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We give a simple and transparent derivation of a result obtained recently by Kim, Udagawa, and Tamura
for the loss of flux occurring in the coupled-channels scattering problem when a complex potential is used.
The loss of flux, or absorption cross section, consists of three components: absorption from the elastic
channel, absorption from the nonelastic channels, and absorption occurring during the elastic-nonelastic
transitions. Some discussion is given of these results and their application to fusion reactions.
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with outgoing scattered waves. Also, v is the relative
velocity of the colliding systems, p, is their reduced mass,
and r is the separation of their centers of mass.

Recently, Udagawa, Kim, and Tamura (UKT)3 used for-
mal manipulations to extend the relation (I) to the use of a
complex interaction in a coupled-channels model. We com-
ment that this result can be derived in a simple and more
transparent way by explicitly considering the loss of flux
from the set of coupled channels. We then append some
remarks on the use of these relations.

Consider a set of nonelastic channels, plus the elastic
channel (the set {P], say), which are to be treated explicitl'y
in a coupled-channels (CC) calculation. The various in-
teractions are represented by a complex optical potential ma-
trix U = V+i 8' whose imaginary part accounts for any loss
of flux into those open nonelastic channels (the set {y],
say) which are not considered explicitly. (The existence of
this imaginary part 8 also implies that the real part V,
which is related to it by a dispersion relation, depends upon
the energy E . This dependence may be particularly marked
for energies close to the top of the Coulomb barrier hence
of importance for the interpretation of fusion cross sections
at these energies. )

Let the relative motion in each channel P be described by

It is well known' that the absorption (or reaction) cross
section a-A implied by the use of a complex optical potential
U = V +i 8' is given by

(E ) = —(2/t ) (x."'I~lx."'&

[Note that the expectation value of &has to be negative to
satisfy unitarity, so that o.A~O. However, in general, it is
not necessary even for a local W(r) to be everywhere nega-
tive. Counterexamples are provided by potentials U that are
the local equivalents to a nonlocal interaction. These may
have imaginary parts that are positive in some regions of r
although, by construction, they will satisfy o-A~0. Exam-
ples have been shown in Ref. 2.] Here Xt+l is the scatter-
ing wave function at energy E, a solution of

Using Eq. (3), the divergence of the flux jtt(r&) in channel

P is now found in the usual way' to be

divjtt(r, ) = (2/t) g Im[x,'+' (r, ) V,x',+'(r, )1 . (4)
p

The contributions to divjp from ReU, represent the inter-

change of flux between the P and P' channels, while those
from ImU, correspond to current flowing out of the {P]
set. From Eq. (4) we immediately get the absorption cross
section for the total loss from the {p] set of coupled chan-
nels,

tr~(CC) = —(2/tu ) g Im(xp'+'I U {x'+')
pp

(5)

The sum over channels is symmetric in P and P', while the
interaction matrix is also symmetric,

(6)

Here we have allowed the possibility that the potential U is
nonlocal. One example where the effective coupling poten-
tial U, is nonlocal occurs when the P and P' channels

pp
differ by a rearrangement; e.g. , P P' represents a transfer
reaction. In general, the coupling term U, then contains

both interaction and nonorthogonality terms; it corresponds
to the coupling kernel called E (rtt, r, ) in Ref. 7. This

kernel also obeys6 the symmetry relation (6).
With these symmetries, the expression (5) can be reduced

to the matrix generalization of Eq. (I),
~, (CC) = —(2/tu. ) X (X,'+'{ImU„,{X,'+'),

pp

(7)

so that the absorption cross section depends only upon

a wave function x&+'(r&). These are outgoing-wave solu-
tions of the coupled equations

[Fts+ (t'/2pts)V p2 Uptt]xpt+—'(rtt) = X U, x',+'(rtt)
P ~P

32 2203 1985 The American Physical Society



2204 COMMENTS 32

ImU, as expected. This corresponds to Eq. (17) of UKT,
although their equation was obtained after assuming ImU to
be diagonal. This is an unnecessary restriction; complex
off-diagonal couplings will also contribute to a.q (CC).
Indeed, the sum in Eq. (7) may be broken into three pieces,

oA (CC) oAel+ oAnel+ oA, « (8)

in which o-A, ~ represents absorption from the elastic channel
(P = P = n), o-A „,~ is due to absorption while propagating in
the nonelastic channels (P=P', but P, P'eu), and o.A„
describes absorption — occurring during the transitions
(PAP'). This last term vanishes if the off-diagonal cou-
pling U, is real, while the first two terms are positive de-

finite if, as is usually done, the diagonal potentials ImU&p
are chosen to be negative everywhere. In genera1, however,
the only requirement of unitarity is that the sum
o.A(CC) ~ 0.

UTK postulate that ImU= W, say, can be separated into
two terms, W = WF+ WDR, the first of which describes
fusion, or compound-nucleus formation, while the other ac-
counts for other direct or semidirect reaction channels (in
the {7) set) which are not included explicitly in the CC cal-
culations. (From the remarks just made, it does not follow
that ( WF) ~

~ W~ everywhere, but only that the expectation
values of WF and WoR be negative or zero. ) From Eq. (7),
it is clear that o.A(CC) may be separated into two parts in
the same way, so that the fusion cross section o-F(CC) is
obtained from that equation by replacing Im U by WF.
[However, as stressed by UTK, the CC waves x&~+~ in Eq.
(7) are still to be generated by the full potential U= V
+i WF+iWna. ] Then this crF(CC) can be expressed as a
sum of three components corresponding to Eq. (8) for
o.A(CC), the first term o.F,~

of which is what UTK call o-EF,

or elastic fusion, and the second term o-F „,t they ca11 crDRF,
or direct-reaction fusion.

The third term o.A «of o.A(CC), or a-F «of o.F(CC), arises
if the imaginary parts of the off-diagonal couplings are
nonzero. It is customary to include these imaginary parts in
the usual collective model description of inelastic scattering,
and, in principle, they appear also for transfer reactions.
They arise from P ~ P' transitions that occur via intermedi-
ate channels in the excluded (yj set, consequently their im-

portance depends upon the completeness of the (P) set that
is chosen. In practice, this choice usually represents a
severe truncation of the fu11 space, so that the off-diagonal
W and the corresponding o-A „need not be negligible. It is
less clear whether the part WF of W should have non-
negligible off-diagonal parts, although the physical picture7
underlying the use of a deformed optical potential for collec-
tive inelastic excitations implies that WF should be treated
in the same way. Further, we note that in the application of
their ideas, UTK find that the WF needed to describe rnea-
sured heavy-ion fusion cross sections extend to large radii
beyond the top of the Coulomb barrier. This suggests that
WF could also be important for the nonelastic transitions
that are included in a CC treatment.

Finally, we note that an equivalent one-channel optical
potential U = U + 6 U, which gives the same elastic
scattering as the set (3) of coupled equations, may be ob-
tained by projecting the p set of CC onto the elastic chan-
nel, P = a. By construction, U then reproduces exactly the
elastic wave xt+~ that was obtained by solving the (P) set of
coupled equations. The complex term AU is the polariza-
tion potential which represents the effects of the couplings
to the other members of the P set. If its nonlocality is ig-
nored, we may identify U as the empirical optical potential
which reproduces the observed elastic scattering of the sys-
tem. The expectation value of W taken with respect to
x~+~ gives exactly the term o~,,~ of Eq. (8). Similarly, the
expectation value of (WF) gives the corresponding a.F,~

term. Note that neither of these is the absorption cross sec-
tion, crA say, associated with the optica1 potential U; that
is given by the expectation value of ImU = W +ImhU.
It equals o-A (CC) plus the sum of the nonelastic cross sec-
tions to the explicitly coupled P channels, and corresponds
to the total loss of flux from the elastic channel.¹teadded. A derivation of Eq. (4) and a discussion of
the flux lost from a system of coupled channels have also
been given in the doctoral dissertation of R. Wolf, Universi-
ty of Giessen, 1983 (unpublished).
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