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Using the classical picture of the collective M1 mode in nuclei as an oscillation of the angle be-
tween the deformed valence protons and valence neutrons, we obtain an expression for the classical
limit of the neutron-proton interacting boson model Hamiltonian. We use this result to contrast the
excitation energy in the classical limit to the experimentally observed value for the 1+ state in '**Gd.
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Due to the recent discovery of collective magnetic-
dipole excitation modes in 16546Gd92 (Ref. 1) and other nu-
clei,? there has been considerable theoretical’~> and exper-
imental® interest in such modes. Although a collective
M1 mode had been predicted and discussed in earlier
works,? the motivation for the 1*Gd experiment was pro-
vided by theoretical studies* within the framework of the
neutron-proton interacting boson model (or IBM-2).” 'In
the IBM-2 picture, 1T states arise from the proton-
neutron (7-v) mixed symmetry representations of the
group U(6) connected with the s and d bosons. Classical-
ly, within the SU(3) limit of the IBM-2, these 17 states
can be regarded as small amplitude oscillations of the an-
gle between the two symmetry axes of the deformed
valence neutrons and valence protons. This classical pic-
ture of the collective 17 state has been referred to as the
scissors mode*? (see Fig. 1).

In an earlier paper’ we looked at potential energy sur-
faces in the classical limit of the IBM-2. In the present
investigation we expand our previous work so as to in-
clude the appropriate kinetic energy terms in the IBM-2
Hamiltonian, so that we can study the properties of the
collective 11 states, mentioned above, in the classical lim-
it. Specifically, we apply our results to 2$Gdy,, so that we
can make a comparison with the recently obtained experi-
mental results.

The general form of the IBM-2 Hamiltonian for
s (J =0) and d (J =2) proton and neutron bosons is”1°

H"?=e(ng +ng)+Voy+Hpy+Hy, , (1

where H,, (p=m,v) is the two-boson interaction among
like bosons, € is the single boson excitation energy, and
ng =(2md,]:,d,,,,)p is the number operator for d, bosons.

The standard form taken for V_, is

V7T‘V=KQ1T.Q‘V+M1T'V ’ (2)
where

Q,=[(s'd+d"s)?1x,d'd)?], 3)
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is the quadrupole operator and
M., :§2(Si dl '—dI Sj; )(2)'(svgfr _va”)(Z)

+ 3 &dlahw-@d,d,® )
k=1,3

is the Majorana operator, which separates the configura-
tions which are totally symmetric under the interchange
of the protons and neutrons from those configurations
which have mixed symmetry in the protons and neu-
trons.!® In the above equations d,,=(—1)"d_,,
=spherical tensor, ( )"’ represents a tensor coupling of
rank i, and ( )-( ) denotes a scalar product of two equal
rank tensors. The quantities €, «, X, X,, &1, £, and &3 are
variable parameters which are adjusted to obtain the best
possible fit with the experimental energy levels for a given
nucleus.!©

We obtain the classical limit of the IBM-2 Hamiltonian
(1) using the procedure of Hatch and Levit.!! This pro-

cedure consists of replacing the boson operators s, st dy,

FIG. 1. Classical picture of the collective 17 configuration as
an oscillation in terms of the angle X between the two symmetry
axes z, and z, of the deformed valence neutrons and valence
protons, respectively.
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32 COLLECTIVE M1 STATES IN THE CLASSICAL LIMIT OF . ..

and d; by the classical commuting variables, a;, o, @,
and af, respectively. These classical variables are then re-
lated to the nuclear deformation parameters g, and their
canonically conjugate momenta p, in the following
manner:
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as=e—iQ N_% Z(P;.Pp +q:q;t) (5)
M
and
a“=%2(q:+ip# Je 2, (6)

where N is the total number of bosons and
Q=iln[a,/aX]'?.

The parameters g, and p, can then be transformed from
the space fixed coordinate system to the intrinsic coordi-
nate system in the usual way,!? leading to expressions in
terms of the Euler angles and their conjugate momenta
and in terms of the standard deformation coordinates 3
and y and their conjugate momenta pg and p,,.'>"?

In the classical limit of the IBM-2 this procedure must
be carried out for both the proton operators and the neu-
tron operators. The completely general expressions,
which would be obtained by doing this, would contain ten
coordinates, five for the protons and five for the neutrons,
with their conjugate momenta. These ten coordinates can
be expressed by 3, and v, for the protons, 3, and v, for
the neutrons, three Euler angles for the proton distribu-
tion, and three Euler angles for the neutron distribution.
The completely general result is quite complicated and
difficult to obtain.

Since we are only interested in the collective M1 config-

]

V (Brp By ¥ n=7y=0,X)

£
2

—(1—2sin%x)
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urations, we are able to make a number of approxima-
tions, which greatly simplify the general classical IBM-2
results for the Hamiltonian (1). These approximations are
the following: (1) the momenta Pg, and Py, (p=1r,v) are
zero, since the shapes of the proton and the neutron distri-
butions are not changing; (2) the momenta related to the
first and third proton and neutron Euler angles (which we
denote by ¢, and Y, p=1r,v) are zero (i.e., Py, =p¢p=0),
since the equilibrium values of ¢, and ¢, are zero and we
consider no motion in terms ofe these variables; (3) the
only motion is in terms of the second proton and neutron
Euler angles 6,. and 6,, which we take to be 6,=X /2 and
6,=—X/2 (see Fig. 1), so that po_and pg are nonzero;

and (4) y,=v,=0 for prolate deformations and B,=p;
and sz-[j’vo, their equilibrium values, which may not be
equal. We will consider both the SU(3) values of 3, and
By, (Ref. 14) and the actual equilibrium values for our

classical form for the potential. We neglect the like-boson
interactions H ,,, since they do not play an important role
in the M1 configurations.

In terms of these approximations the angular momenta
L, and L; are zero, so that the only nonzero momentum

Variables bu are
Lz 1,2
] P

T V6B,

1
2v2B,

@)

Ar

where L 2,=Pg, in units of #i=1. We then obtain the fol-

lowing expression for the potential energy surface in the
classical limit at the minimum conditions described above:

(/3121-0+/312;0)+K [2[(N,,— LB)(N, — %Bi)]l/zﬁwoﬁvo( 1— 2sinY)

X,y Xn
V7 /33 wo(Nﬂ" %Bfro)l/2+ Wﬁ‘tzroﬁvo(]vv— _;_330)1/2 I

9§
1 2 2 2 2 2 i 2
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+ 2§2 {ﬁn’o {Nv_ 2 +ﬁv0 ‘Nﬂ-— —B'rroﬁvo(3 COs X—l) Nv_ 2 N,,.— 2
383 5 o (1 14X
RT3 BBy, | 58in°X + 5 sin 5 (8)

Note that in the limit X =0, the above equation reduces to Eq. (7) in Ref. 9 provided that Bz=Br, By=DBy, and

Ya=V»=0.

We wish to treat the Hamiltonian (1) in the oscillator approximation, assuming that the collective M1 mode in Fig. 1
is the Jowest excited state of a harmonic oscillator in terms of the variables X and X. That is, we wish to write Eq. (1) in

the classical limit in the form

Hy=T+V=+uX?*+C+DX?,

9
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where C and D are quantities independent of X and X,

mgm,

pu=reduced “mass”’=——",
m,+m,
1 _ azHc] ‘
mp N aP(29 ’

P Janp=0

so that the “oscillator energy” is given by
#o=vV2D /i .

(10

(11)

(12)

As can be easily seen, the term referred to as C in Eq. (9) is simply the potential energy term we obtained in Ref. 9, Eq.

(7); for Bﬂ':Bﬂo’ BV:B‘VO7 and Va= 7/1/:0'

Proceeding in the manner described above, we obtain D and 1/u to be

D =3kBrpy, ;/%[xv/w 2N 7 —Br)' 2+ X aB( 2Ny = By )21 = [(2N 7 — B ) 2Ny — By )12 — =2 By B

2

B
— 5B o FEI+E) + 3 6B By, [ {NV——Z—"

B,

B S L Po
m, 3By 32N,—B )" | By,

2
P (6, &), &1 P 1
ﬁl’o 20 30 3 12 BPo 2

where p=m, p'=v or p=v, p'=m, and

(15)

In the above results we have kept only the lowest order
terms in X for small X, namely terms of the order
sinX~X?> and cos®X~1—X2, where 6,=X/2 and
0,=—X/2 (cf. Fig. 2).

Since the first collective M1 state was observed in
156Gd, we would like to see what Eq. (12) predicts for the
excitation energy of the 1% state in this nucleus. To
determine the values of D and p appropriate for 1*°Gd, we
use the empirical IBM-2 parameter values obtained by
Scholten, as reported in Ref. 15, except for the values of
&1, &5, and &;, which, at that time, were chosen at random
and not to fit any particular level. For &, &,, and &3, we
use Scholten’s present values!® of

£ =E3=—2&=—0.30 MeV ,

which were obtained by an IBM-2 fit of the 1% energy in
156

Gd.

For ¥8Gdg,, N,=7, and N, =5, and Scholten’s IBM-2
parameter values!® are €=0.46 MeV, k= —0.081 MeV,
X,=—1.0, and X,= —1.1. We consider two choices for
/3.,,.0 and B,,O: (1) the values obtained in the SU(3) limit,'*
ie, By, =2(N,/3)'* and B, =2(N,/3)"/? and (2) the

values obtained by minimizing our potential energy sur-

(2N, —By)'"2 [1+

By,

XXy l
B%.O 172
5 : (13)
X, ) X | P L X
V4B, | V14 | B, V14
[Ny —(B, /2)]'? B,
fo 4 v, (14)

+—= T T AT )
[No— B /212 " B | P 2

face Eq. (8), namely, [:c’,,0=0.929(N,,)‘/2 and
Bv0=0.958(N,,)‘/ 2. These latter values for Br, and B,
obtained from minimizing our potential energy surface,
are the same as those obtained by Pittel!” applying a
Hartree-Bose approach to this problem. For the SU(3)
limit values we obtain D=13.22 MeV and 1/4=0.139
MeV, so that #w=1.92 MeV. This energy is too low,
clearly indicating that *Gd does not satisfy the SU(3)

L I T T I T T
2.5 — 4/ —

L —-—c+Dx2 / 1

IBA-2 ’

V(MeV)

(o] 0.45 0.30 0.45 0.60 0.75
X(rad)

FIG. 2. Comparison of the approximate expression C +DX?,
Eq. (9), with the actual potential energy surface, Eq. (8), for
13Gd. The phenomenological IBA-2 parameters are taken from
Refs. 15 and 16.
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limit. Using the equilibrium values obtained from Eq. (8),
we obtain D=11.51 MeV and 1/4=0.317 MeV, so that
#iw=2.70 MeV.

Since we have performed what is equivalent to a 1/N
expansion, where N, =5 and N,=7 for 136Gd, our result
should be accurate to approximately +20% although our
actual result agrees to within 12%. Hence, in our model,

t € proton-neutron antlsymmetrlc collective 1% state in
64 Gdg, occurs at an excitation energy of

#iw=2.70 MeV+0.56 MeV . (16)

This classical result is in good agreement with the ob-
served excitation energy of the collective M1 state in
156Gd, namely! E,(1%,°°Gd)~3.075 MeV. Since our po-
tential energy surface produces the same equilibrium
values of B,,.o and BVO as different approaches,” the reason

for our calculated value of the 17 excitation energy being
lower than the experimental value is probably due to our
simplified treatment of the momentum terms, and, in par-
ticular, the use of Eq. (11) to calculate the effective proton
and neutron masses.

Having obtained an analytic expression for the energy
of the M1 state in terms of the phenomenological IBM-2
parameters, we can study how the energy of the collective
M1 state would change as a function of those parameters.
A systematic study of the low-lying energy levels of the
deformed Gd isotopes with A4=152, 154, and 156 has
been carried out by Scholten,! and the parameters €, k,
X and X, were determined. Of course, since the M1
state is not yet observed for '32Gd and !>*Gd, the values of
the parameters &), &, and &; cannot be determined.
Adopting the convention &, =§3;=—2§&,= —§, we plot the
energy of the collective M1 state, Eq. (12), for these iso-
topes as a function of £ in Fig. 3. As expected, for £=0,
the energy of the antisymmetric 17 state would be much
lower: It is the Majorana term in Eq. (2) which pushes
the energy of this state up. Furthermore, the energy of

Mi ENERGY (MeV)

[eX} 0.2 0.3 0.4 0.5

FIG. 3. Variation of the energy of the neutron-proton an-
tisymmetric M 1 state as a function of the strength £ of the Ma-
jorana term with & =§;=—2&,=—¢ for the Gd isotopes. The
phenomenological IBM-2 parameters are taken from Ref. 15.

this state varies smoothly as & increases, and for similar
values of £ it is the highest for lighter isotopes. This is a
result of the dependence of B, and B, on the (N,)'/? and

N,)!2, respectively, so a similar trend would have been
found using the SU(3) values for B, and B,. Hence, if £

does not change appreciably for those Gd isotopes, then we
expect the energy of the yet-to-be-observed neutron-proton
antisymmetric 1% states in '**Gd and '*>Gd to be higher
than 3 MeV. Recent microscopic calculations'®!® of £,
&,, and &3 for nondeformed nuclei also suggest that the en-
ergy of the collective 1% state moves down in energy as
the neutron boson number increases; however, these calcu-
lations also find that &, &,, and &3 are strongly dependent
on N, and that & ££35= —2&,. Recent data?® suggest that
in deformed nuclei these levels go up in energy as the
number of bosons increases. Further data on the proper-
ties of these states in both deformed and nondeformed re-
gions are needed.

From our Egs. (13)—(15), it is worth noting that the &,
and &; terms, as well as the &, term, contribute to the
magnitudes of D and 1/u. In fact, the contribution of the
&, term to 1/u is two or three times the size of the contri-
bution of the &; and §; terms because of a larger numeri-
cal coefficient and a slightly different dependence on N,
and N,. At first, this may seem surprising, since one
might expect the &; term to dominate in the contribution
to the antisymmetric 1% state. This is true if only two d
bosons (one d, and one d,) can occur in the nuclear wave
function. If three or more d bosons can occur, then the &,
and &; terms in the Majorana interaction also contribute
to the energy of the 17 state.

To study this effect, we first diagonalized the IBM-2
Hamiltonian (1) for '®Gd using Scholten’s parameter
values'® and

£1=§&3=—2£,=—0.30 MeV

and obtained an excitation energy of 3.09 MeV for the
first 1" state. The wave function for this state was highly
collective with almost equal probabilities for components
with four d bosons up to those with eight d bosons. We
then repeated the calculation changing only the parame-
ters &;, &, and &; to the values £;,=—0.30 MeV and
£,=£3=0.0 MeV. This yielded a 1" excited state at 2.38
MeV with the wave function now being 23% two d bo-
sons and 36% four d bosons. Finally, we recovered the
experimental value of the 17 excitation energy by setting
£1=—0.60 MeV and &,=§3;=0.0 MeV, which produced
E,(11,13%Gd)=3.08 MeV with the wave function being
51% two d bosons and 34% four d bosons. Hence, it is
possible to obtain the experimental value for the excitation
energy of the 11 state using only the &; term, but this
yields a far less collective 17 state than one obtained at
the same energy with & =§&;= —2&,.

On the other hand, the microscopic calculations men-
tioned previously'® !’ indicate that &,54&;5 —2£&,. Hence,
further work is needed to understand the relationship
among &, &5, and &3, if indeed any such relationship does
exist.

To summarize, we have obtained a classical form of the
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IBM-2 Hamiltonian appropriate for the collective,
magnetic-dipole 17 state. Using the empirical parameter
values, obtained by fitting the quantum mechanical IBM-
2 Hamiltonian to the data for 1°®Gd, we calculated from
our classical result a 1% excitation energy in reasonable
agreement with the observed 17 energy in 1**Gd. We also
found that the 1% excitation energy varied smoothly with
changes in the Majorana strength term, i.e,
—&=§,=§63=—2¢&,, so that one can study how the loca-
tion of the collective 17 state changes with £ in neighbor-
ing nuclei. Our results would suggest that the 1t excita-
tion energy decreases as the neutron boson number in-
creases for constant values of &, &,, and £;. Microscopic
studies for nondeformed nuclei indicate a similar trend for
the 17 excitation energy with respect to N,, but for
&1#E3% —2&, and for values of &, &,, and £; changing
with N,. Some recent experimental results for deformed
nuclei show an increase in the 1% excitation energy as N,
increases. Further experimental and theoretical studies

are required to clarify our understanding of these 17
states.
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