given by
geometry and strength. The WKB S matrix is given by!
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FIG. 3. Same as Fig. 2 but with the potential strength doubled. The Hilb and partial wave results now disagree beyond 80°.
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FIG. 4. (a) The imaginary, and (b) real parts of ikb[S(b) — 1] for the ‘“weak” [— (20+40i) MeV] and ‘‘strong” [— (40 + 80/) MeV]
Wood-Saxon potentials for a WKB S matrix. Note the change in scale between (a) and (b).

in Fig. 2. Again one sees the typical pattern of diffraction
oscillations in an exponential envelope, this time falling by
12 orders of magnitude over the physical range of angles.
Again the Hilb and partial wave results agree to beyond
165°. Again this is far better than (1/0)¥2 would have us
expect.

The potential we have used in the previous two examples
is somewhat weak by medium energy nuclear physics stan-
dards. Typical nuclear potential would be about twice as
strong. In Fig. 3 we show the WKB cross sections calculat-
ed using Vo= — (40+80i/) MeV with the same geometry
and kinematics. Note that beyond 80° there are significant
differences, with the partial wave summed cross section os-
cillating about the Hilb value. The reason for this
discrepancy can be seen in Fig. 4 where we compare the real
and imaginary parts of the WKB integrand — ikb[S(b) —1]
for the two potential strengths. We see that while the imag-
inary part dominates for both cases and is of the same shape
in both cases, the stronger potential has a marked oscillation
in the real part. This is not an artifact of the WKB. Quali-
tatively the same shape appears in the exact amplitude.
This oscillation means that the S matrix has a region of ra-
_pid variation in b (or /). This rapid variation over very few
I’s vitiates the semiclassical approximation as well as spoil-
ing the close agreement of the Hilb and partial wave sums.
Even here it should be stressed that one has to go to 80°
and fall by more than 10° in the amplitude before the
discrepancy is visible and then the Hilb form is still correct

on average. The details of that variation spoil the close
agreement of the Hilb and partial wave sums.

We have seen that by using the Hilb formula for the
Legendre polynomials we can convert the partial wave sum
for a scattering amplitude to an integral. The Hilb form is
valid for all scattering angles from 0° to nearly 180° and
yields cross sections in remarkable agreement with the direct
sum of partial waves, provided the partial wave amplitudes
vary slowly with angular momentum /.

The integral form should permit new approximate expres-
sions for the scattering amplitude when the partial wave am-
plitudes are explicitly known, as, for example, from the
method of stationary phase. In other cases where relations
among scattering processes are important, the Hilb form
should serve as a useful starting point. We are presently
exploring generalizations of the data-to-data relations® we
obtained for medium energy nuclear physics observables us-
ing the eikonal approximation, to these processes for which
the small angles or relatively weak potential of the eikonal
form are not appropriate. In cases such as heavy ion phys-
ics, where the WKB partial wave amplitudes are a very good
approximation, the Hilb formula should be particularly use-
ful.
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