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Equivalent local potentials from nonlocal separable ones
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A method is presented for the explicit construction of a family of equivalent local potentials from a given
nonlocal separable potential. This procedure can be also applied in the case when a Coulomb potential is

added to the separable short-range interaction.

The construction of equivalent local potentials (ELP)
from nonlocal separable ones has been of considerable in-
terest ever since the first work of Fiedeldey appeared on
this subject. ' In this context, the expression "local poten-
tial" does not mean a potential diagonal in the coordinates,
as usually, but only a potential whose radial Schrodinger
equation is a differential equation; two potentials are called
"equivalent" when they produce the same phase shifts. Of
particular importance has been the determination of ELP
potentials when the nonlocal potential is of the separable
type, as the latter kind of potential has been successfully
employed for the description of nucleon-nucleon, nucleon-
nucleus, and nucleus-nucleus scattering. It was shown in
this journal by Husain and one of us (S.A.)7 that following
the general prescription of Fiedeldey for the definition of
the ELP, the latter can be constructed with impressive sim-
plicity in terms only of the form factors of the separable in-
teraction. Later, our attention was brought to a critique of
this work, also in this journal, in which it was pointed out
that some of the integrals which would be involved in the
ELP would not be convergent when the Coulomb interac-
tion is present. In the present Brief Report we address our-
selves to this problem and show that an alternative formula-
tion, completely different from following the prescription of
Fiedeldey, can be made, in which such difficulties do not
appear. In order to see the origin of the problem and find
the possible solution, one could start from the nonlocal
Schrodinger equation, with the usual boundary conditions
appropriate to scattering,

d 2 I (I + 1)+k- u((r) = J K((r, r')u((r')dr', (1)
I' 0

in usual notations; the equivalent local potential U((k, r)
could be defined by the equation

d 2 I (I + 1)+ k — v((r ) = U((k, r )v((r )
df

(

the equivalence being guaranteed by the fact that v((r ) and
u((r ) would be asymptotically the same and could therefore
be related to each other through

u((r ) =f((r )v((r ),

with the property that lim, — f((r ) = 1. If Eq. (1) is solved
for the regular and irregular wave functions p((r ) and
v((r ), then following the Fiedeldey method, one obtains for
U((r )

U((r) =—f("(r ) f('(r )+2
f((r ) f((r )

+
2 Jt K((r, r') [I((,('(r)v((r') —v('(r)p((r') jjdr',

(

where qt is the Neumann function. In the case in which the
two-body interaction contains a Coulomb potential besides
the separable one, the function

kryo(((kr

) would be replaced
by the irregular Coulomb wave function G((k, r ), and it was
pointed out by Shah Jahan that now in the calculation of the
ELP, one has to deal with integrals of the type

J3 G((kr )q((r )dr

and since G((kr ) has a logarithmic singularity at the origin,
this integral does, indeed, diverge.

Recently, we gave considerable attention to this problem
and we have found that the difficulty encounterd above can
be overcome if we proceed in an alternative manner from
the very beginning. To make our formulation clear, we
proceed as follows.

As before, we write down the Schrodinger equation for
two particles interacting via a short-range nuclear potential

with f( = p, ('v( —v('p, (. Husain and Ali showed that for a
nonlocal separable potential of the form

K((r, r') = h(q((r )q((r')

the calculation of (4) becomes straightforward; as in this
case, p. and v can be readily obtained from the solution of
(1). The assumption of rank-1 potential was only for the
sake of simplicity. However, their calculations of the ELP
involved integrals like

JI krY(((kr)q((r)dr
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of separable type (5) and a Coulomb potential

d' +k' —l(l+1) 2rlk
~ ( ) X q (r)J(k)

dr r
(6)

positive. This condition will be satisfied if

W((k) & sup@((k, r )r~0

where

(13)

where

J((k) = J! q((r')(l(((k, r')dr'

It was shown by Ali et al. 9 that the function @( in Eq. (6) is
explicitly calculable in terms of the form factor qI for all r.
In order to derive the ELP, we now make use of equations
(2) [but with the Coulomb term included in the left-hand
side (lhs)], (3) (where we now replace u by (i() and (6), ob-
taining (the primes denote differentiation with respect to r)

fl 2(t(lhl 2(t(1 hi+ ~lql J(
U((k, r) = — +

I

where h(= f('/fi and

fa oo

f((r ) = exp —Ji h((r')dr'

It is at this point that we make a departure from the pre-
vious method and note that the singularities in U could be
avoided if in Eq. (7) we set

2(i((h( —2Q( hi+ A(q(J(= V.i(k, r )QI (8)

where V is some function of r, depending also on l and k,
whose properties we shall determine. The ELP U is then
given by

U= V —h —h' (9)

where h is obtained in terms of V from (8) as

h = — 1 —1+2, —2A. Jq (10)

and the minus sign has been chosen in front of the square
root in order to obtain a regular function.

%e are now going to consider a possible choice for V, as-
suming, for the sake of definiteness, that the form factors
of the separable potentials have the form

q((r) =r e

where o. and p(p & 0) are constants, possibly dependent on
l. %e can set

V((k, r) = W((k)r ~e r', (y & 0) (12)

The constant 8; y, 5 will be chosen in such a way that the
potential U is a regular, real function of r, less singular than
r 2 at the origin and tending to zero at infinity. To this
aim, the argument of the square root in Eq. (10) must be

X(J((k)r + e " I' "
1 Q('(k, r)

(l(((k, r ) = —— ' reer'.
(l(((k, r ) 2 (t(((k, r)

Remembering that QI(r) —A(r'+' as r 0, the upper
bound in inequality (13) will be finite for all r «0 if y & p
and n & l —1. Then, the function h, defined in Eq. (10),
will behave as follows:

h = XJq/q ', (q = O, r & 0),
h = —

2 (2 V —2h Jq/(i() I, ((i(' = O, r & 0)

h —[2(l+1)] t(A. Jr '/A —W'r' ~), (r ~ 0)

h —(ZJq —Vy/2)/y', (y'~O, r — ) .

Considering the above behavior of h at the origin and Eq.
(9), we find the further limitation 8 & 2.

In conclusion, it is found that the given separable poten-
tial (5), (11) with p & 0, n & l —1, admits a class of
equivalent local potentials defined by Eqs. (9), (10), (12),
with the restrictions (13), 0 & y & p and 8 & 2. As our ex-
ample has shown, this class contains infinitely many poten-
tials, corresponding to the permissible choices of 8; y, 5; all
of these potentials depend both on energy and on angular
momentum, are less singular at the origin than r, and de-
crease exponentially at infinity. Of course, the considered
class does not exhaust all equivalent local potentials, for the
reason, at least, that other forms of V in Eq. (8) are compa-
tible with our requirements.

The existence of infinite families of equivalent local po-
tentials is already known in the literature. For instance,
Capuzzi' introduced S-matrix conserving transformations,
which produce generally different Percy damping factors for
the two independent solutions of the nonlocal and
equivalent local Schrodinger equations. Our family of
equivalent local potentials produces different damping fac-
tors for the regular and irregular solutions and is a subset of
the potentials in principle obtainable by S-matrix conserving
transformations. On the other hand, the potential (4) is the
only one for which the damping factors are identical.
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