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Collective M1 states in the classical limit of the
neutron-proton interacting boson model
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Using the classical picture of the collective M1 mode in nuclei as an oscillation of the angle be-

tween the deformed valence protons and valence neutrons, we obtain an expression for the classical
limit of the neutron-proton interacting boson model Hamiltonian. We use this result to contrast the
excitation energy in the classical limit to the experimentally observed value for the 1+ state in ' Gd.

Due to the recent discovery of collective magnetic-
dipole excitation modes in '6&Gd92 (Ref. 1) and other nu-
clei, there has been considerable theoretical and exper-
imental interest in such modes. Although a collective
M1 mode had been predicted and discussed in earlier
works, the motivation for the ' Gd experiment was pro-
vided by theoretical studies within the framework of the
neutron-proton interacting boson model (or IBM-2). In
the IBM-2 picture, 1+ states arise from the proton-
neutron (vr v) mix-ed symmetry representations of the
group U(6) connected with the s and d bosons. Classical-
ly, within the SU(3) limit of the IBM-2, these 1+ states
can be regarded as small amplitude oscillations of the an-

gle between the two symmetry axes of the deformed
valence neutrons and valence protons. This classical pic-
ture of the collective 1+ state has been referred to as the
scissors mode ' (see Fig. 1).

In an earlier paper we looked at potential energy sur-
faces in the classical limit of the IBM-2. In the present
investigation we expand our previous work so as to in-
clude the appropriate kinetic energy terms in the IBM-2
Hamiltonian, so that we can study the properties of the
collective 1+ states, mentioned above, in the classical lim-
it. Specifically, we apply our results to '64Gd92, so that we
can make a comparison with the recently obtained experi-
mental results.

The general form of the IBM-2 Hamiltonian for
s (J=0) and d (J=2) proton and neutron bosons is '

is the quadrupole operator and

g„(d d )'"'(d d )'"'
k=1,3

(4)

is the Majorana operator, which separates the configura-
tions which are totally symmetric under the interchange
of the protons and neutrons from those configurations
which have mixed symmetry in the protons and neu-
trons. ' In the above equations d~ = ( —1) d
=spherical tensor, ( )" represents a tensor coupling of
rank i, and ( ).( ) denotes a scalar product of two equal
rank tensors. The quantities e, tc, X, X, gt, $2, and g3 are
variable parameters which are adjusted to obtain the best
possible fit with the experimental energy levels for a given
nucleus. '

We obtain the classical limit of the IBM-2 Hamiltonian
(1) using the procedure of Hatch and Levit. " This pro-
cedure consists of replacing the boson operators s, s, d&,

where H&& (p=sr, v) is the two-boson interaction among
like bosons, e is the single boson excitation energy, and
n~ =(g d~d~)p is the number operator for dp bosons

P
The standard form taken for V is

V =tcg .Q„+M, ,

where

g [(std +d ts )(2) +y (d td )(2)) (3)

FIG. 1. Classical picture of the collective 1+ configuration as
an oscillation in terms of the angle p between the two symmetry
axes z and z of the deformed valence neutrons and valence
protons, respectively.
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and d„by the classical commuting variables, o.„n,*, a„,
and a&+, respectively. These classical variables are then re-
lated to the nuclear deformation parameters q„and their
canonically conjugate momenta p„ in the following
manner:

1/2

Cxg =e N —
2 Q (p~ pp +q~q~ )

P

and

l
tx~= ~ (qp+lpp)eV2

where N is the total number of basons and

Q = t In[a, la,"]'~

The parameters q& and p@ can then be transformed from
the space fixed coordinate system to the intrinsic coordi-
nate system in the usual way, ' leading to expressions in
terms of the Euler angles and their conjugate momenta
and in terms of the standard deformation coordinates /3

and y and their conjugate momenta p~ and p&.
' '

In the classical limit of the IBM-2 this procedure must
be carried out for both the proton operators and the neu-
tron operators. The completely general expressions,
which would be obtained by doing this, would contain ten
coordinates, five for the protons and five for the neutrons,
with their conjugate momenta. These ten coordinates can
be expressed by /3~ and y for the protons, /3„and y, for
the neutrons, three Euler angles for the proton distribu-
tion, and three Euler angles for the neutron distribution.
The completely general result is quite complicated and
difficult to obtain.

Since we are only interested in the collective M1 config-

b+] ——+
P

L, 2
P

4m.
sin P 3

+f2
2v 2/3 v'6/3

where L2 ——pe in units of 6=1. We then obtain the fol-
P P

lowing expression for the potential energy surface in the
classical limit at the minimum conditions described above:

urations, we are able to make a number of approxima-
tions, which greatly simplify the general classical IBM-2
results for the Hamiltonian (1). These approximations are
the following: (1) the momenta ptt and pr (p =m, v) are

P P
zero, since the shapes of the proton and the neutron distri-
butions are not changing; (2) the momenta related to the
first and third proton and neutron Euler angles (which we
denote by p and gz, p=vr, v) are zero (i.e., p~ ——p~ ——0),p p' P P
since the equilibrium values of P and t/z are zero and we
consider no motion in terms o these variables; (3) the
only motion is in terms of the second proton and neutron
Euler angles 8~ and 8, which we take to be 8„=Xl2 and
8„=—Xj2 (see Fig. 1), so that pe and ps are nonzero;

and (4) y =y„=O for prolate deformations and /3~=/3

and /3„=/3, their equilibrium values, which may not be

equal. We will consider both the SU(3) values of /3 and

/3, (Ref. 14) and the actual equilibrium values for our

classical farm for the potential. We neglect the like-boson
interactions H&&, since they do not play an important role
in the Ml configurations.

In terms of these approximations the angular momenta
L] and L, 3 are zero, so that the only nonzero momentum

P P
variables b& are

V(P,,/3„,,y =y =O,X)

(/3, +/3, )+&—2[(N ——,'P )(N„——,'/3„)]' /3~+, (l ——,
' sin X)

+ —,g2 /3', N„—
/32

+P, N
/3, —/3 P,,(3cos X—1)

343 2 2 ] . 2 ] . 4L
/3„ /3, —,sin X+ —,sin—

Note that in the limit X=O, the above equation reduces to Eq. (7) in Ref. 9 provided that /3 =p, p„=p, and

We wish to treat the Hamiltonian (1) in the oscillator approximation, assuming that the collective Ml mode in Fig. 1

is the lowest excited state of a harmonic oscillator in terms of the variables P and X. That is, we wish to write Eq. (1) in
the classical limit in the form

(9)
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where C and D are quantities independent of 7 and 7,
m m

p =reduced "mass" =
m~1m

a'a„
Bpg

,, all p =0

so that the "oscillator energy" is given by

fm =v'2D /p . (12)

As can be easily seen, the term referred to as C in Eq. (9) is simply the potential energy term we obtained in Ref. 9, Eq.
(7), for P =P, P,=P„,and y =y =0.

Proceeding in the manner described above, we obtain D and 1/p to be
r

D =
~ &P~P~, ' O'A. (2N~ P~—)'"+&~P~ (2Nv Pv )'"—]—[(2N~ —P~ )(2Nv —P~ )]'"— P~Pv

80 pnopvo( '2 01+03)+ 2 k2pnopvo v

p.',
2

1/2
alp

(13)

E' /C l('O (2' —P, )'~ 1+
&14P

Xp' pp

&14 P„

pp,

4 k. 1 ~o

20 30 3 2 Pp,

2

p,
2 Pp

[Np —(P, /2)]'~

[Np (Pq, /2)]'i— Pp, 2
(14)

where p=m. , p'= v or p=v, p'=m, and

1 1+ (15)

In the above results we have kept only the lowest order
terms in g for small 7, namely terms of the order
sin X=X and cos 7=1—7, where 0 =7/2 and
0 = —X/2 (cf. Fig. 2).

Since the first collective M1 state was observed in
Gd, we would like to see what Eq. (12) predicts for the

excitation energy of the 1+ state in this nucleus. To
determine the values of D and p appropriate for ' Gd, we
use the empirical IBM-2 parameter values obtained by
Scholten, as reported in Ref. 15, except for the values of
g~, gq, and g3, which, at that time, were chosen at random
and not to fit any particular level. For g~, gz, and g3, we
use Scholten's present values' of

g3 2$$ ——0.30 MeV

which were obtained by an IBM-2 fit of the 1+ energy in
Cid.
For '65Cid92, N =7, and X =5, and Scholten's IBM-2

parameter values' are &=0.46 MeV, v= —0.081 MeV,
7 = —1.0, and X = —1.1. We consider two choices for
p and p: (1) the values obtained in the SU(3) limit, '

i.e., p =2(N /3)'~ and p =2(N /3)'~ and (2) the
values obtained by minimizing our potential energy sur-

face Eq. (8), namely, P =0.929(N )'~ and

p =0.958(N„)'~ . Th~s~ latter ~al~~s for p and p
obtained from minimizing our potential energy surface,
are the same as those obtained by Pittel' applying a
Hartree-Bose approach to this problem. For the SU(3)
limit values we obtain D=13.22 MeV and 1/p, =0.139
MeV, so that Ace=1.92 MeV. This energy is too low,
clearly indicating that ' Gd does not satisfy the SU(3)

2.5

1.5

&0 0.5
X

-0.5

-1.5

—2.5
0 O.I 5 0.30

x(rod)
0.45

I

0.60 0.75

FIG. 2. Comparison of the approximate expression C+Dg,
Eq. (9), with the actual potential energy surface, Eq. (8), for

Gd. The phenomenological IBA-2 parameters are taken from
Refs. 15 and 16.
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limit. Using the equilibrium values obtained from Eq. (8),
we obtain D=ll. 51 MeV and I/@=0.317 MeV, so that
Ac@=2.70 MeV.

Since we have performed what is equivalent to a 1/N
expansion, where N, =5 and N =7 for ' Gd, our result
should be accurate to approximately +20% although our
actual result agrees to within 12%%uo. Hence, in our model,

tPe proton-neutron antisymmetric collective 1+ state in
'64 Gd9$ occurs at an excitation energy of

Ace=2. 70 MeV+0. 56 MeV .

This classical result is in good agreement with the ob-
served excitation energy of the collective Ml state in

Gd, namely' E„(1+,' Gd)=3.075 MeV. Since our po-
tential energy surface produces the same equilibrium
values of P and P as different approaches, ' the reason

VTO 0

for our calculated value of the 1+ excitation energy being
lower than the experimental value is probably due to our
simplified treatment of the momentum terms, and, in par-
ticular, the use of Eq. (11) to calculate the effective proton
and neutron masses.

Having obtained an analytic expression for the energy
of the Ml state in terms of the phenomenological IBM-2
parameters, we can study how the energy of the collective
Ml state would change as a function of those parameters.
A systematic study of the low-lying energy levels of the
deformed Gd isotopes with 3=152, 154, and 156 has
been carried out by Scholten, ' and the parameters e, ~,
X, and X were determined. Of course, since the Ml
state is not yet observed for ' Gd and ' Gd, the values of
the parameters g&, gz, and g3 cannot be determined.
Adopting the convention g~

——g3 ———2gq ———g, we plot the
energy of the collective Ml state, Eq. (12), for these iso-
topes as a function of g in Fig. 3. As expected, for /=0,
the energy of the antisymmetric 1+ state would be much
lower: It is the Majorana term in Eq. (2) which pushes
the energy of this state up. Furthermore, the energy of

this state varies smoothly as g increases, and for similar
values of g it is the highest for lighter isotopes. This is a
result of the dependence of P and P„, on the (N )'~ and

(N )', respectively, so a similar trend would have been
found using the SU(3) values for P and P, . Hence, if
does not change appreciably for those Gd isotopes, then we
expect the energy of the yet-to-be-observed neutron-proton
antisymmetric 1+ states in ' Gd and ' Gd to be higher
than 3 MeV. Recent microscopic calculations' ' of g&,

gq, and g3 for nondeformed nuclei also suggest that the en-

ergy of the collective 1+ state moves down in energy as
the neutron boson number increases; however, these calcu-
lations also find that g&, gq, and g3 are strongly dependent
on N„and that /~&$3& —2gq. Recent data suggest that
in deformed nuclei these levels go up in energy as the
number of bosons increases. Further data on the proper-
ties of these states in both deformed and nondeformed re-
gions are needed.

From our Eqs. (13)—(15), it is worth noting that the gq
and g3 terms, as well as the g~ term, contribute to the
magnitudes of D and I/p. In fact, the contribution of the
gq term to I/p is two or three times the size of the contri-
bution of the g~ and g3 terms because of a larger numeri-
cal coefficient and a slightly different dependence on N
and X,. At first, this may seem surprising, since one
might expect the g& term to dominate in the contribution
to the antisyrnmetric 1+ state. This is true if only two d
bosons (one d and one d, ) can occur in the nuclear wave
function. If three or more d bosons can occur, then the gq
and g3 terms in the Majorana interaction also contribute
to the energy of the 1+ state.

To study this effect, we first diagonalized the IBM-2
Hamiltonian (1) for ' Gd using Scholten's parameter
values' and

g) =$3———2gp ———0.30 MeV

C9
Q
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FIG. 3. Variation of the energy of the neutron-proton an-
tisymmetric M 1 state as a function of the strength g of the Ma-
jorana term with g&

——f3= —2gq= —g' for the Cxd isotopes. The
phenomenoIogical IBM-2 parameters are taken from Ref. 15.

and obtained an excitation energy of 3.09 MeV for the
first 1+ state. The wave function for this state was highly
collective with almost equal probabilities for components
with four d bosons up to those with eight d bosons. %'e
then repeated the calculation changing only the parame-
ters g~, gq, and g3 to the values g~ ———0.30 MeV and

gp —g3 —0.0 MeV. This yielded a 1 + excited state at 2.38
MeV with the wave function now being 23% two d bo-
sons and 36% four d bosons. Finally, we recovered the
experimental value of the 1+ excitation energy by setting
g, = —0.60 MeV and gz ——g3

——0.0 MeV, which produced
E„(1+,' Gd) =3.08 MeV with the wave function being
51% two d bosons and 34% four d bosons. Hence, it is
possible to obtain the experimental value for the excitation
energy of the 1+ state using only the g~ term, but this
yields a far less collective 1+ state than one obtained at
the same energy with g~ ——g3

———2gp.
On the other hand, the microscopic calculations men-

tioned previously' ' indicate that g&&f3&—2gz. Hence,
further work is needed to understand the relationship
among g&, gz, and g3, if indeed any such relationship does
exist.

To summarize, we have obtained a classical form of the
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IBM-2 Hamiltonian appropriate for the collective,
magnetic-dipole 1+ state. Using the empirical parameter
values, obtained by fitting the quantum mechanical IBM-
2 Hamiltonian to the data for ' Gd, we calculated from
our classical result a 1+ excitation energy in reasonable
agreement with the observed 1+ energy in ' Gd. We also
found that the 1+ excitation energy varied smoothly with
changes in the Majorana strength term, i.e.,

g —gt —g3 — 2$z so that one can study how the loca-
tion of the collective 1+ state changes with g in neighbor-
ing nuclei. Our results would suggest that the 1+ excita-
tion energy decreases as the neutron boson number in-
creases for constant values of gt, gz, and gz. Microscopic
studies for nondeformed nuclei indicate a similar trend for
the 1+ excitation energy with respect to X, but for
g'&&$3& —2gz and for values of g't, gz, and g3 changing
with X . Some recent experimental results for deformed
nuclei show an increase in the 1+ excitation energy as N
increases, Further experimental and theoretical studies

are required to clarify our understanding of these 1+
states.
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