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Ground-state properties of nuclear matter using the A approximations
of the Green's function theory
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The nuclear matter parameters and single-particle properties are calculated in the so-called A'
A" ', and A"" approximation of the Green's function theory. For the nucleon-nucleon interaction
we used the Hamada-Johnston, the Reid-soft-core, and the Paris potential. The results show no sig-
nificant differences with those obtained from the Brueckner theory. For comparison we used also
the Galitskii approximation.

I. INTRODUCTION

For the treatment of the nuclear matter system several
methods are available. Most papers utilize either
Brueckner's theory' or the coupled-cluster method.
Extensive reviews of Brueckner's approach to nuclear
matter, in which the different variants of the theory are
extensively discussed, are given, for instance, in Refs. 5
and 6. Martin and Schwinger have developed a method
for the thermodynamic Green's functions, which makes
possible the consideration of two, three, and higher corre-
lations in a systematic way. Because, however, the latter
is rather difficult to implement, only a few inves-
tigations —mostly with separable potentials —applied this
method to the nuclear matter problem. ' In this
scheme one decouples the infinite hierarchy of Green's
function equations by a "nonperturbative superposition"
approximation —analogous to the Born-Green-Kirkwood-
Bogulyubov decomposition in statistical mechanics—
which factorizes the sixpoint function into fourpoint
functions and single-particle propagators. By keeping
only dynamical correlations connected with the two-body
potential, one obtains approximate theories, the so-called
A' ', A" ', and A'"' approximations.

Contrary to the Brueckner theory, where one has the
option between the conventional gap choice or the so-
called continuous choice, ' the A theories have the advan-
tage that they give a definite description of the propagator
dominators. However, due to the complicated structure

I

of the A theory the Brueckner theory is preferred in most
of the nuclear matter calculations. Especially from the
viewpoint of realistic potentials, only the Hamada-
Johnston potential has been used in the A' ' and A" ' ap-
proximation. ' ' Therefore it seems worthwhile to calcu-
late the nuclear matter properties in the different A ap-
proximations for more recent potentials and to compare
the results between the different A approximations and
the Bruecker treatment. For this purpose we have select-
ed the Hamada- Johnston (HJ), the Reid soft core
(RSC), and the Paris potentials. Since the formalism is
known from the literature, we present the basic theory
only briefly in the following section. A closer inspection
of the basic system of coupled equations reveals that it is
not practical to perform a fully self-consistent calculation.
The main cause is the complicated nature of the inter-
mediate propagator in matter. Therefore we have to in-
troduce some additional simplifications, which will be
outlined in Sec. III. Section IV is devoted to the numeri-
cal results and the comparison between the different ap-
proaches.

II. FORMALISM

The A approximations in energy-momentum represen-
tation are defined by the following set of three equations
which connect the effective single-particle potential V
(mass operator), the one-particle Green's function g, and
the (antisymmetrized) effective scattering amplitude T
(reducible vertex):

P
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The spectral function A (p;co) is given from relation (2.3)
as

g ( p;co) =8(co)g(p;co+i')+8( —co)g(p;co —i g), (2.7)

V(p;co) =8(co)V(p;co+i')
A (p;co)= [g(p;co+i') g—(p;co ir—i)]

27' +8( co—) V(p;co i —ri), etc. , (2.8)

1

2%
y(p;co)

2

+p —Re V(p;co) + —,y (p;co)
2m

(2.4)

y(p, co) =i [V(p;co+i') —V(p;co i—g)] & 0 . (2.9)

For convenience we use the Hamiltonian ()(c and N denote
the chemical potential and the particle number, respec-
tively):

The intermediate propagator A is defined by

~(, ) f+"
d d, A (p;co)A (p', co')

Z —CO —CO

(2.10)

The energy per nucleon and momentum distribution are
given by

with

8(x):= —,
1

X [8(co)8(co')—8( —co)8( —co')] (2.5)

(2.6)

(0) H /0)
N f dco

d p 2

CO+ +P 3 P~ CO

(2~)3 2m

%'e have neglected spin and isospin variables, which will
be included later. Functions with a tilde denote analytical
functions for Imz&0. The physical functions (without
tilde) are given by the following boundary values:

(2.11)

n(p)= f dcoA(p;co) . (2.12)

The different A approximations are defined as follows:

~ (;J) , d d , 8(co)8(co') —8( —co)8( —co')
A p, p;z:= @CO dCO

Z —CO —CO

A (p;co)A (p';co') i =j=0,
~ —,

'
[A (p;co)A(p', co')+A(p;co)A (p', co')] i =l,j =0,

A (p;co)A (p';co') i =j= 1 .

(2.13)

A denotes the free particle spectral function given by [see
(24) for y~0]

A (p;co)=5 co — +)M
p
2m

(2.14)

III. APPROXIMATE TREATMENT

The main difficulties in the calculation emerge from
the intermediate A propagator. Only for the simple A'

approximation, 9' ' ' ' ' 2' where one is not confront-
ed with a self-consistent determination of the spectral

For a full self-consistent solution, one has to solve the
coupled systems of Eqs. (2.1)—(2.3), where the intermedi-
ate propagator is defined by (2.13). With exception of the
A' ' case, this task is a very complicated problem. The
main difficulty is the A propagator, for which one
needs —in principle —the complete off-shell energy
behavior of the mass operator [see definitions (2.4) and
(2.5)]. Therefore, the complete treatment would demand
the solution of the. coupled system (2.1)—(2.3) for the
whole momentum-energy range. For realistic potentials
we see no possibility of handling this problem without
further simplifications, which will be sketched in the next
section.

2
A' '(p;co) =5 co — —V' '(p;co)+)(c co & 0,

2m
(3.1)

where the single-particle energies are determined from the
eigenvalue equation

2

~(p)= + V' '(p;~(p) —((c), (3.2)
2m

and the momentum distribution is given by
—1

n (p) = 1 — V' '(p;co)
BCO

(3.3)
OP =E(P)—jM

For the A" ' and A' "' approximations one has—in
principle —to iterate the set (2.1)—(2.3) with the definition
(2.13) until self-consistency is achieved. This procedure is
numerically not tractable. For this reason one simplifies
the A propagator by using the single-particle description
(3.1) and (3.2) for the spectral functions in (2.13). One ob-
tajnS8& 1 1 13p 20& 2 1

I

function A in the A propagator, can one solve directly
(after the standard angle averaging procedure of A) Eq.
(2.1) for the T matrix, which is not coupled to Eqs. (2.2)
and (2.3). Furthermore, the T matrix has no cut for nega-

-tive frequencies and Eqs. (2.2)—(2.5) give immediately
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2
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2
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y(p) denotes the "on shell" imaginary part of the mass
operator, defined by Eq. (2.9) as

y(p): =i [V(p;e(p) @+i—)) ) V(p—;e(p) —
)M

—i2) ) )]

and use only the "distorted Born-type" approximation

T 111)( ) T (00)( )+ T 00
(

=y(p;~=~(p) —p) .

The Pauli principle is taken into account via

(3.6) X [A ""(z)—A ' '(z)] T '~'(z) . (3.10)

&(Q,q):=@p) PF)@p2—pF) @pF p'1)@pF p2)

(3.7)

with

Pi —Pz
Q=pi+p2

2
(3.g)

X[A'")(z)—A' '(z)]T""(z) (3.9)

For the A" ' approximation these assumptions plus the
neglect of ImV" ' in Eq. (3.4) are sufficient for the nu-
merical solution of the basis set (2.1)—(2.3) for local po-
tentials. The A'"' version has an even more complicated
analytical structure and turns out to be too complicated
for a numerical treatment. In order to overcome this
problem we utilize instead of Eq. (2.1) the equivalent
equation

T(11)(z) T 00 (Z)+ T 00 (Z)

Equation (3.10) combined with Eqs. (2.2) and (2.3) are
then taken as the basis set for the approximate treatment
of the A"" approximation. In this version we achieved
self-consistency after five iterations. As in the A" ' case
we use only real single-particle energies in the A""propa-
gator by starting from the values obtained from the
simpler A versions. We treated additionally, for the pur-
pose of comparison, the so-called Galitskii-version A' ' of
the A'"' approximation, ' in which the single-particle en-
ergies are replaced by the kinetic energies.

In the numerical treatment we solved first the A' ' and
A" ' problems. Here we have -"ontrary to the A'"'
approximation —the advantage of a 5-function-type spec-
tral function for negative frequencies. Nevertheless the
A" ' approximation is not simple, since one has to calcu-
late the off-shell self-energy. In the A"" approximation
one has to deal with a spectral function, which is still
peaked near the single-particle energy. For this reason
we made the simplifying parametrization:

z(p)5(0) —e(p)+p) for e(p) —
)M

—a(p) & co & e(p) —)I+a(p)
A(P;0))=

( ) a(p)+(p) 2 2
elsewhere

(~—e(p)+)M) +a'(p)

(3.1 1)

with the definitions

z(p):= 1 —Re
Bco

(3.12)

F(p):=2 1 —z (p)
z (p)

(3.13)

a(p):= —,
' z(p)y(p) . (3.14)

This ansatz reproduces —it seems —the essential features of the spectral function and fulfills the sum rule for 2 (p;e).
(For hard core potentials, see Refs. 26 and 27.) The resulting momentum distribution is given by
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TABLE I. Comparison of nuclear matter parameters for different potentials and approximations.

N-N

potential

HJ
RSC
PAR
HJ
RSC
HJ
RSC
PAR
HJ
RSC
PAR
HJ
RSC
PAR
PAR
PAR

Approximations'

A(00)

g(00)
~(00)
p(10)
~(10)

~(11)

g(G)

g(G)

BR
BR (Refs. 32 and 33)
BR (Ref. 34)
BR (Ref. 35)
BR (Ref. 25)

E0(E)
X

(Mev)

—6.27
—11.45
—13.17
—5.28
—8.55
—5.88

—10.96
—12.19
—5.53
—9.58

—10.99
—7.23

—11.30
—16.2
—21
—11.22

pp

(fm-')

1.245
1.43
1.548
1 ~ 145
1.334
1.240
1.461
1.620
1.192
1.378
1.492
1.27
1.43
1.62
1.6
1.51

(MeV)

87.63
148.72
162.03
144.72
80.18
65.98
92.28
86.42

109.95
140.52
97.64
82.5

138.0

'For more details see Ref. 31.
"a.=r~(B /Bra)[EO(%)/Xj with ro (3/——4mp)'

n (p) =8(e(p) —p —a(p))[1 —z(p) j . 1+—tan -I S
—e(p)

7T a(p)

+8(e(p) @+a(p—))8(a(p) e(p)+p—) Iz(p)8(p —e(p))+ 2~ [1—z(p)l I

+8( —e(p)+p —a(p)) .z(p)+ —[1—z(p)] tan
2 -I s —~(p)
7T a(p)

The numerical outcome for the different A theories is given in the next section.
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FIG. 1. Energy per nucleon versus Fermi momentum for the
HF potential using different A approximations.

FIG. 2. Energy per nucleon versus Fermi momentum for the
RSC potential using different A approximations.
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