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Effect of the nuclear surface on a propagating density pulse
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%e show that the density variation in the region of the diffuse surface of the target nucleus has a sub-
stantial effect on the motion of a soliton formed in a nuclear reaction.

In a series of recent papers, ' a novel feature of nuclear
hydrodynamics at intermediate energies, namely, that of a
solitary density wave formation, has been investigated. In
the idealized treatment of Ref. 1, we showed that the
dispersive and nonlinear nature of the nuclear fluid might
lead to a density oscillation describable by the Korteweg-de
Vries (KdV) equation, which admits stable stationary wave
solutions usually referred to as solitons. For reasons dis-
cussed in Refs. 1 and 2, these solitons are expected to be
formed at intermediate-energy nuclear collisions involving
small nuclear projectiles on large nuclear targets.

The idealized treatment of Refs. 1 and 2 was corrected to
a certain extent in Ref. 3. There we showed that even when
the soliton propagates in an infinite medium, the three-
dimensional motion in the fluid, which arises from the in-
herent nonlinearities of the hydrodynamic equations, results
in a damping of the propagating soliton-like pulse. The pur-
pose of this note is to draw attention to the point that, in-
dependent of the three-dimensional motion, the finite size
of the target nucleus also plays a crucial role in the physics
of the nuclear soliton. In particular, we shall discuss the ef-
fect of the density variations in the surface region of the
target nucleus on the motion of the propagating soliton.
For the understanding of this effect, it suffices to consider
the one-dimensional case allowing for analytical considera-
tions.

As in Ref. 4, we approximate the density distribution by a
constant density for the central region followed by a linear
falloff to zero near the nuclear surface. The region charac-
terized by the varying density then has a length S of about
4.4a, where a is the diffuseness parameter. For large nuclei
the quantity a ranges between 0.6 and 0.7 fm. If the
"equilibrium" density of the nucleus is denoted by po (and
the local density by p), we have

for R —S/2 & IZ I & R —S/2, and the usual KdV equation
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Using the Bogoliubov-Mitropolsky procedure7 for non-
linear equations, Ott and Sudan investigated equations of
type (1). Following their work, it can be shown that (1) has
an approximate analytical solution of the form

p t = N (r )sech'g
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and

since our considerations would then correspond to increas-
ingly shallower water, i.e., a typical region of applicability of
the Korteweg-de Vries equation.

We take the motion to be in the Z direction and assume
pp to be independent of time t. Expanding the density p
and the velocity v around their equilibrium values pp and 0,
respectively,

P=PO+&Pl+& P2, V=apl+6 V2
2 2

and repeating the calculation of Ref. 1 with consideration of
the r = Z dependence of po, we get the "forced" KdV equa-
tion
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where R is the nuclear radius.
The implied application of the hydrodynamical approxima-

tion to the nuclear surface region is in line with the general
practice in nuclear physics; see, e.g. , Ref. 5 and references
therein. In terms of classical dynamics the same holds,

Equation (3) describes a solitary density pulse with height
equal to N(r) and width proportional to [N(r)] 'i'. Since
N(r) is varying with time r, the amplitude increases and
the width decreases with progressing time. On the other
hand, the solitary solution to Eq. (2) is characterized by a
constant amplitude and a constant width. So, the physical

32 2201 1985 The American Physical Society



2202 BRIEF REPORTS 32

picture emerging from these considerations is that the soli-
ton (created at p=pa) propagates unchanged through the
region of constant density up to ~Z~ (8 —S/2. Then it
grows slowly (and simultaneously becomes narrower), the
rate of the changes being determined by n'.

At this point, let us remark that the Bogoliubov-
Mitropolsky procedure is a perturbative one, appropriate for
very small perturbations. But we have also investigated Eq.
(1) numerically and have obtained the same behavior as
predicted by Eq. (3).

To draw quantitative conclusions, we transform back to
the z —t space, and get

1

N(t) =N(0)exp- + C

3 po

From the considerations of Ref. 4, we approximate a as

0 8pIIentral

S
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With' Jc t =0.16, pe=0. 17 fm 3 (in units of the velocity
of light), one obtains

1.41N(0), a =0.6 fm
1.42N(0), a =0.7 fm

The initial amplitude of the density soliton is increased by
about 40% during its passage through the nuclear skin. The
width suffers a corresponding shrinkage of about 30%. A
schematic illustration of the situation is given at the top of
Fig. l.

In the extreme limit of a very strong nonlinearity the full
equation could be approximated by

Equation (5) yields for an initial KdV soliton at t =0 the
time evolution sketched in the lower part of Fig. 1. Due to
the nonlinearity, the crest of the wave is moving faster than
its base leading to multivalued solutions of (5) and eventu-
ally to the destruction of the initially well localized distribu-
tions. In the case discussed above this "destructive"
behavior is apparently counteracted by the change in the
background density. Nevertheless, it is obvious that even in
an idealized [one-dimensional (1D) nondissipative] treat-

FIG. 1. The evolution of a initial soliton is sketched as a function
of x and r (decreasing from front to back). In the upper part this is
done for a changing background density p(x) and in the lower half
for the dispersionless KdV Eq. (2).

ment the evolution of the solution, as created at t=0, is
strongly affected by the variations in the (equilibrium) den-
sity in the surface region of the target nucleus.

However, as shown in Ref. 3, 3D motion of the density
disturbance implies that it is coupled to the other coordi-
nates having a similar effect on the soliton as damping.
Thus, in reality, its characteristics are already changed be-
fore it reaches the surface region. As a consequence, the
findings of the present study and of Ref. 3 have to be com-
bined to arrive at more realistic predictions for evolution
and experimental signatures of such density disturbances
which are prototypes of hot spots.
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