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Treatment of pairing correlations based on the equations of motion
for zero-coupled pair operators
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The pairing problem is treated by means of the equations of motion for zero-coupled pair opera-
tors. Exact equations for the seniority-u states of N particles are derived. These equations can be
solved by a step-by-step procedure which consists of progressively adding pairs of particles to a core.
The theory can be applied at several levels of approximation depending on the number of core states
which are taken into account. Some numerical applications to the treatment of v=O, V=1, and
U =2 states in the Ni isotopes are performed. The accuracy of various approximations is tested by
comparison with exact results. For the seniority-one and seniority-two problems it turns out that
the results obtained from the first-order theory are very accurate, while those of higher order calcu-
lations are practically exact. . Concerning the seniority-zero problem, a fifth-order calculation repro-
duces quite well the three lowest states.

I. INTRODUCTION

The problem of treating pairing correlations in nuclei
without violating the particle-number conservation has
been the subject of a considerable amount of theoretical
work. In this context, numerous efforts have been made
to improve the Bardeen-Cooper-Schrieffer (BCS) method.
Most of the early work in this direction was based on
number projection techniques resulting essentially in two
different methods, usually denoted as PBCS and FBCS.
%'hile the BCS method with subsequent projection
(PBCS) (Ref. 1) has the advantage of being straightfor-
ward in application, it is of no aid in the weak-pairing
limit where BCS solutions go trivial. The method of pro-
jection before variation (FBCS) (Refs. 2 and 3) does not
suffer from this drawback, but the simplicity of the BCS
approach is completely lost.

Renewed interest has recently been focused on particle-
number-conserving theories in connection with the impor-
tant problem of the microscopic foundation of the in-
teracting boson model. ' In this context, an approximate
projection method has been developed by Li for con-
structing the physical states in the Dyson boson descrip-
tion of nuclear collective motion. %'e shall comment on
the application of this method to the pairing model in Sec.
III.

The problem of restoring broken symmetries arises in
various approaches to the nuclear many-body problem, as
for instance the Hartree-Fock-Bogoliubov theory, and has
received a great deal of attention over the years. Conse-
quently the projection techniques have reached a high de-
gree of sophistication through the work of many authors.
To touch on this topic is clearly beyond the scope of our
presentation. For a comprehensive discussion including
references we refer the reader to a few representative pa-
pers and to the recent monograph by Ring and
Schuck. '.

A method of suppressing the particle-number fluctua-

tion without actually having to perform the projection
calculation is the well-known Lipkin-Nogami version of
the BCS approximation, " ' in which a term proportion-
al to X (X is the number operator) is subtracted from
the pairing Hamiltonian. In this connection it may be
mentioned that there have been attempts' in recent years
to incorporate the Lipkin-Nogami procedure in more gen-
eral quasiparticle calculations (modified Tamm-Dancoff
approximation) involving mixing of different quasiparticle
subspaces.

Another way of restoring the number conservation is to
handle the residual interactions neglected in the BCS ap-
proximation by means of the quasiboson approximation. '

This approach has also been applied' to the problem of
improving on the isospin invariance in the treatment of
the charge-independent pairing Hamiltonian through the
use of a generalized BCS formalism. ' While this
method is very simple in philosophy, it is rather involved
in application. Indeed, no explicit calculations were per-
formed for the neutron-proton pairing problem in the gen-
eral case of nondegenerate levels.

A quite different approach to the treatment of pairing
correlations is that of devising approximation schemes
without recourse to quasiparticle transformations. One
attempt in this direction started from a degenerate model
to treat cases of closely spaced single-particle levels by
perturbation theory. ' Subsequently, this study was ex-
tended to situations where the single-particle levels can be
divided into two groups, each of them being almost degen-
erate. Whereas this simple method may give accurate
results in special cases, it is clearly very limited in scope.

A study of the exact eigenstates of the pairing Hamil-
tonian was made by Richardson, who gave analytical ex-
pressions for a restricted class of n-pair eigenstates (sub-
sequently the same approach was applied to the charge-
independent pairing Hamiltonian ). However, the expli-
cit calculation of the energies and wave functions of these
states is very complicated in general, since it requires solv-
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ing a system of n coupled, nonlinear, algebraic equations.
The usefulness of the equations-of-motion method as a

means of dealing with the complexities of the nuclear
many-body problem has been recognized for more than
two decades, and several treatments within its frame-
work have been developed for the pairing-force problem.
It should be stressed that in most of this work the study
of the pairing model has been undertaken as a first step
towards the treatment of more realistic interactions. In
this context, the full treatment of the equations of motion
for single-fermion operators (a detailed account of this ap-
proach and related- developments is given in the recent re-
view paper by Klein ) has led to methods involving itera-
tion across even and odd nuclei simultaneously. This
is an undesirable feature which makes this kind of ap-
proach of limited practical value. In particular, it would
be extremely difficult to deal with more complicated in-
teractions. Actually, in the extension of the method to the
treatment of neutron-proton correlations given by Campi,
Vucetich, and Jean, the numerical applications did not
go beyond a simple model of four doubly degenerate lev-
els.

The equations of motion for pair operators have also
been considered by various authors. Some early studies,
however, made use of linearization procedures which
could not be justified much beyond plausibility argu-
ments. A most important turn in the development of this
approach resulted from the work of Ref. 36. In that work
it was shown that it is possible to find solutions to the
pairing problem by a chain calculation which involves
only even nuclei. At this point it is worth mentioning
that there have been attempts to avoid chain calculations
based on the algebra of fermion pairs. The price one has
to pay, however, is the difficulty of dealing with nonlinear
equations.

In working with the equations-of-motion method one is
in general faced with the problem of an overcomplete
space. This gives rise to spurious components which may
strongly contaminate the solutions when approximations
are made. Although this problem is of crucial importance
for the theory to give reliable answers, it has received little
attention (if at all) in most of the works cited above. One
notable exception is the work of Mauger and Evans who
have tackled this difficulty within the framework of the
method of Ref. 36. However, as pointed out in a previous
paper (hereafter referred to as I), the use of the uncou-
pled representation makes their treatment very impracti-
cal if one wants to go beyond the lowest order of approxi-
mation.

In I, a new and improved version of the method of Ref.
36 was developed which provides a simple way of treating
states of seniority U =Q.U~. =0 (v~. is the seniority of levelJ J
j) in pairing-force theory. The major new elements in I,
absent from the initial work, are the following: (i) The
explicit use of zero-coupled pair operators. (ii) The exten-
sion of the formalism to include excited intermediate
states. (iii) The introduction of a reliable procedure for re-
moving the redundant states at each step of the chain cal-
culation. Numerical applications of the method to
single-closed-shell nuclei ' gave very accurate results
even at the lowest order of approximation (which we call

first-order theory).
It is highly important to point out that the formalism

given in I has recently been generalized to properly in-
clude the effects of correlations between unlike nucleons. '

It turned out that this formalism provides a most satisfac-
tory framework for finding approximate solutions to a
charge-independent pairing Hamiltonian conserving both
number and isospin invariance.

We have given above a brief review of various ap-
proaches to the study of the pairing model. However, the
literature on this subject is very extensive and we are well
aware that our account is by no means complete. Other
works related to the present discussion may be traced
from Refs. 42—46.

Our experiences with the equations-of-motion method
summarized in the foregoing discussion made it apparent
that our approach to the pairing model was worth pursu-
ing beyond the seniority-zero problem. Within the frame-
work of our approach, the treatment of higher seniority
states may be performed in two different ways. This is
because the wave function for states of N particles and
seniority U (v &0) can be related either to the seniority-
zero states of the (N —U)-particle system or to the
seniority-U states of the (N —2)-particle system.

The equations-of-motion formalism corresponding to
the former approach and several applications to the treat-
ment of U =1 and U =2 states have been presented in
Refs. 47 and 48. A characteristic of this formalism is
that the solutions for u ~ 0 are obtained using as input the
results for the seniority-zero problem.

The purpose of this paper is to discuss the treatment of
pairing correlations corresponding to the second alterna-
tive which involves the use of the equations of motion for
zero-coupled pair operators for any seniority U. Within
this framework, the formalism has the same structure for
all values of U.

The seniority-U states of 2V particles can be treated at
several levels of approximation depending on the number
of core states [seniority-U states of the (N —2)-particle
system] which are taken into account. In this paper, we
apply the theory at various orders of approximation to the
seniority-one and seniority-two problems in the case of the
Ni isotopes.

The paper is organized as follows. In Sec. IIA we
describe the general formalism of the theory. In Sec. II 8
the salient features of the first-order theory are outlined.
In Sec. III we present the results of our calculations and
test the accuracy of the various approximations by com-
parison with. the exact results. In Sec. IV we summarize
the main advantages of our method and discuss how the
results of the present work compare with those of other
approaches.

II. FORMALISM

A. General

The pairing Hamiltonian is written as

H =geJX& —gG~~ AJ AJ',
J JJ

where
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Nj ——gaj~ajm ~ (2) pj pp (N) = gcip y (N)Xj py (N)
O,J

Aj g ajma
m)0

+ g c& py(N)Xj'py (N)pjy y(N —2)
J'rr'

djpj p (N) QXj py(N')Xjpy(N)

The wave function of the seniority- v states of a system
with N identical particles (N even or odd) is given the
form

~

N, 13,L ) =gcjpy(N)Aj
~

N 2, y, L—) . (4)

QMjyj y Xj'py (N) EI p(N)Xjpy(N) (6)

with

L
Mj yj y [2' +El y(N —2) ]5jj5yr

j [ yr' &jr'r(N

where

X,'„(N)=(N, P,L ~A,"~N —2, ),L)

pjr r(N —2) = (N 2, y', L
~ aj aj ~

N —2, y, L ) . —(9)

The two-particle transfer amplitudes Xjpr(N) are related
to the coefficients cjpr(N) of (4) through

Xjpy(N) =gcj py (N)dj y jy(N 2)'

where

dj y jy(N —2) = (N 2, y', L
~
Aj Aj~

~

N 2, y—,L)—
are the elements of the metric matrix of the N-particle
states Aj

~

N 2, y, L ). From t—he normalization condi-
tion for the states

~

N, P,L ) it follows that

gcjpy(N)Xjpy(N) =1 . (12)
Jr

Making use of the commutators [Nj, Aj ] and [Aj,Aj ],
respectively, the density matrix (9) and the metric matrix
(11) can be expressed as

Here, the symbol L stands for all the seniority quantum
numbers uj, and P and y distinguish states with the same
value of L in the N- and (N —2)-particle systems, respec-
tively.

The equations of motion for the pair creation operators
AJ are

[H, Aj ]=2ejAj —QGjj Aj (f)& Nj), — (5)
J

where Qj ——j+ —,. Taking matrix elements of (5) and in-

troducing a set of intermediate states between AJ and Nj,
one obtains, for each value of L, the eigenvalue equation

+"j[5pp 2j j—pp(N)]5jj

It is then clear that the solution of the seniority-v problem
for N particles can be obtained by a step-by-step pro-
cedure starting from N =v. In other words, one can solve
Eq. (6) for N = u +2, thus obtaining El p(u +2),
cjpr(u+2), and Xjpr(u +2), then calculate the p(u+2)'s
and the d(u+2)'s and proceed by successive steps up to

The initial values needed to start the chain calculation
are (the index P is dropped since for N = u there is only
one state for a given L) the following:

Ei (N =u) =gejuj,
J

pj(N =u)=
20J

de (N =u)=(Aj —uj)5jj

(15)

~
N, f3,L ) =gcjp~(N)Aj

~

N+2, a,L ), (16)

and one has to use the equations of motion for pair an-

The formalism outlined above is exact in the sense that
all the existing seniority- u states of the ( N —2)-particle
system are taken into account. However, the energy ma-
trix M, for N ~ v +2, has a number of solutions which is
larger than the correct one. These spurious solutions ap-
pear because the set of basis states Aj ~

N 2, y, L ) —is
overcomplete. Special care is necessary in handling this
problem when approximations are made (i.e., when one
reduces the number of core states

~

N 2, y, L )—), since the
unphysical solutions may mix strongly with the good
ones. In I, a procedure for removing the redundant states
at any order of approximation was given, which involves
the diagonalization of the metric matrix. Subsequently,
we have developed an alternative technique. which uses the
Cholesky decomposition of symmetric positive definite
matrices. For lower-order pairing calculations both pro-
cedures are very simple and effective. The higher effi-
ciency of the Cholesky decomposition, however, is abso-
lutely crucial to treatment of more complex problems,
where many diagonalizations of large matrices may be to-
tally impractical.

In the present work, we have found it convenient to
proceed through the diagonalization of the metric matrix
in the first-order theory, and to resort to the Cholesky
decomposition for the higher-order calculations.

In the above, we have given the formulation of the
theory in terms of particles. The hole formalism can be
readily derived by proceeding precisely as before, and will
not be given explicitly here. In this case, the wave func-
tion for the seniority-v states of N particles is written as
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nihilation operators Aj,

[H, AJ ]=2(GJ ej—)Ai Q—GJJ AJ (NJ —QJ ), (17)

B. First-order theory

%e now focus attention on the simplest stage of ap-
proximation of the previously described theory, wherein
the core states are restricted to a single state. A complete
presentation of this approximation scheme and a detailed
account of how to remove the unphysical states within its
framework was given in Ref. 40 for the seniority-zero
problem. Since, as already emphasized in the Introduc-
tion, the formalism is essentially the same for all values of
U, we only give here a brief survey of the salient features
of the first-order theory. In this case the wave function
(4) becomes

~

N, P,L ) =gcipr, (N)AJ i
N 2,yi, L )—, (18)

where Gj:Gjj Of course, when the sums on y and a
run over all existing core states, either formalism permits
one to solve the seniority-U problem exactly. In the ap-
proximate versions of the theory, however, systems
beyond midshell are better described in terms of holes.

pjp, (N)=pj's (N —2)+
(&,p,r, (N) )'

(Xi'p r (N))
0 (0 —u )gJ J J j J J~ / Q.i —U.

0) —
u~

G 2el+ gej Ui El p(u +—2)
(21)

It is worth noting that Eq. (21) comprises the well-known
eigenvalue equations for the two- and three-particle
problems (u =0 and u =1, respectively).

(20)

which is the straightforward generalization of that given
in Ref. 40 for U =0.

It should be noted that, for a given L, Eq. (19) yields
(nj n, )—solutions (n~ is the number of single-particle lev-
els and n, the number of spurious states). The first-order
theory, however, is expected to describe with good accura-
cy only the lowest state for each value of L. In particular,
as we shall see in Sec; III, to obtain accurate results for
the first two seniority-zero excited states a fifth-order cal-
culation is required.

Clearly the first-order theory is exact for N =u+2. In
this case Eq. (19) becomes

QJ [1 2pjr (N —2—)]
JJ2ej —el pr (N)

(19)

where

el pr, (N) =ELp(N) ELr, (N —2) —.

In Eq. (19) the matrix g eliminates the unphysical states
and is easily constructed from the eigenvectors of the
metric matrix. The reader is referred to Ref. 40 for a. de-
tailed discussion of this important point.

As has already been pointed out in the seniority-zero
case, in the first-order theory the occupation numbers
are best obtained if no explicit use is made of the coeffi-
cients cjpr (N). This can be done by using the following

Ielation:

where
i
N 2,y„L) d—enotes the lowest state of a given

L.
For the usual constant pairing force, GJ7 = G (which is

used in our calculations), the eigenvalue problem reduces
to the simple dispersion relation

III. APPLICATIONS

In order to assess the practical value of the present ap-
proach, we have performed several calculations for the
even and odd Ni isotopes. The single-particle energies
and the coupling strength 6 are the same as those used in
I. Some results are presented in Tables I—VII. For nota-
tional simplicity the quantum numbers I. are omitted in
Tables I—III, while in Tables IV—VII the physical quanti-
ties are specified by the angular momenta of the unpaired
particles.

In Table I we compare the energies of the three lowest
seniority-zero states obtained from the fifth-order applica-
tion of the theory [the u =0 core states in (4) are restricted
to the lowest five states] with the exact ones; for com-
pleteness we also give the first-order ground-state energies.
(they have already been published in I). Tables II and III
show the improvement in the ground-state occupation
probabilities and in the g.s.—+g.s. two-particle transfer
amplitudes as we move from the first- to the fifth-order

TABLE I. Values of the energies Ep(X) of the three lowest seniority-zero states for the Ni isotopes
I,'MeV). X is the number of valence neutrons. The columns labeled I and V list the results obtained
from the first- and fifth-order calculations, respectively.

Exact V Exact Exact
10
I

OI

02

03

—1.75
0.76
1.38

—1.73 —1.75
0.76
1.38

—0.50
2.06
2.57

—0.53 —0.50
2.06
2.57

1.70
3.60
5.65

1.60 1.72
3.60
5.61
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TABLE II. Values of the occupation numbers pip (X) of the seniority-zero ground state for the Nil
isotopes.

3
2
5
2
1

2
9
2

Exact

0.764

0.404

0.153

0.021

0.729

0.413
0.169

0.027

V

0.766

0.405

0.154

0.020

Exact

0.859

0.631

0.252

0.027

0.812

0.632

0.278

0.040

V

0.862

0.632

0.255

0.025

Exact

0.934

0.856

0.408

0.031

10
I

0.876

0.833

0.466

0.057

0.944

0.858

0.421

0.023

TABLE III. Values of the g.s.~g.s. two-particle transfer amplitudes X~@ r (X) for the even Ni iso-J vari

topes.

3
2
5
2
1

2
9
2

Exact

1.061

1.706

0.373

0.711

0.995

1.827

0.383

0.723

V

1.061

1.705

0.373

0.712

Exact

0.891

1.835

0.460

0.810

0.800

1.946

0.458

0.799

0.890

1.834

0.460

0.815

Exact

0.709

1.673

0.551

0.649

1.730
0.558

0.829

V

0.708

1.667

0.553

0.874

TABLE IV. Values of the energies E~~ (X) of the various seniority-one states for the Ni isotopes.J

The columns labeled I and V list the results obtained from the first- and fifth-order calculations, respec-
tively.

3
2
S

2
1

2
9
2

Exact

0.34
—0.07

0.30

2.95

0.19
—0.14

0.28

2.96

0.34
—0.07

0.30

2.95

Exact

2.34

1.69

1.73

4.23

2.09

1.45

1.63

4.19

V

2.34

1.70

1.73

4.24

Exact

5.55

4.80

4.07

6.43

5.26

4.47

3.86

6.32

V

5.57

4.81

4.07

6.45

TABLE V. Values of the occupation numbers pi~@ (X) of the seniority-one ground state for the NiJ

isotopes. The angular momentum. j' is ~ for %=7,9 and ~ for N =11.

3
2
5
2
1

2
9
2

Exact

0.862

0.514
0.151

0.017

0.845

0.507

0.170
0.024

0.863

0.514
0.152

0.016

Exact

0.945

0.747

0.270

0.020

0.914
0.728

0.308

0.036

0.948

0.748

0.274

0.017

Exact

0.985

0.977

0.500

0.019

0.944

0.953

0.500

0.051

0.985

0.977

0.500
0.019
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TABLE VI. Values of the energies EJ j p (N) of the various seniority-two states for the Ni isotopesJ1~2 1

(MeV). The columns labeled I and IV list the results obtained from the first- and fourth-order calcula-
tions, respectively.

3 3
2 2
3 5
2 2
3 1

2 2
3 9
2 2
5 5
2 2
5 1

2 2
5 9
2 2
1 9
2 2
9 9
2 2

Exact

1.10

0.68

1.14

3.90
0.35

0.97

3.79

4.39
7.18

0.57

1.05

3.82

0.36

1.00
3.82

4.42

7.22

IV

1.10

0.68

1.14

3.90
0.35

0.97

3.79

4.39

7.18

Exact

2.93

2.26

2.39

5.01

1.59

1.89

4.59

4.96
7.63

2.93

2.02

2.19

4.85

1.38

1.77

4.50

4.94
7.64

IV

2.93
2.27

2.39

5.01

1.59

1.89

4.59

4.96

7.63

Exact

6.01

5.25

4.52

7.02

4.50

3.76

6.36

6.41

8.95

10
I

6.06
4.63

4.20

6.76

3.99
3.45

6.10

6.29

8.89

IV

6.01

5.26

4.52

7.03

4.50

3.76

6.35

6.41

8.95

theory. In Table IV the energies derived from the first-
and fifth-order theories for the seniority-one states (the
lowest one for each value of L) in the odd Ni isotopes are
compared with the exact ones. In Table V we report the
occupation probabilities of the seniority-one ground state.
The results for the seniority-two states are given in Tables
VI and VII.

From the results obtained, it appears that the lowest or-
der of approximation yields very accurate results for the
seniority-zero ground state and the seniority-two states of
even-even nuclei as well as for the seniority-one states in
odd-3 nuclei. It can be easily verified that our first-order
energies are much better than those of the BCS approxi-
mation for all values of u and X. The fifth-order calcula-
tion reproduces extremely well the ground state and the
first two excited states of seniority zero, while for the
seniority-one and seniority-two problems the results turn
out to be practically exact in the fifth- and fourth-order
theories, respectively.

At this point it should be emphasized that the quality
of the approximation need not systematically improve
with the order of truncation, i.e., the number of core
states in (4). This is essentially due to the step-by-step

procedure required to solve the X-particle problem (6). In
fact, if at a given step some of the higher-lying states are
badly represented, then their use as core states may some-
what damage the low-lying states at the next step. Actu-
ally, in our numerical applications to the model of the Ni
isotopes it turned out that the fourth- and fifth-order ap-
proximations (for u =2 and u =0, 1, respectively) suffice
to produce the various physical quantities with equal ac-
curacy for all values of %.

It should be pointed out, however, that any state which
is poorly described can be easily identified and removed
through a check on the orthogonality of the solutions at
each step of the chain calculation. More precisely, one
has to exclude from the expansion (4) any core state which
has unduly large scalar products with lower-lying states.
Of course, this procedure causes the order of approxima-
tion to decrease with respect to the initial one, and is
therefore of limited use in the lower-order applications of
the theory. However, when considering systems with
rather large numbers of valence particles (e.g., Sn isotopes)
the above procedure may profitably be applied ' to obtain
accurate results with a very limited amount of computa-
tional work.

TABLE VII. Values of the occupation numbers pj~ (N) of the lowest seniority-two excited state for
~1J2
J

the Ni isotopes. The angular momenta (j1j2) are ( 2 2 ) for N =6,8 and ( 2 2 ) for X = 10.

3
2
5
2
1

2
9
2

0.871

0.389
0.055

0.008

0.830
0.403

0.074
0.011

IV

0.871

0.389
0.055

0.008

Exact

0.957
0.631

0.137

0.011

0.953
0.611
0.164

0.019

IV

0.958

0.631

0.138

0.011

Exact

0.987
0.820

0.500

0.013

0.965

0.807

0.500

0.030

IV

0.987
0.821

0.500

0.012
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IV. SUMMARY AND DISCUSSION

In this paper we have presented a method for the treat-
ment of pairing interactions based on the development of
the equations of motion for zero-coupled pair operators.
The method can be applied at various levels of approxi-
mation which are by their nature exactly number conserv-
ing.

The advantages of this approach can be summarized as
follows:

(i) The first-order theory provides a very accurate treat-
ment of the seniority-zero ground state and of the various
seniority-one and seniority-two states for any value of the
interaction strength. A particularly attractive feature of
this approximation scheme lies in the fact that it is com-
parable in simplicity to the usual BCS method. In fact,
the numerical work consists only in diagonalizing at each
step of the chain calculation matrices of order nj (we re-
mind the reader that nj is the number of single-particle
levels).

(ii) It is straightforward to improve on the first-order
theory. In particular, accurate results for the seniority-
zero excited states are easily obtained from higher-order
calculations.

(iii) It is possible to treat nonconstant pairing forces at
any order of approximation with no increase in complexi-
ty.

(iv) As remarked also in the Introduction, the method
has been successfully used on the charge-independent
pairing model.

Further, it should be mentioned that the method can be
straightforwardly applied to models involving nondegen-
erate pair levels and may therefore provide a profitable
way of treating strongly deformed nuclei.

That the present approach represents an advantageous
alternative to the BCS theory is proved by the fact that
even the lowest order of approximation is capable of
yielding results which are vastly improved over those of
the usual quasiparticle approximation for both even and
odd nuclei (a comparison for the ground-state energy of
the even Ni and Sn isotopes may be found in Ref. 52).

At this point, it is of interest to examine the merit of
our approach as compared to other methods of dealing
with the problem of number conservation in pairing-force
theory. The Lipkin-Nogami version of the BCS method
yields very good results (not better, however, than our
first-order results) for the energies of the seniority-zero

ground states, "' but does not lead to any significant im-
provement over BCS for the states with nonzero seniori-
ty. " Unlike the BCS approximation, this approach can
also describe seniority-zero excited states. " In this case,
however, the accuracy is not very satisfactory. This situa-
tion may be improved by further refinements of the
method, ' ' but the simplicity of this kind of approach is
then lost to a large extent. For instance, in the case of the
seniority-zero. excited states the method has to be com-
bined with number projection and orthogonalization. '

Concerning the method of Hara, it yields results
which are superior to the BCS ones, but still not very ac-
curate. In addition, the accuracy of the method is strong-
ly dependent on the distribution of the single-particle lev-
els.

The results obtained by Do Dang and Klein and by
Jean et al. using their lowest order of approximation are
very good (they are only slightly worse than our first-
order results) for the ground-state energy of the even Ni
isotopes, but compare rather badly with the exact results
for the energy of the seniority-one states (the results re-
ported in Ref. 32 are somewhat worse than the corre-
sponding BCS ones). The improved (but more complicat-
ed) approximation scheme used in Ref. 31 leads to values
of the ground-state energy for the even isotopes which are
quite close to the exact ones, but is not capable of attain-
ing a good accuracy for the seniority-zero excited states.

The results obtained by Li for the ground-state ener-
gies and occupation probabilities for the even Ni isotopes
are slightly better than our first-order results. A more
complete comparison is not possible since no results for
the excited states have been reported in Ref. 6. In any
case, this approach is certainly more complicated than
ours and therefore does not appear particularly suited for
the treatment of the simple pairing-force Hamiltonian.

On the above grounds we may claim that our
equations-of-motion approach provides a really simple
and effective way of treating pairing correlations in a
number conserving manner. However, we consider this
achievement not an end in itself but a inost useful step to-
wards our main objective. This consists in extending our
method to treat further problems of nuclear structure in-
volving more complicated Hamiltonians. Indeed, it is our
belief that the method has the power to deal with the
relevant features of a many-body problem in a particular-
ly economical and practical way. Efforts in this direction
are under way.
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