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The ratio of the 166° c.m. to 90° c.m. and of the 178.5° c.m. to 90° c.m. differential cross section for
neutron-proton scattering has been measured between 40 and 75 MeV. The trend of our data is slightly

higher than the present phase-shift analysis.

The backward-to0-90° ratio of the neutron-proton differen-
tial cross section is a good test of the potentials aiming at
the description of the two-nucleon system. In fact, in our
energy range, the 90° cross section should be fairly well
determined from the total cross section, whereas the back-
ward angle cross section checks the two-nucleon wave func-
tion in the medium range in view of the momentum
transfer involved. In the 40-80 MeV domain the Paris po-
tential, one of the best candidates, is in disagreement with
the phase-shift analysis at backward angle. However, most
of the data have a large error bar, as it is shown in Fig. 1
for the 166° to 90° ratio prior to our work. Data points are
from Harwell! and Davis.? The solid curve is a recent global
phase-shift analysis,? while the dashed curve is the Paris po-
tential calculation.* The goal of the present work was to
achieve a precision better than the discrepancy between the
phase-shift analysis and the Paris potential calculation. This
paper reports on the measurement of the 166°/90° and of
the 178.5°/90° ratio between 40-75 MeV.
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FIG. 1. Experimental values of the ratio of the 166° to 90° n-p
elastic cross section (Rygg/90), prior to this work. Data are from
Harwell (triangles, Ref. 1) and Davis (open dots, Ref. 2). The solid
curve is the phase-shift analysis, the dashed curve is the Paris po-
tential calculation.
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The neutron beam has been already described at length.’
In brief, a 5 wA proton beam from the Louvain isochronous
cyclotron bombards a 6 mm or 1 ¢cm thick Li target. Behind
the target, an electromagnet bends the protons downstairs
by a few cm into a carbon Faraday cup. With respect to the
original setup,’ this is an improvement in the sense that the
carbon beam stop is now out of sight of the neutron colli-
mator entrance (7 mm diameter). Neutrons at 0° are select-
ed by a laser-aligned conical iron collimator made of three
separate parts: a first one immediately behind the Faraday
cup, 2 m long, with a final diameter of 11.2 mm; a second
one, 40 cm long at 4.1 m from the Li target with a final di-
ameter of 14.4 mm; and finally a third part, 80 cm long,
starting at 5.8 m from the lithium with a final diameter of
20 mm. At 6.7 m from the lithium, neutrons interact with
a 5-mm-thick liquid hydrogen target, limited by 6-um-thick
aluminized Mylar windows. The charged particles contam-
inating the neutron beam are vetoed by a 0.1-mm-thick
plastic scintillator in front of the hydrogen target. Immedi-
ately behind the target, another 0.1-mm-thick plastic scintil-
lator (START) triggers on charged particles from the target.
Three plastic scintillators (STOP) are used to detect and
select elastically scattered protons: a first one, 3 cm diame-
ter and 1 mm thick, at 45° lab, a second one, 3 cm diameter
and 1 mm thick, at 7° lab, and a third one, annular with an
internal (external) diameter of 35(45) mm, at a mean angle
of 0.8° lab. The first two are at 1 m from the target, the
third one at 1.5 m. The whole setup is kept under vacuum
(see Fig. 2).

The time-of-flight (TOF) between the START and each
of the three STOP scintillators, and the TOF between the

FIG. 2. Sketch of the experimental setup:
beam; 2, veto detector; 3, liquid hydrogen target; 4, start detector;

1, collimated neutron

5, 6, and 7, stop detectors.
from 3-7 is 1.5 m.

The distance from 3-5 or 6 is 1 m,
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START and a capacitive beam pick-off (BPO) upstream of
the Li target, are recorded for each event, as well as the am-
plitude signal from each detector. Events are stored on
magnetic tape via a CAMAC interface and a computer.
Runs normalized to the Faraday cup integrated current are
alternated for a hydrogen and an empty target. The cyclo-
tron burst duration was optimized at each energy using a
movable slit near the center by minimizing the width of the
y-ray peak appearing in the TOF spectrum between the BPO
and a lucite block coupled to a photomultiplier in the neu-
tron beam at 9 m from the Li target. The full width at
half-maximum ranged between 1 and 1.5 nsec depending on
the energy.

Data analysis proceeds as follows: Monoenergetic neu-
trons from the "Li(p,n)’Be reaction are first selected from
the START-BPO TOF (Fig. 3) (this spectrum is measured
modulo one RF period, low energy neutrons from the
preceding burst are thus also retained in this selection).
Three START-STOP spectra are reconstructed; each one is
dominated by a proton peak corresponding to n-p scattering
due to high-energy neutrons; low energy protons from the
above mentioned contamination are easily separated by the
TOF (Fig. 4). The empty target contribution is about 3% of
the signal at each energy. The ratio of the solid angles of
the STOP detectors was measured with a 1% precision, us-
ing an a source located at the hydrogen target position.

At 65 MeV, an independent measurement was performed
the following way: The START and the VETO detectors
were pulled out; at 7° lab, were set two I-mm-thick scintilla-
tors, the first (second) one of 3(4) cm diameter. A copper
absorber was put between the two scintillators. The same
arrangement was done at 45° lab. At both angles, the
copper thickness was calculated in such a way that request-
ing a coincidence between both scintillators should select
protons elastically scattered by neutrons from the high-
energy peak. Only two spectra were recorded, namely, the
TOF between the 7° or 45° coincidence and the BPO. Each
one contained only a narrow peak which was integrated.
The empty target contribution was subtracted. In fact this
was really a scaler-type experiment as opposed to the mul-

tiparameter data taking of the main part of this work. Both
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FIG. 3. Typical START-BPO TOF spectrum showing the high-
energy peak from the Li target. The software window limits are in-
dicated by arrows. The horizontal time scale is 0.1 nsec/channel.
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FIG. 4. Typical START-STOP TOF spectrum for the 7° detector,
for the hydrogen target. The horizontal time scale is 0.4
nsec/channel.

were in perfect agreement.
The measured values of the ratios
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from this work are plotted in Figs. 5 and 6, whereas numer-
ical values can be found in Table I. At 50 MeV, the precise
(166°/90°) data point from Davis! is in perfect agreement
with this work. For the (178.5°/90°) ratio no other data ex-
ist. On both figures are also shown the phase-shift analysis?
and the Paris potential* calculation. The trend of our data is
slightly higher than the previous data, which is apparent
from a comparison with the phase-shift analysis. Finally it
should be mentioned that in a first version of this experi-
ment the use of a much shorter neutron flight path (2 m)

TABLE I. Experimental values for the ratio of the 166° to 90°
differential cross section (Rjgg90) and of the 178.5° to 90° cross
section (Ry7g/90), from this work. The uncertainty is the statistical
error. The quoted neutron energy was obtained by subtracting from
the incident proton energy, the proton energy loss in half the lithi-
um thickness and the Q value of the 'Li(p,n) reaction. The uncer-
tainty on the neutron energy is due to the Li thickness.

E, (MeV) Ri66/90 Ry78/90
40. +1.6 1.39 £0.03 1.49 £0.03
45. +1.5 1.47 £0.03 1.57 £0.03
50. +1.4 1.59 £0.03 1.70 £0.04
55113 1.75 £0.04 1.82 £0.05
61. +1.2 1.87 £0.04 CEEEE
62.2 +1. 1.90 £0.05 1.98 +0.06
65. +1. 2.00 £0.04 2.14 £0.10
70. *1. 2.10 £0.05 2.33 £0.06
76.2 +2. 2.22 +£0.07 CEE
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FIG. 5. Rjge90 from this work. The meaning of the curves is
the same as in Fig. 1.

and the absence of a clearing magnet between the Li target
and the carbon beam stopper had caused an important back-
ground of gamma rays and low energy neutrons, not only in
the beam but also at small lab angles. This had led us to er-
roneously overestimate the 170°~90° cross section ratio.®
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FIG. 6. Rj7g/99 from this work. The meaning of the curves is as
in Fig. 1.
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