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Simple parametrization of the n.-N amplitude
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We'present a simple parametrization of the S-, P-, and D-wave m-N amplitudes using separable
potentials for T &1 GeV. The effect of the inelasticity is included in the Green s function while
maintaining consistency with unitarity. The P~& amplitude is written as a pole plus nonpole in order
to describe pion absorption in 3 )2.

I. INTRODUCTION

The interest in dibaryon resonances has led in recent
years to a large number of polarization measurements in
N-N, ' m-d, and pp —ward (Ref. 3) experiments. Many of
these experiments have been carried in the energy region
above the b, (1232) resonance and below the two-pion
threshold. Part of the interest in the dibaryon resonance
is the possible evidence for quark degrees of freedom,
such as six-quark states. One way of establishing the ex-
istence of such exotic states is to find a glaring discrepan-
cy between the experimental results for the above reac-
tions, and more conventional nuclear theories based on N,

~ ~ ~ ~

For the above reactions, we have such a theory based on
the coupling of the NN to the m NN channels, and satisfy-
ing two- and three-body unitarity. The input to these
calculations is the basic m-N amplitude off shell. To sim-
plify the solution of the NN-nNN equations, all calcula-
tions to date have assumed separable potentials for the
m-N interaction. This has been justified by the fact that
separable potentials are a good approximation to a system
with resonances, and the m-N system has many such res-
onances.

One feature of the tr-N system above the b, (1232), that
is often ignored in the construction of separable potentials
for NN-mNN calculations, is the fact that just above the
two-pion thresholds the inelasticity grows suddenly, and
there are several m-N resonances. This rapid variation in
the phase shifts and inelasticity is illustrated in Fig. 1 for
the D&3 channel. Such rapid variation in phase shifts and
inelasticity could affect the parametrization of the m-N
amplitude, even below the pion production threshold.
This in turn could affect the result of the N¹.NN calcu-
lation, or the concentration of a pion-nucleus optical po-
tential.

To include such large and rapidly changing inelasticity
into the m-N amplitude, we should include the three-body
unitarity cut into the amplitude. However, the resultant t
matrix would be impractical for use in the NN-n NN cal-
culations, and the determination of the pion-nucleus opti-
cal potential. Furthermore, most of the NN-mNN and
m. —A calculations are below the two-pion threshold, and
the m-N amplitude must only satisfy two-body unitarity at
these energies. We show in Sec. II how we can build the
effects of the three-body threshold, and yet maintain the
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FIG. 1. The phase shifts 5 and inelasticity g for the D&3
channel. The solid curve is the theory, the experimental points
(0) are from Refs. 10 and 24.

simplicity of two-body separable amplitudes.
Since the lowest of these resonances above the two-pion

threshold is the Roper (1440) resonance, we need to in-
clude the inelasticity in the P» amplitude, while main-
taining the basic structure of this amplitude as a
t (pole) + t (nonpole). In this way, we can maintain the
coupling of the nNN to the NN channel. While for tr A-
scattering, it will allow the coupling of the (tr, m ) and the
(tr, p) reaction channels. This construction is also present-
ed in Sec. II.

In Sec. III we present our parametrization for the S
P-, and D-wave m-N amplitudes including inelasticity.
We show how the experimental inelasticity is built into
the potential following procedures similar to those used by
Ernst and Johnson. However, we use the latest ~-N
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phase shifts based on the Karlsruhe' compilation. We
also illustrate how the inclusion of inelasticity can affect
the range of the n.-N interaction in momentum space.

II. BASIC FORMULATION

The main aim of this analysis is to include the contri-
bution of the two-pion threshold into the m-N amplitude
without resorting to three-body theory. This is motivated
by the fact that the resultant t matrix will be mainly used
below the two-pion production threshold. To achieve this,
let us consider the unitarity equation for the partial wave
amplitude above the two-pion threshold, i.e.,

15 tmi [to—o(——E +i e) too(—E i p—)]2l

then the unitarity equation can be written as

2 Oy«m= —po I too I

Oel

I
too«) I' (3)

g(k)
where po(k) =k /(d 8'/dk) with W.the total energy of the
system, and

e1
g(k) =

OT
(4)

Since oT)o.,~, we have that 0&g&1. In particular,
below the two-pion threshold g= 1. If we now assume
that too satisfies a two-body equation, then there are
several ways we can include the effect of inelasticity:

(i) We can introduce a complex energy independent po-
tential. In fact, Landau and Tabakin" constructed such a
potential by assuming that it is a rank-one separable po-
tential. The form factors were then determined using in-
verse scattering theory. These potentials are complex even
below the inelastic threshold, and can lead to an unphysi-
cal off-shell t matrix. If used in the N¹NN equations
it leads to a violation of two- and three-body unitarity. '

(ii) To build the inelastic threshold you can introduce
an energy dependent potential. This has been achieved,
using separable potentials, by coupling to the inelastic
channels. ' The resultant t matrix has physical off-shell
behavior. ' It is also derivable from a coupled channel
problem. "

(iii) In the present analysis we propose to build the in-
elastic threshold into the Green's function. Like the ener-
gy dependent separable potentials, this would correspond
to the situation where one has a coupled channels problem

where the sum n runs over all the inelastic channels, and

p„ is the phase space factor for channel n. Since the elas-
tic and total cross section are given by

o'ei-po
I too I

2
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that is reduced to an effective one-channel problem. The
result we get is the same as that of Ernst and Johnson,
who use X/D to get their amplitude with inelasticity in-
cluded. This result is ideally suited for use in three-
body —type calculations.

To see how this threshold can be introduced into the
Green's function, we consider the unitarity of the t matrix
that satisfies the two-body integral equation (e.g., the
Lippmann-Schwinger equation) with a real potential. In
operator form this unitarity is given by

ht=t(E+)b, G(E)t(E ) .

We now want to choose hG to include the effect of
inelasticity. One such choice for the Green's function is

G(E+)= E+ie—Ho o E+ie W—(k)

where g is an analytic function to be determined by uni-
tarity, and includes the effects of the two-pion threshold.
Here, W(k) is the m-N energy and includes the rest mass
of both particles. From Eq. (6) we have that

b, 6 (E)= —m $5(E H)—
and the corresponding on-shell unitarity is given by,

b, t(E)= —po(k)g(k) I
t(E)

I

'
with E = W(k). Comparing Eqs. (8) and (3) we see that

g(k)= „1

rt(k)

and the Green's function thus includes the effects of the
two-pion threshold, and is given by

G(E+)= J'"dk k'
q(k)[E+ —W(k)]

In this way we can fold the experimental inelasticity
into our parametrization of the m.-N amplitude, such that
the resultant amplitude satisfies two-body unitarity at all
energies of interest. This in turn allows us to improve the
fit to the nNphase .s-hift, maintain two- and three-body
unitarity in the NN-~NN system, and introduce no addi-
tional complexity to the problem.

In this analysis, we will assume the m-N interaction to
be a rank-one separable potential for all partial waves oth-
er than the P~&. The corresponding m-N amplitudes are
of the form

t (k, k', E)=g (k)r (k)g (k'),
where a refers to all m-N channels other than the P&~, and
g~(k) is the separable potential form factor. In this case,

g (k)r (E)= A,
' —J dk k (12)

ri~(k)[E —W(k)]

with A,~ the strength of the potential. This result is identi-
cal (except for P wave pions) to tha-t of Ernst and
Johnson who derive it by examining unitarity in an N/D
method. Because our inelasticity was included in the
Green's function, we can easily' extend this result to rank-
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two potentials. In Eq. (12), g(k) can be taken directly
from experiment, and because of the way it appears in the
integral, it can have some influence on the off-shell
behavior of the amplitude through g (k). This in turn
could affect the range of the m-N interaction.

For the P-wave channels, Ernst and Johnson used the
Chew-Low -model to construct their D function in the
N/D method. In particular, they included the u-channel
pole into the D function. This, in the static limit, leads to
a pole in the off-shell amplitude in the energy variable.
This in turn generates unphysical threshold' if used in a
three-body —type calculation. To avoid this problem, we
have used Eqs. (11) and (12) for the ~-N amplitude in the
P)3, P3I and P33 channels.

For the P~~ channel, the phase shifts change sign at
T =150 MeV, and we need to resort to at least a rank-
two separable potential. To include the coupling between
the NN and m.NN channel, the P» amplitude needs to
have a pole at the nucleon mass. This can be
achieved' ' ' by taking an energy dependent rank-two
potential of the form

v (k, k', E)=fo(k) fo(k')+g (k)Ag(k'), (13)F —mp

where mo is a parameter of the potential, and we refer to
it as the bare nucleon mass. The motivation for the ener-

gy dependence in the first term on the right-hand side
(rhs) of Eq. (13) is the inclusion of the diagram in Fig.
2(a), which has a pole in the energy plane at the bare nu-
cleon mass. In that case fo(k) is the bare mNN vertex.
The second term on the rhs of Eq. (13) is a parametriza-
tion of all other lowest order contributions to the n Nam--
plitude in the P» channel. In particular, it includes the
crossed diagram in Fig. 2(b).

The amplitude corresponding to the potential in Eq.
(13) can be obtained' by solving the two-body equation
with the Green's function in Eq. (10). Alternatively, we
can write, using two-potential theory, the amplitude for
the potential in Eq. (13) as

t (k, k', E)=f(k,E)d (E)f(k', E)+g(k)~(E)g (k'), (14)

where w(E) is given by Eq. (12), and the second term on
the rhs of Eq. (14) is the t matrix for the potential
g(k)Ag(k'). Here, f(k,E) is the dressed ~NN form fac-
tor, and is given by

given by

d (E)= [E—m —I (E)] (17)

and

I i(mN) = (f(IN)
I
[G(IN)1' If(mN) &

I 2(E)= &f(~N)
I
[G(mN)]'G (E)

I f«) &

+ (f(mN)
~
[G(~N)]

~ g &

Xr(mN)(g
~
G(mN)G(E)

~
fE)& .

(21)

(22)

We now can write the renormalized propagator and ~NN
form factor as,

d (E)I(E —mN)[1 (E —mN)1 2(E)]I— (23)

f"(k,E)=Z2 f(k,E), (24)

where the wave function renormalization constant Z2 is
given by

1«)=(fo
I
«E) If«)&

dkk
fo(k)f (k,E)

(18)
g( k)[E—W(k) ]

The form of the P» amplitude given in Eq. (14) was orig-
inally suggested by Mizutani and Koltun for use in the
NN-m. NN system.

To adjust the parameters of the potential to give the
vrNN coupling constant, we need to rewrite the first term
on the rhs of Eq. (14) as

f(k,E)d (E)f(k', E)=f"(k,E)d (E)f~(k', E), (19)

where d (E) is the renormalized dressed propagator
which has a simple pole at the nucleon mass, and a resi-
due of one. To get an explicit expression for d (E), we
need to expand I (E) about the nucleon mass, i.e.,

I (E)=I (mN)+(E —mN)l ~(mN)+(E —mN) I 2(E),

(20)

where

f(k,E)=fo(k)+g(k)r(E)(g
~

G(E)
~
fo&

with

(15) Z2 ——[1+I ~(mN)]

=1—I ((mN) (25)

(g i
G(E)

i fo&= f dkk . (16)
g(k) o(k)

g(k)[E —W(k)]
In Eq. (14), d (E) is the dressed nucleon propagator, and is

ta)
FIG. 2. Contribution to the pole (s-channel pole) (a) and non-

pole (u-channel pole) (b) to the m.-N potential.

with

I; =Z21; (i =1,2) . (26)

In this way we can write our P~~ amplitude in terms of a
renormalized mNN form factor and nucleon propagator.

To determine the mNN coupling constant, we follow
the procedure of Mizutani et al. ' and compare f (k,E)
with the mNN vertex using the pseudoscalar coupling, i.e.,

igo(k)u(~ P)(iy—5)u, .

where ~ is the Pauli matrix, P is the pion field, and u is
the usual Dirac spinor. This comparison at E =m~ and
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k =ko where

2m„
ko ——m 1—

4mN

gives the mNN coupling constant,

gp(k) m
f'NN(k)=

4m 2mw

2

~ co(k)e(k)[e(k)+mN]
3 4mN

Finally, comparing our parametrization with that of
Coronis and Landau, we note that they get their sepa-
rable potential form factor numerically by employing in-
verse scattering theory. The use of such potentials in the
three-body calculation is limited because one can no more
employ the rotation of contour method to solve the in-
tegral equations. With our parametrization, where fp(k)
and g~(k) are of the Yamaguchi-type, no such limitation
is encountered.

III. NUMERICAL RESULTS

with

mN+E(k)
E(k)

E (k) =co(k) +e( k),

f"(k,mN)

k
(29)

Before we can proceed to the detail parametrization of
the potentials, we should relate our inelasticity g~ to the
phase shifts 5~ and inelasticity ri~ obtained in a phase
shift analysis of the m-N data. From Eq. (3), we have for
a given partial wave that

co( k) = (k +m ~)'~

e(k)=(k +mN)'

(30)

The requirement that f NN(kp)=0. 079 will allow us to
fix the strength of the form factor fp(k), while the param-
eter mp is determined by the requirement that d(E) has a
pole at E =mN. This gives

mp ——mN —I (mN) . (31)

In this way, the division of the P~~ amplitude into a pole
and nonpole part had the added advantage of determining
two of the parameters of the potential in terms of the po-
sition of the nucleon pole and the m.NN coupling constant.
To adjust the rest of the parameters of the potential to fit
the phase shifts, we find it simpler to treat the potential in
Eq. (13) as a rank-two separable potential.

The above inclusion of inelasticity in the P~ ~
channel is

similar to that of Ernst and Johnson only after they set
ri» ——g, 2=g22 ——g. In their formalism, they have the add-
ed freedom of including distinct couplings between the
different terms in the rank two potential and the inelastic
channels. The effect of not setting all the q's equal has
been examined recently. ' lt was found that the results
had a limited' dependence on the precise value of the g's
used. Due to lack of experimental information about the
relative magnitude of the g's, we have used a single g in
the Green's function, as was the case with the other par-
tial waves.

In additiori, Ernst and Johnson have utilized the
Chew-Low model to fix the first term in their rank-two
potential in the P~~ channel. In particular, this first term
includes both the s-channel and u-channel pole. On the
other hand, we have included only the s-channel pole in
the first term, while the crossed diagram in Fig. 2(b) is
part of the attraction that is parametrized by the separable
potential g(k)Ag(k') in Eq. (13). In this way, the u-
channel pole which leads to a cut after partial wave pro-
jection does not appear in either d(E) or v(E). This
avoids the problem of getting unphysical threshold in a
three-body calculation. ' Thus, the residue of the off-shell
P&& amplitude at the nucleon pole is different for the two
models because of the way the u-channel pole is includ-

22

g~(k)
t (k) = — e ' sin5~(k),

p(k)
2i5

(ri e ' —1)

p(k) 2i

(32a)

(32b)

In this way, we can get g and 5 from either the
Karlsruhe amplitude' analysis, or from the more recent
phase shift analysis. We have found that near the
threshold for pion production the ri obtained from the
Karlsruhe analysis' have large fluctuations. This is par-
ticularly the case when the phase shifts in that channel are
quite small, as is the case in higher partial waves. To
avoid this problem, we have fit the inelasticity g (k) us-
ing a smooth function to the phase shift analysis of Koch
and Pietarinen near the pion threshold, and the
Karlsruhe analysis at higher energies. The functional
form chosen for g~(k) is

8 (i —1)—& (i)

,.~, 1+expj[k k(i)]IF—(i)]

where 8 (0)= 1.0. In addition, we require that

lim g~(k)=l and lim g~(k)=0. 5 .
k~0 k~ oo

This functional form allows us to fit all the structures in
ri (k) for pion energies less than 1.5 Ge&. For S- and D-
wave pions, we take X=4 and the corresponding parame-
ters are given in Table I, while for P-wave pions, we take
N =3 and the parameters are given in Table II. The fit to
the experimental values are given in Figs. 3—11. In gen-
eral, the fit is very good, and in all cases, g —+1 below the
pion production threshold. In some channels, we have not
fit all the detailed structure in the data, but then it is not
clear if this detail is only due to errors in the data. With
this parametrization of q~(k), we can now proceed to ad-
just the parameters of the potential to fit the phase shifts.
We note here, that adjusting the parameters of the poten-
tial is now the same as was the case in the absence of
inelasticity. Furthermore, since g~(k)=1 for all practical
purposes below the threshold for pion production, the
two-pion threshold is built into the amplitude and one can
fit the rapid changes in the phase shifts above the pion
production threshold, without introducing any rapid vari-
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TABLE I. Parameters for the inelasticity g for S and D waves. The parameters are defined in Eq.
(33).

8{1)
8(2)
8(3)
8{4)
C(1)
C(2)
C(3)
C(4)
k(1)
k(2)
k(3)
k(4)

0.728
0.165
1.030
0.50
0.010
0.0713
0.117
0.276
1.91
2.33
2.57
3.02

S)3

—1.09
0.93
1.12
0.50
0.078
0.108
0.063
0.614
2.44
2.51
3.24
4.18

D

0.532
0.327
0.000
0.50
0.010
0.0477
0.0248
0.526
1.73
2.55
2.92
3.90

Dls

0.143
0.358
0.000
0.500
0.0964
0.033
0.186
0.496
2.07
2.43
3.58
4.70

D

0.026
0.590
0.269
0.500
0.0136
0.250
0.065
0.512
1.77
3.03
3.61
5.18

D35

0.0848
0.207.
0.195
0.50
0.0139
0.119
0.0318
0.299
2.54 '

3.45
4.13
5.21

TABLE II. Parameters of the inelasticity g for the I' waves.
The parameters are defined in Eq. (33).

&{1)
&(2)
8(3)
C{1)
C(2)
C(3)
k(1)
k(2)
k{3)

0.605
0.418
0.500
0.0978
0.214
0.0136
1.66
2.87
3.175

0.010
0.155
0.500
0.0229
0.0916
0.426
2.63
2.97
3.59

0.458
1.188
0.500
0.181
0.268
0.704
2.87
3.79
4.36

0.291
—0.0395

0.500
0.0461
0.170
0.761
2.28

. 2.64
3.90
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FIG'. 3. The phase shifts 6 and inelasticity g for the S~ I

channe1. The experimenta1 data () are from Refs. 10 and 24.
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FIG. 4. The phase shifts 6 and inelasticity q for the S3I
channel. The experimental data (~ ) are from Refs. 10 and 24.
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FIG. 7. The phase shifts 5 and inelasticity g for the P33
channel. The experimental data (~) are from Refs. 1G and 24.

C C,k '
g (k)=

(k +P')"' (k'+P,')"' (34)

ation in the form factor, or coupling to inelastic channels.
For alI partial waves other than the P~& channel, vie

have chosen a rank-one separable potential with a form
factor that is the sum of two Yamaguchi types, i.e.,

r

On the other hand for the P~~ channel, we take

(35)

200,

fo(k) = Co k
[~(k)]1/2 (I p p)no

while g~(k) is given by Eq. (34). The advantage of this
form factor over a Gaussian or Bessel function is that
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FIG. 6. The phase shifts 5 and inelasticity g for the P3l
channel. The experimental data (~) are from Refs. 10 and 24.
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FIG. 8. The phase shifts 5 and inelasticity g for the D&3
channel. The experimental data () are from Refs. 1G and 24.
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FIG. 9. The phase shifts 6 and inelasticity g for the D»
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FIG. 11. The phase shifts 5 and inelasticity g for the D»
channel. The experimental data (0}are from Refs. 10 and 24.

in three-body calculations, one can use the rotation of
contour method to solve the integral equations. On the
other hand, the Gaussian or Bessel functions vary slowly
at low momentum, and in particular between the nucleon
pole and threshold. For the P~I channel this might have
some significance, since the NN-nNN results seem to be
sensitive to this behavior.

200 i-

~+ 100'-

In Table III, we present the parameters of the potentials
in all channels other than the P~t, The corresponding
phase shifts 5 and inelasticities q are given in Figs. 3—11.
Here, we plot both the 5 and g to illustrate the correlation
between the opening of the inelastic channel (the sudden
decrease in q), and the rapid increase in the phase shifts.
%'e have chosen to include the effect of this rapid varia-
tion in g(k). In this way, our form factors are relatively
smooth, which in turn leads to a smooth off-shell
behavior. Thus, below the threshold for pion production,
our off-shell amplitude is well behaved, even though we
do not have a coupled channel problem to solve. In some
channels (e.g., the P3~), the data, and particularly g, have
some oscillation, which we have chosen not to fit. This

30—
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FICx. 10. The phase shifts 5 and inelasticity q for the D33
channel. The experimental data (~ ) are from Refs. 10 and 24.

FIG. 12. The phase shifts 5 in the Pll channel for the poten-
tials PJ ( ), M1( ———}, E2(. . } and
E1 ( —~ —~ —~ }. The experimental data is that of Koch et aI.
(Ref. 24) and Zidell et al. (Ref. 25}.
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TABLE III. Parameters of m-N potentials in all channels other than p&~.

S

D
Dis
D

n3

2
2
2
2
2
4
4

—1

+1
+1
+1
—1

—1

—1
—1

+1

0.3706
61.8
0.581

70.1

1.08
1.448 97
0.397 61
0.043 868
0.49007

83.45
8.4
1,66

91.4
1.375

217 766.0
22 693.0
26 601.0

667.01

Pi
(fm ')

1.716
11.5
1.23
1.65
1.54
2.797
1.6625
1.0707
1.4044

Pz
(fm ')

9.345
1.99
1.925
2.24
2.20

14.9335
8.561
8.6601
4.0123

TABLE IV. Parameters of the P» .m-N interaction used in the present investigation. All these potentials give a n.NN coupling
constant f' NN~k ~

——0.079. Potentials E 1 and E2 have the inelasticity included (i.e., z)&l). In this channel n
&
——1.

0

Potential

E1
E2
PJ

M1

n3 (fm ')

5.7661
3.4983
3.8206
2.7703

2.3220
1.2278
1.2689
1.4422

Pz
(fm-')

5.9671
4.5545
5.181
2.1982

C)
(fm ')

119.5173
30.5768
43.5646

1.0726

Cp

1.1348
0.3233
0.2907
0.3433

C3

9237.17
21326.9

1420.59
7.4026

%10
(fm-')

5.8649
5.2062
5.1574
5.4314

was motivated by the fact that zl is always int'egrated over
in calculating the amplitude [see Eq. (10)], and thus
should not affect our final off-shell amplitude. This is
particularly the case since the variations are not as
distinct in the phase shifts 5 as they were in the inelastici-
ty '9.

In general, our fit to the Karlsruhe data' is very good.
The exception is the D33 where we could not fit the rapid
variation of the phase shifts just above the threshold. We
observe that Ernst and Johnson seem to have had this
problem also.

Part of the reason for including the inelasticity in the
parametrization of the amplitude is that it could have
some infiuence on the off-shell behavior of the amplitude,
even below the pion production threshold. Since the P~&

channel has the lowest energy resonance above the pion
production threshold, we have chosen to examine the role
of the inelasticity on the off-shell behavior of the ampli-
tude in this channel. For this purpose we have chosen
two potentials with inelasticity included in their para-
metrization, E1 and E2, and two potentials in which the

TABLE V. The scattering volume a», wave function renor-
malization Z2, and the mNN coupling constant at k =0 for the
different P~l potentials. All potentials have a mNN coupling
constant of 0.079 [see Eq. (29)].

production threshold was not included, i.e., g=1. These
are referred to as PJ and M 1. In Table IV we present the
parameters for these potentials, while the form of the po-
tential is given by Eqs. (34) and (35). In Fig. 12, we com-
pare the low energy phase shifts for these four potentials,
while in Table V, we give the scattering volume a&&, the
wave function renormalization constant Zz, and f~NN(0).
The phase shifts for the four potentials are similar for
T &350 MeV. In particular, the potentials E2 and PJ
have similar phase shifts, scattering volume a&& and Zz.
To compare their off-shell behavior, we have chosen to
compare the rrNN form factor f(k, n)zN[see Eq. (15)]
since that exhibits the behavior of both fo(k) and g(k).
In Fig. 13, we compare this form factor for the four po-
tentials. Here, we observe that the potentials PJ and E2

1.2

0.8
E

0.4

Potential

El
E2
PJ

—0.1037
—0.0710
—0.0706
—0.0721

Z2

0.5355
0.7939
0.8059
0.7273

f~NN{0)

0.065S

0.0510
0.0620
0.0488

I

2 3

k'(fm ')
FICi. 13. The dressed zrNN form factor f(k, mN) normalized

to one at k =0, for the potentials in Fig. 12. The curves are la-
beled as in Fig. 12.
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give almost identical form factors. This is a clear indica-
tion that the inclusion of inelasticity does not necessarily
influence the off-shell behavior of the amplitude. In fact,
the biggest difference is between the two potentials E 1

and E2 T. hese also give a different scattering volume
, and phase shift, but within the experimental uncertainty.

IV. CONCLUSION

In the above, we have presented separable potentials
that fit the ~-N phase shifts and include inelasticity in the
5-, I'-, and D-waves. In all channels other than the P~~
we have used a rank-one separable potential without intro-
ducing any rapid variation in the off-shell behavior of the
amplitude. This was achieved by including the inelastici-
ty in the Green's function. In this way the threshold for

pion production was included, maintaining consistency
with unitarity. The mean feature of these potentials is the
choice of form factor g (k) which make them suitable for
use in three-body calculations using rotation of contour
method. In the P&~ channel the amplitude is written as a
part that has the nucleon pole plus an attractive nonpole
part. This form is designed to couple the pion elastic
channel to the absorption channel.
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