
PHYSICAL REVIEW C VOLUME 32, NUMBER 6 DECEMBER 1985

Boson expansion theory in the seniority scheme
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A boson expansion formalism in the seniority scheme is presented and its relation with number-

conserving quasiparticle calculations is elucidated. Accuracy and convergence are demonstrated nu-

merically. A comparative discussion with other related approaches is given.

I. INTRODUCTION

Some two years ago, Kishimoto and Tamura' under-
took a major reformulation of the boson expansion theory
(BET). In it a unified derivation was given of various re-
sults of this theory that had been worked out earlier by a
number of authors. ' (Henceforth, we shall refer to Ref.
1 as KT3, as it has been done in a few of our papers that
followed it.)

More recently, Tamura showed, by using a major part
of the results obtained in KT3, that the bosonization pro-
cedure can be simplified significantly. The new method,
called a term-by-term bosonization (TTB) method, was
subsequently used to derive, e.g., a boson expansion in the
random phase approximation (RPA) representation, and
it will be used also in the present paper.

Although the eventual goal of any BET is its applica-
tion to realistic (and complicated) nuclear systems, it is in-
structive to see how a theory works for simple models. It
is particularly helpful in comparing different approaches,
because an exact fermion calculation, against which every
boson method is to be compared, can also be easily per-
formed. The main purpose of the present paper is to take
up a single-j shell model ( 1j-SM), and show how to boson-
ize it by using the TTB model.

It is well known that the 1j-SM is characterized by the
possibility of introducing the concept of seniority and of
constructing basis states in the seniority scheme. A
powerful method to calculate the matrix elements exists
for this scheme, known as seniority reduction (SR). The
SR will be used to full advantage in the present paper.
More precisely, we will carry out the SR completely first,
and then apply the TTB method to bosonize the reduced
matrix element. The formalism is given in Sec. II and it
will be called SR+ BET.

The SR is a good example of what is usually done in
the fermion stage of the formulation, before the bosoniza-
tion itself is undertaken. Another well-known example of
this is the use of the BCS (Bardeen-Cooper-Schrieffer) ap-
proximation. This theory is particularly powerful, thanks
to the use of the quasiparticle (QP) description, and it has
been extensively used in practical applications of our bo-
son formalism, which has been sometimes called
BCS+ BET. Let us remark that BCS remains a reason-
ably accurate theory, so long as it is applied to relatively

low-lying states in systems with a large effective degenera-

cy and a large number of valence nucleons. However,
these restrictions naturally determine the bounds of appli-
cability of the BCS + BET.

Recently, I.i set forth a method, called the number-

conserving quasiparticle (NCQP) method, that removes
the major part of the error in BCS, preserving, neverthe-
less, the merits of the quasiparticle description. In Sec.
III we thus discuss the NCQP + BET and its relation to
the SR+ BET, as well as to the BCS + BET. An impor-
tant aspect of the NCQP + BET is that it becomes an ex
act theory in the Ij-SM, and is thus equivalent to the
SR+ BET, which is also exact. (When we say that a
BET is exact, we implicitly assume that the boson expan-
sion is carried out to a sufficiently higher order. ) The
BCS+ BET is a common approximate of. these two
theories. The presentation of SR+ BET in Sec. II and of
NCQP ~ BET in Sec. III accomplishes the major goal of
the present paper.

The bosonization of the lj-SM in the seniority scheme
was also done earlier by Otsuka, Arima, and Iachello
(OAI), and by Otsuka, Arima, Iachello, and Talmi
(QAIT). In Sec. IV we thus recapitulate their formal-
isms. As we shall see, both OAI and GAIT make use of
the SR in their bosonization procedure, but in two dif-
ferent ways, both of which differ from ours. These differ-
ences came about because different guiding principles
were adopted for the bosonization.

In Sec. V we present some numerical results obtained
by using SR+ BET, OAI, and OAIT. These calculations
are taken as a convenient test bench for checking and
comparing the accuracy and the convergence rate that
these three methods provide. We then discuss a few as-
pects and implications of the OAI and OAIT work and its
relation to the IBA (interacting boson approximation).

One important point we raise in connection with these
boson theories is the significance of the s bosons. Based
on the results of Secs. II and III, we shall argue that, al-

though the s boson does carry some physical information
about the original fermion system, its explicit presence in
the boson formalism is not mandatory. What we show in
the present paper is that the elimination of the s boson,

. which is a well-known fact in the phenomenological IBA,
can be demonstrated and justified from a number conserv-
ing approach to boson mapping.
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II. BOSONIZATION
OF THE 1j-SM CALCULATION

A. Seniority reduction

As mentioned in the Introduction, we take up in the
present paper a 1j-SM, a model also considered by OAI.
Let a =aJ and a- =(—) aj be the creation and
annihilation operators defined within this shell. The pair
creation and the scattering operators are then defined by

(2.1a)

Dp ——I'82p,

P =[1+(4SO —6) 'S+S ][1+ (2SO 2)—'S+S ]

(2.3)

u/2! X (2.4)

is a highest seniority state with seniority u. In (2.4),
I
0)

denotes the vacuum, and

Thus our D& is again exactly the same as that in OAI. As
shown in OAI, the presence of the projection operator P
guarantees that a state of the form

Ct&„—g ( —)I (jmj —m'
I

A,p)a a (2.lb) 1 1

V'(v/2)! X
Note that we are using the notation of KT3. Our Bx„and
Cx are, respectively, equal to Ax& and —U~ of OAI.
In (2.1), (jmjm'

I
kp) is a Clebsch-Gordan coefficient.

Later we also use Bx„——(Bx„)"and Bx„-——( —)x "Bx
and so forth.

We define the S+, S, and So operators as

+ X ~ rH

m&0
(2.2)

S =(S, )'and S,=(n —Q)/2,

where Q —j+— and n =g a a is the number opera-

tor. These S+, S, and S0 operators are exactly the
same as those in OAI.

We also define the D& operator by

is a normalization factor.
As seen, the "product state" of (2.4) is defined in the M

representation (magnetic quantum number representa-
tion). Therefore, the parameter a stands for the set of
magnetic quantum numbers p&, p2, . . . , p„&2. When we
switch to the I representation, with good angular momen-
ta, the resultant states are nothing but linear combinations
of the states of (2.4). Therefore, such new states also
maintain their highest seniority nature. In the I represen-
tation, we shall continue to use the same index a as in the
M representation. It must be understood that now the pa-
rameter a denotes a particular scheme of angular momen-
tum coupling.

States which are not of highest seniority may be con-
structed as

I n, u, cx) =X» U(S+ ) I v, u;(x)

N» „=v'[Q —(1/2)(n +v)]!/&(Q u)![(1—/2)(n —v)]! .

(2.5a)

(2.5b)

Equation (2.5a) is of course valid for n )v, reducing to an identity for n =u.

The seniority reduction allows one to express the matrix element of an operator between a bra state (n', u'
I

and a ket
state

I
n, u) in terms of the matrix elements of related operators between the states (n'&, u'I and

I
n&, )v, with

n')n& &v' and n &n& &v. If n~ ——v' and n] ——u, we say that a complete SR has been carried out; otherwise, only a par-
tial (or incomplete) SR has been performed. In the following, when referring to the SR we always refer to the complete
SR, unless otherwise specified.

Let us take here first B~z as such an operator. The seniority reduction formula in this case reads'

(n+2 u"a'IBx In au)= (Un+ul+1)U(n u)(u' u"a'IBxp lu v G~~u', 0+2

—U(n, u) V(n +2,v)V 2(u', v';a'
I
(C ~&

—v Q5~0) I u, v;a)5„„[1+(—) ]/2

—V(n +2, u 2) V(n +—l, u —l)(u ~u ~u
I
Bx-

I u~u ~~ )~U', U —2 . (2.6)

Note that the right-hand side (rhs) of (2.6) [as well as (2.8)
below] consists of three terms, corresponding to u'= u +2,
v, and v —2. These terms will henceforth be called the
b,u =2, 0, and —2 terms (as also done in OAI). Note also
that we have put a caret on the operators on the rhs, al-
though the careted operators are here the same as those
without the caret. We did this to emphasize the fact that
they now appear only in the reduced matrix elements, be-

ing associated with a particular seniority selection rule,

namely B 2 is associated with Au =2, B2 with hu = —2,
and C 2„with hu =0. Furthermore, this new notation

U(n, v) =

V(n, u)=

2(Q —u)

n —v

2(Q —u)

1/2

1/2

(2.7)

will be very conveniently used later in subsection C in the
bosonization process.

The coefficients U(n, v) and V(n, v) introduced in (2.6)
are defined as
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Sec. III.
The seniority reduction of the B~& operator can be ob-

tained as the Hermitian conjugate of (2.6). The seniority
reduction formula for the scattering operator C~z is given
as

Notice that Eq. (2.6), together with (2.7), is exactly the
same as the formula given just below Eq. (A3.23) by
Lawson. ' Here we have used the U and V notation, how-
ever, firstly for convenience and, secondly because it helps
to directly relate the results of this section with those of

(n, u';a'
i C~

~
n, v;a) =v 2U(n —l,u+1)V(n, u)(v', v', a'

~ Bq„i u ua)5„, +z

+[U2(n, v) —( —) V (n, u)](u', u', a'
~ C~„~ u, v;a)5„„+V (n, u)/2Q5~p5~

+U 2U(n —l, u —1)V(n, u 2—)(v', u', a'
~ Bg&

~
u, u;a)5, ,„ (2.8)

We shall henceforth call the matrix elements that appear on the rhs of (2.6) and (2.8) the reduced matrix elements. By
construction, these reduced matrix elements contain only the highest seniority states of the form of (2.4) as the basis
states. In other words the S+ operators have been completely eliminated from the basis states, a fact which now permits
one to directly apply the bosonization method of KT3, combined with the TTB method. (This is because [D„,D„]=0.
Note that the BET of KT3 was formulated by assuming that all creation operators commute. However, we see that
[S+,Dp]&0.)

The S+, S, and Sp operators can still appear as operators in the matrix elements in (2.6) and (2.8), when we set
A, =p =0, because

S+, 800 —— S, and Coo —— n .1=1 =1 t 1

Q Q &2Q (2.9a)

With these operators, however, the relations in (2.6) and (2.8) are drastically simplified, in particular, because all the re-
duced matrix elements of the S+ and S operators vanish identically. We in fact have

(n +2,v';a'
i Bpp

~
n, v;a) = [(Q—u)U(n, u)V(n+2, u)]5 5„„,Q (2.9b)

(n, u';a
i Cpp i

n, u;a) = 5 5„„.&2Q " "" (2.9c)

This means that the calculations of the matrix elements of the Bpp and Cpp operators can be completed analytically.
Therefore, we may now concentrate on the calculation of the reduced matrix elements for the cases in which A, =2.

B. Calculation of the reduced matrix elements

In this subsection we shall present the calculation of the
reduced matrix elements. We do this mainly because the
expressions obtained in this subsection will be needed in
what follows, but also because the algebra, although
straightforward, becomes somewhat involved due to the
presence of the projection operator P.

The general form of the basis states we take to start
with is that of (2.5), where n )u. Since we can now re-
strict ourselves to states with n =U that involve D& only,
we may denote these as

~
D';a) instead of

~
u, u;a).

The state with only one D2& may be written as

ID'2V&=Dp lO&=PBzp 10&=B2„~o& (210)

Namely, in this case the effect of the operator P is nil, be-
cause Bz„~0) is a pure highest seniority state already.

An explicit construction of states with two pairs re-
quires somewhat lengthy algebra, and after carrying this
out, we obtain

fD;IM)) = [D D ] (0)
2

I [B2B 2]IM l
o ) +v'2Q[( 1 +5Ip)Q —2]

2

As seen, we have switched to the I representation, the no-
tation [BzB2t]t~ standing for the usual angular momen-
tum coupling. The coefficient e22I that appears in (2.11)
is a special case of a more general coefficient

e~~ ~- ——2A, I, 'W( jjAA, '; A,"j), (2.12)

(2.13)

where A, =&2k,+1, while W(jjAA, ';A,"j) is a Racah coeffi-
cient.

To be remarked about the result of (2.11) is the appear-
ance of the 8pp and the BIM (with I=0, 2, and 4) opera-
tors. In other words, in spite of our restriction to the D2„
operators in constructing the highest seniority states, the
BI~ with I&2 appears in an explicit construction of these
states. Since this fact does not play any significant role
within the context of the present paper, however, we shall
not discuss this point any further. (Note that a problem
related to this has been discussed in detail in KT3. It nor-
mally makes it necessary to introduce a norm matrix,
rather than simple norm quantities. )

The states in (2.11) are orthogonal with respect to I, but
they are not normalized. The norm of these states can be
easily calculated, and it is given as

Xe22IB OPIM I
O & ) (2.11) with
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J J 2

yz ——50 j j 2 .+100 W (jj 22;Ij)
1+5zo 0—2

2 2 I
(2.14)

This result will be found very convenient in obtaining the
boson image of 82& in the next subsection.

C. Bosonization

I
D', IM) = [KD2]zM I

o&
2Nz

(2.15)

[Compare this with (2.4).] The one-pair state
I
D;2p& in

(2.10) is already normalized, and we shall now calculate
the matrix element in Bz„, between this state and the
two-pair state of (2.15). By more or less repeating the
algebra, through which we obtained (2.13) and (2.14), we
find that

(D;IM
I 82' I

D;2p') =~2Nz(2p2p'
I
IM) . (2.16)

Here the curly bracket stands for a nine-j symbol, and W'

denotes a Racah coefficient.
Note that the leading term of Nz is 1 (rather than, e.g.,

2), when Nz is expressed as a power series of yz. This
convenient normalization of Nz resulted because we had
the (1/W2) factor in (2.11), which is a particular case of
the [(U/2)!] 'z factor originally introduced in (2.4).

The normalized two-pair state, which we denote by

I
D;IM ), is now given as

As remarked in the Introduction, we carry out here the
bosonization in the seniority scheme by using the TTB
method, the basic idea of which is as follows. The TTB
method begins by recognizing that a matrix element of a
fermion operator is, in general, a reducible tensor, and
thus can be expanded as a sum of irreducible tensors. (In
KT3, this was called a linked-cluster expansion of a fer-
mion matrix element. )

This expansion has, in general, a rather fixed pattern, so
that each term can be easily replaced by a matrix element
of a boson operator, the pair of boson states that are used
to construct these matrix elements being common to all
the elements. The sum of the above boson operators can
then be regarded as the boson image of the original fer-
mion operator.

We shall illustrate the use of the TTB method by first
taking the operator Bz&. We find it easiest to present an
algebraic step first, and then explain what has been done.
The algebraic step is that

(1/~2) g(2p2p'
I
IM) &

D' IM
I &2, I

D 2p & =g(2p2p'
I
IM»z(2p2p'

I
IM)

IM IM

=g(2p2p'
I
IM)(2p2p'

I
IM)[1+(Nz 1)]—

=~pp';op'+ X(Nz 1)(2p2p'
I

IM)(2p2p'
I
IM) (2.17)

The first line of, (2.17) was obtained by multiplying
(1/W2)(2p2p'

I
IM) onto the left-hand side (lhs) of (2.16)

and then summing over I and M. The purpose of doing
this is to create a quantity which is a tensor of rank 2.
The first equality of (2.17) is a result of using (2.16). We
then replaced Nz by 1+(Nz —1), explaining the second
equality. The last equality then shows that the summa-
tions over I and M are carried out analytically for the "1"
term, resulting in the first term of the last line of (2.17).
There

We start the bosonization procedure by constructing
one and two quadrupole boson states as

I
d 2p) =d&

I
0) and

I
d 'IM) = [d d ]zM I

0)
2

(2.18)

I
0) being the boson vacuum. Our objective is to find a

boson image (8 2„)z of 8 2& such that

~sz', ~I =(8zA) '+pal ~s I )/2 .
g(2p2p'

I
IM)(d;IM

I
(8 2& )zi I

d;2p)
2 IM

(2.19)

This term is to be interpreted as consisting of a tensor of
rank 0, being multiplied by a Kronecker delta b,zz.» of
rank 2. On the other hand the second term of the last line
of (2.17) is already an irreducible tensor of rank 2. In this
way the reduction of the starting tensor into its irreducible
components has been completed.

Our goal here is to bosonize the reduced matrix ele-
ments that appear on the rhs of (2.6) and (2.8), or, in
operator language, to obtain the boson images of the
careted operators introduced there. Note that the "caret"
notation, which was redundant in (2.6) and (2.8), is not so
any more because the careted operators are precisely the
objects to be bosonized.

again gives rise to the expression in the last line of (2.17).
This goal is achieved essentially by inspection, and the re-
sult is that

(a',„),=d„'+g(Nz —1)(I/~5)[[d'd']zd]» .

(2.20)

When inserted in (2.19), the first and second terms of
(2.20) give rise, respectively, to the first and second terms
in the last line of (2.17). This fact is the reason why we
call the method used above a TTB method.

By obtaining (2.20), we have accomplished the bosoni-
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zation of 8 2p to the third-order term (a term containing
three d and/or d factors). If we repeat the above pro-
cedure, by first calculating the matrix element of 8zp be-

tween two and three pairs states, we can obtain (B»)ii,
including the fifth-order term; and so forth.

The bosonization of the C qp operator can be done simi-
larly. To second order, it is given as

(C2p)B 10W(JJ22 2J)[d d]2p ~ (2.21)

After thus completing the bosonization of the two basic
pair operators, we may summarize what has been done in
the present section. Suppose we want to calculate the ma-
trix element (n, u+2;a'

~ C2p ~

n;u;a). The calculation is
done in the following two steps;

(n, u+2a'
i
C „ i

n, u;a) =~2U(n —l, u+1) V(n, u)(D'"i '+';a'
i
8 „ i

D"i;a)

=V 2U(n —l, v+1)V(n, u)(d'" '+'a'
~
(82p)z

~

d" 'a)
(2.22)

In other words, the seniority reduction is done first, and
then the reduced matrix element is bosonized.

When bosonizing a fermion problem, one often speaks
of the mapping of both the operators and the states. In
the procedure we employed above only the reduced
(highest seniority) states are mapped to boson states, the
latter including only the df bosons. In other words, we do
not map the full fermion states

~
n, u;a) onto boson states

that may include also the monopole s~ bosons. This,
however, does not mean that the boson space we work in
is narrower than the original fermion space spanned by

~
n, v;a ) . Any calculation is done for a fixed n (which in

reality corresponds to choosing a particular isotope). For
a fixed n the number of states of the form
(S+ )'" "'

~

D";a) is of course the same as the number
of states of the form

~

D"r;a ) [and of the form

~

d";a)]. There is a perfect one-to-one correspondence
between these sets of states.

Throughout this section we have used the matrix ele-
ment representation for the pair creation and scattering
operators. For convenience we shall also give here the full
boson images of these operators in their operator forms.
This is to integrate the U and V factors into the operator
part. This allows us to group together the three pieces of
matrix elements, with Av =2, 0, and —2, into one, and
thus to express the boson images in compact forms. The
results are given as

III. BCS AND NCQP TREATMENTS
OF THE 1j-SM PROBLEM

Let us first recapitulate the BCS formalism for the
lj-SM problem. As is well known, the use of the BCS
theory begins by performing the Bogoliubov transforma-
tion written as

a =UX + VX-; a- =Ug- —VX (3.1)

In (3.1) X and X- are the quasiparticle (QP) operators,
while the U and V factors are given as

U=v'I n/2Q; V =—U'n/2Q . (3.2)

It is clear that, if we set v =0 in the U and V factors in
(2.7), they reduce to those in (3.2).

The results of the Bogoliubov transformation applied to
the pair operators are given (limiting for simplicity to
A, =2) as

tors are obtained from (2.7), by simply replacing v there
by 2nd.

Note that with the boson images given in the operator
forms of (2.23) and (2.24), the calculations for a given sys-
tem with n particles, can be entirely carried out within the
boson description. Care must be taken, however, in using
Eq. (2.23) since (82p)~ connects states with different par-
ticle numbers. In Eqs. (2.23) n refers to the ket state.

(82p)B (8 2p)BU( +1 2 d+ ) (n 2nd)

—v 2(C»)ii U(n, 2nd ) V(n +2,2n„)

—V(n +2,2nd ) V(n + 1,2nd + 1)(8»)ii

(2.23)

Bpp ——U 8 2p
—v 2UVC2p —V Bip .

(3.3)
C2p M2 UV(8 2p——+82p ) + ( U —V )C 2p .

Qn the rhs of (3.3), 82„, etc. , are the QP pair operators.
The BCS states may be denoted by

~
v;a)) and are given

as

(Czp)ii ——v 2(8 zp)ii U(n —1,2nd+1) V(n, 2nd)

+(C 2p)ii[ U (n, 2nd ) —V (n, 2nd )]

+V 2U(n —1,2nd + 1)V(n, 2nd )(B»-)i, .

~
u;a)) =8 2p,B zp,

' ' 8 pp„, ~

0 BCS) . (3.4)

In (3.4),
~
0;BCS) stands for the BCS vacuum.

In the framework of the NCQP method, we first re-
place the BCS state (3.4) by

(2.24)
~

u;a) =P
~
u;a))/+((a;u

~

P
~

u:a)), (3.5)

As seen in (2.23) and (2.24) the U and V factors are now
functions of the (d boson number) operator nd, which re-
places the seniority dependence we had in the matrix ele-
ment form. The explicit forms of these U and V opera-

where I' is an operator that projects the spurious com-
ponents out of the BCS states. In the 1j-SM application,
the new state

~
u;a) then acquires a good seniority na-

ture, i.e., u, which has so far been used as the QP number,
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(3.7)

Namely, in spite of the use of the BCS states, we now
have a matrix element calculated in the number conserv-
ing way.

For practical purposes, the next important step is to
derive a concrete form for the operator (3.6). In the
NCQP method this is achieved by introducing a non-
Hermitian number projection. Thus, let T„and T„+&

denote the number projection operators for the n and
n + 1 particle systems, respectively. Then, it can be
shown that the use of just the first-order expansion (in
the number operator) for T„and T„+& is sufficient to cal-
culate the two matrix elements (u';a'

~

a T„~ u;a) and
(u';a'

~
T„+~a

~
u;a) exactly. It can be further shown

that the square root of the product of these two matrix
elements exactly equals the matrix element on the rhs of
(3.7). Summarizing, this procedure permits one to express

I

can now be considered as the seniority as well. However,
the number projection has not been done yet, and thus

~
u;a) is a linear combination of the states of the form

(2.5).
A projection operator called A„ is then introduced,

which, when operating upon
~
v;a), projects out and re-

normalizes the component of the correct particle number
n and correct seniority v. It also has the property that
A„P=A„. Therefore, the state A„~ v;a) is exactly the
same as the state given in (2.5). Thus, if we define an
operator

(3.6)

and construct the matrix element (u';a'
~

(a )„~ u;a)
(u'=u+1), it is clear that the following equality holds;

(u', a'
~

(a )„ I
u;a) =(n+ 1,u', a'

~

a
[ n, v;a) .

the operator (a~)„as

(a )„=P[X U(n, N)+ V( n+1,N )X- ]P, (3.8)

where N is the QP number operator, and U(n;N) and

V(n;N) are functions of n and N. [Their functional
forms are again given by (2.7), if u there is replaced by N.]
The significance of having this relation is that we can now
operate (a )„directly upon the original BCS states for
number conserving calculations.

In (3.8), the factors U(n, N) and V(n, N) are functions

of N, and thus are not c numbers. Because of this fact,
and because of the resemblance of (3.8) to (3.1), it is quite
legitimate to call (3.8) a quantized Bogoliubov transforma
tion. In other words, the NCQP method is simply under-
stood as a method which permits one to replace the classi-
cal Bogoliubov transformation by its quantum version.
This is why the QP nature of the original BCS theory is
maintained, yet the number conservation which was lost
in the BCS theory is recovered.

The transformation of (3.8) for single-particle operators
can of course be extended to the transformations for the
pair creation and scattering operators. For this, we note
that, as shown in Ref. 6,

and

(a~&)„=A„+za~~A„=(a )„+~(ap)„ (3.9a)

(a ap)„=A„a a&A„=(a )„~(att)„ (3.9b)

Thus, what we have to do is simply to form products of
(3.8) with itself or its Hermitian conjugate, keeping track
of the correct particle number. After these manipulations,
the 82& and C2@ operators can be written as

(Bz&)„=P[Bz&U(n +1,N+ 1)U(n, N) —v 2 C z&U(n, N) V(n +2,N) V(n +2,N) —V(n + l,N+1)Bz-]P (3.10a)

(Cz&)„=PIV2B z&U(n —1,N+1) V(n, N)+C z&[U (n, N) —V (n, N)]+v 2U(n —1,N+1) V(n, N)Bz„-]IP . (3.10b)

If we now consider, e.g., the matrix element
(u';a'

~
(Bz„)„~u;a), it is easy to see that it is expressed

in exactly the same form as the rhs of (2.6), except that

the matrix element (v+2, u+2;a'~Bz„~ u, v;a) is re-

placed by (u+2;a'
~ Bz& ~

u;a) in the NCQP formalism.
It is trivial to see, however, that these two matrix elements
are exactly the same (numerically). This shows that the
NCQP approach is totally equivalent to the SR method in
the fermion problem of the 1j-SM.

Using the same bosonization procedure of Sec. II, it is
straightforward to bosonize the operators of (3.10a) and
(3.10b). The resulting boson expansions are exactly the
same as those obtained by the SR+ BET method in Sec.
II, and are given by Eqs. (2.23) and (2.24). This shows
that the above equivalence of the SR and NCQP methods
holds in the boson description as well. Since the
SR+ BET is exact, this equivalence confirmed that the
NCQP approach is also exact. This is a quite gratifying
and encouraging result, because the NCQP + BET
method can be easily generalized to realistic, nondegen-

crate many-j problems, thus providing us with a powerful
tool to study nuclear collective motions.

We shall conclude this section with a few remarks on
the BCS approximation. From the above presentation, it
is clear that to use the BCS approximation means to cal-
culate the matrix elements using the operators of (3.3) and
the space defined by (3A), instead of the operators of
(3.10) and the space defined by (3.5). As one can easily
see, two kinds of approximations are involved. One is the
replacement of the exact U and V factors by the corre-
sponding BCS U and V. The other is related to the
neglect of the projection operator P of (3.5) in the basis
states, which leads to an error due to the presence of
spurious components in the BCS states.

The resemblance of (3.3) to (3.10) is not accidental. The
BCS theory is an approximation of the NCQP (and SR)
theories. And the same holds for the boson formalisms
based on them, namely for the BCS + BET and
NCQP + ( or SR + )BET. In spite of its approximate na-
ture, the BCS theory is extremely convenient, because of
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its QP nature, and has been used extensively, e.g., in most
of the practical BET calculations. ' Also, the so-called
BCS error is not very severe, so long as we use this theory
under the restriction that v &&n. However, the NCQP ap-
proach allows us now to construct a boson theory free
from the major part of the BCS error, yet keeping the QP
nature of BCS. The NCQP + BET will have a larger re-
gion of applicability than BCS + BET, so that we will be
able to perform new (realistic) calculations. Furthermore,
we will also be able to get a quantitative estimate of the
BCS error in the various realistic cases, by comparing the
results of the calculations obtained by using BCS and
NCQP.

IV. BOSONIZATION TECHNIQUE OF OAI

In this section we shall recapitulate the bosonization
technique of OAI, pointing out the aspects that differen-
tiate the OAI approach from ours. In doing this we have
a twofold purpose in mind. Firstly, we want to set the
basis for a comparative discussion of the OAI method and
our BET to be presented in Sec. V. Secondly, we want to

l

remove a certain degree of confusion present in the OAI
work, due to the existence of two different boson formal-
isms, one developed in OAI, and another in an earlier- pa-
per (GAIT). As we shall see below, these two formalisms
have many similarities, but also one important difference.
The confusion mentioned above arises from the fact that
in the OAI paper a new formalism was presented, but the
numerical results given there can actually be obtained
only by using the boson expansion of OAIT.

In order to make the presentation as simple as possible,
we shall first concentrate on the b,u =2 matrix element of
the scattering operator Cz&, i.e., on

(n, u;a
I C&p In, u —2;a) .

This matrix element was discussed in detail in Sec. II, but
note that we have shifted v by two units, compared with
the example taken up in Sec. II. This was done so that
the results given below can be compared directly with
those of OAI and OAIT.

Both OAI and GAIT make use of the SR formula writ-
ten as

(n, u;IM
r Cq„~ n, u 2;I'M'—) =U(n —l, v —1)v'(n — +u2)/2( ,uuIM

r Cq~ ~
u, u 2;I'M') —. (4.1)

One will easily recognize that Eq. (4.1) is the same as Eq. (3.1) of OAI. One will also notice that (4.1) is not in the same
form as the first term on the rhs of (2.8). The reason is that, in obtaining (2.8) we carried out the SR completely, while
the same was not done in deriving (4.1). It is straightforward, however, to see that these two expressions are, in fact,
equivalent.

Both OAI and OAIT methods of bosonization start by writing down the equality

(n, u;IM
r Cq& r

n, u —2;I'M') =(d" s'" "';IM
~
(Cq„)s

~

d'" ' ',s'" ' +',I'M') . (4.2)

The following step is where the two methods begin to
differ. Namely, OAIT write down the boson image
( Cqp )s as

(Czp )o«r ——U(n —1,2nd —1)

X .sada&+g a~.~[[d d ]qd]~„. , (4.3a)
I

while OAI assume the form

(C2@)0«=s .aod„+g ai;s [[d"d"]Id]
I

(4.3b)

Then, both OAI and OAIT determine the unknown coef-
ficients a0 and a&.z, and a0 and a~.z, respectively, by re-
quiring that (4.2) holds exactly, first for u =2 and then
for v =4. One thus eventually obtains (Cz&)o«z and
( C2p)OAI in the form

and

1

(Czp)o«g U(n —1,2ng —1)s v'2/Qd„+g (&2/(Q 2)Ng —&2/—Q)[[d d ]gd]p„.
I

(4.4a)

«z„)o«=s 2Q —n —2
(Q —2)(Q —3)

' 1/2
r 2Q —n

, Q(Q —1)

1/2 '

[[d d ]rd]zp (4.4b)

The d& terms in (4.4a) and (4.4b) agree, respectively,
with those in Eq. (7) of OAIT and Eq. (3.19) of OAI.
However, neither GAIT nor OAI gave the explicit form
for a~.q and a'~. q. We have thus calculated them our-
selves, making use of the TTB method. Note that, be-
cause of the form assumed by OAI for the boson image,
the explicit v (i.e., the n~) dependence is lost in the coeffi-
cients of (4.4b). On the other hand, this dependence is re-

tained in the OAIT result of (4.4a). Furthermore, the n

dependence is different in these two expansions.
It may be worthwhile to note further that, because of

the assumed form (4.3a), which could only have been
"guessed" from the knowledge of the SR, the OAIT
method was, in actuality, to factorize the U factor first as
in Eq. (4.1), and then bosonize the remaining part. In this
sense, the OAIT formalism lies somewhere in between our
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method of Sec. II in which both the U and V factors were
factorized first, and the OAI formalism in which nothing
was factorized out.

In Sec. V, we shall present numerical results for the
hv =2 matrix element of C2& and 82„, obtained by using
BET, OAI, and OAIT. The needed OAI and OAIT for-
mulas for (C2&) are given in (4.4). For completeness of
the presentation, as well as for later convenience, we shall
give here all the other boson images relevant to the 4v =2
case.

The BET image of the scattering operator is given [cf.
j

(2.8) and (2.20)] as

(Cz„)BEy=(&2&)~v 2U(n —1,2n~+1) V(n, 2nd), (4.5a)

(& 2„)ii=d„+Q (Xi —1)(I/~5) [[dtd t]~d ]~„.

(4.5b)

In the OAI case the Av =2 part of the boson image of
Bz& can be written as

(2Q —n)(2Q —n —2)
4Q(Q —1)

T

+g [[d d "lsd ]2p
'

a/2
(2Q n ——4)(2Q —n —2)

4(Q —2)(Q —3)
(2Q —n)(2Q —n —2)

4Q(Q —1)

1/2

(4.6)

The boson expansion of Bz& is identical for BET and
GAIT and is given [cf. (2.6)] by

(8'�)ii ——(8 2~)ii U(n + 1,2nd+1) U(n, 2nd ), (4 7)

where (Bzz )z is given by (4.5b).
Let us conclude this section with a remark on seman-

tics. In their paper, OAI never used the term "expan-
sion. " Instead they used terms like "boson mapping" or
"boson image. " Granted that these terms are quite
correct, we may also add that the OAI boson images can
also be called "expansions. " The reason is that, as we
shall argue in the next section„ the first terms in (4.4) and
(4.6) do not provide, overall, a sufficiently good accuracy,
and thus third-order terms are also needed. Therefore, the
OAI, as well as the OAIT boson images, are, in fact, ex-
pansions (in nd/Q) In th.e rest of the present paper, we
occasionally refer to the OAI and OAIT formalism as
"boson expansion method, " and, correspondingly, to the
OAI and OAIT boson images as "boson expansion. " We
believe that the term "expansion" accurately reflects both
the spirit of the bosonization technique, as well as that of
the final results of all the methods considered in the
present paper.

V. COMPARATIVE MSCUSSIGN
OF THE GAI, GAIT, AND BET METHODS

In this section we shall compare our BET formalism,
presented in Sec. II, with those of the OAI and GAIT
methods, reviewed in Sec. IV. In subsection A we shall
present and comment on a few numerical results obtained
with the three methods mentioned above for the 1j-SM
with j= —", . In subsection 8, we then make a compara-
tive discussion of the various formalisms.

A. Discussion of the numerical results

In order to test the accuracy and the convergence prop-
erties of the three bosonization methods considered here,

i

we have evaluated the reduced matrix elements

for v =6 and u =4. The formulas used for this purpose
were given in Sec. IV. The results of the calculations are
given in Tables I and II under the headings of BET, OAI,
and GAIT. The exact fermion results were given in OAI,
and are reproduced in our tables under the heading of
"Fermion. " (Note the change of sign in Table I. We give
the matrix elements of Cz&, while OAI gave those
of Uzp ———Czp. )

Some of the matrix elements calculated here were also
calculated in OAI and the results were given in their
Tables 2 and 9. In making a direct comparison between
our tables and those of OAI, however, the reader should
keep in mind that, as mentioned in Sec. IV, the boson re-
sults given in OAI as OAI results are actually those of
OAIT. Thus, the entries in our tables under the OAIT
heading are reproductions of the entries in the OAI tables.
To our knowledge, the results given under the OAI head-
ing in our tables have not been reported anywhere else
previously.

In both Tables I and II, there are two entries, called 0(l)
and 0(3), under each boson heading. The 0(1) values were
obtained by using the first-order term, i.e., only the term
with dt in the various expansions. On the other hand, the
0(3) values were obtained by including the third term as
well, i.e., the term with d d d. Note that all the 0(3) re-
sults are new in the present paper, since OAI reported
only 0(1) values.

Let us look at the performance of each boson method
separately, beginning with our SR+ BET. From both
Tables I and II we see that the error in 0(1) is as high as
19% for u =4 and 30% for v =6 for both the C2& and

Bz& operators. (Note, incidentally, that, with BET, the er-
ror is the same for both operators. This is not the case
with either OAI or GAIT, as seen below. ) This large 0(1)
error does not bother us too much, however, since the real
test for both accuracy and convergence of the expansion
lies in the 0(3) results. From our tables we see that the er-
ror in 0(3) is within 1% for all the u =6 entries, except
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TABLE I. Boson and fermion values for the matrix element ( v, v:I
~ ~ Cq„~ v, v 2—;I' ) (I' = z ).

0(l)
BET

0(3) 0(1)
OAI

0(3) 0(1)
OAIT

0(3) Fermion

u=4

2
0

1.66
1.24
0.55

1.57
1.17
0.45

1.49
1.11
0.50

1.57
1.17
0.45

1.55
1.15
0.52

1.57
1.17
0.45

1.57
1.17
0.45

u —6
0
2
2
2
3
3
4
4
6

0.74
1.13
0.72
0.97
1.65

—1.04
1.60
1.52
2.66

0.65
0.94
0.50
0.68
1.46

—0.92
1.42
1.35
2.36

0.59
0.89
0.57
0.77
1.31

—0.83
1,27
1.21
2.11

0.64
0.93
0.51
0.68
1.43

—0.91
1.39
1.33
2.31

0.63
0.97
0.62
0.83
1.41

—0.89
1.37
1.31
2.28

0.65
0.94
0.51
0.68
1.45

—0.92
1.41
1.34
2.34

0.66
0.93
0.52
0.68
1.46

—0.92
1.41
1.34
2.35

one, in which it is 2%. [For u =4 the 0(3) results are ex-
act by construction. ] This shows that the accuracy and
the convergence of our expansion are remarkably good.

Let us next consider the 0(1) results given by the OAI
method, starting from Table I for Czt&. As seen,
the overall error there is consistently about 10%, thus be-
ing consistently smaller than the 0(1) error with BET.
For the Bz„poer toar in Table II, we see that the 0(1) re-
sults of OAI are much better overall than those in Table I,
although it must be noted that there are few cases in
which the error is rather large; 13% for u =4 and 18%
for v =6. We thus see that the zeroth-order (first-order,
in our terminology) OAI theory performs much better for
the Bz& operator than it does for the C2& operator. Still,
overall, the error level in Table I, and the appearance of
large errors in a few results in Table II seem to lead us to
conclude that the zeroth-order OAI expansion cannot be
reckoned satisfactory. tNote that an 18% error in a ma-
trix element translates into about a 32%%uo error, e.g., in

B(E2).j The 0(3) results given by OAI are just about the
same as those of BET, showing good convergence, as well
as'the necessity of the second term in the boson expan-
sion.

For the GAIT results we can repeat exactly what we
said about OAI, except that what pertained to the C2& in
OAI now applies to the 82& operator, and vice versa. In
other words, neither OAI nor OAIT performs consistently
for the two operators at the first-order level.

The OAI theory was developed as an attempt to pro-
vide a microscopic version of the IBA. In order to
achieve this, OAI had to show that the resultant boson
images were in the IBA form, maintaining, at the same
time, a reasonably high accuracy in the zeroth order.
However, these two goals turned out to be difficult to
achieve simultaneously. On the one hand, they were able
to derive a theory looking exactly like IBA (namely boson
images with u-independent coefficients), but whose first-
order accuracy for the C2& operator (the case they chose

TABLE II. Boson and fermion values for the matrix element (u, u:I~ ~Bz~ ~u —2, u 2;I') (j = ~z —).

BET(=OAIT)
0(1) 0(3) 0(1)

OAI
0(3) Fermion

v=4
4
2
0

4.24
3.16
1.41

4.00
2.98
1.15

3.95
2.94
1.32

4.00
2.98
1.15

4.00
2.98
1.15

u=6
0
2
2
2
3
3

6

1.73
2.64
1.69
2.27
3.87

—2.45
3.76
3.58
6.24

1.53
2.20
1.18
1.57
3.43

—2.17
3.33
3.17
5.54

1.49
2.28
1.46
1.95
3.34

—2.11
3.24
3.09
5.38

1.51
2.18
1.19
1.59
3.38

—2.14
3.28
3.13
5.46

1.55
2.18
1.20
1.59
3.42

—2.16
3.31
3.14
5.51
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as a guide) was found not sufficiently good. On the other
hand, they had the GAIT theory, which gave a much
better 0(1) result for the Cz& operator, but which did not
have the desired IBA-type form (in that the boson images
had U-dependent coefficients). In their paper OAI
presented their new (OAI) formalism, but gave numerical
results pertaining to GAIT without any explicit mention
of it. As seen in Sec. IV formally, and confirmed numeri-

cally by the results in Tables I and II, OAI and GAIT are
two different theories and should not be used interchange-
ably.

We may also add that, having chosen the C2& operator
as a guide (on the ground that it conserves the particle
number), OAI had to explain the large error present in

the OAIT results for the B2t& operator. The explanation
OAI gave in their Sec. 3.5 is that Bz& does not conserve
the particle number, and hence leads to a large error (be-
cause the difference in the fermion and boson norms now
comes in directly). In the light of the opposing perfor-
mance of OAI and GAIT, as we have seen just above,
however, this explanation is puzzling at best: It is contra-
dicted by the OAI results.

Note that the use of the strategy, in which one starts
with the equality, e.g., of (4.2), does not by itself deter-
mine uniquely the resulting boson image. As we saw in
Sec. IV, different forms can be subsequently assumed, and
the boson expansion coefficients are then determined ac-
cordingly. (In this regard we may note that Otsuka' took
advantage of this "ambiguity" and "made up" still anoth-
er expansion, which can be viewed as an "average" be-
tween the OAI and OAIT formalisms, and which gives, in

fact, better overall first-order results than either OAI or
GAIT. We may also note here that, for the purpose of
making the first-order expansion good, the best job done
so far seems to be that of Bonatsos et al. ,

' in which the
relevant commutation relations are used as a guide to
determine the expansion coefficients. ) On the other hand,
in our procedure of Sec. II, since we carry out the SR
completely prior to bosonization, there is no room for am-
biguity in the resulting expansion. It is clear that the
difference in the expansions in the OAI and GAIT ap-
proaches is rooted in the approximate treatment of the U
and V factors, a fact which is also responsible for the role
that s bosons play in these theories. We shall discuss this
aspect more in detail in the next subsection.

B. Discussion on the OAI formalism

As was explicitly state in OAI, and we have mentioned
above, their work was done with the purpose of providing
a microscopic version of IBA. As is well known, IBA is
characterized by the appearance of s bosons, in addition
to d bosons, in the Hamiltonian, as well as in the pair
operators. As we saw in Sec. IV, the OAI and GAIT ap-
proaches do produce a formalism that contains s bosons.
Because of the appearance of s bosons, OAI stated that
their boson theory is drastically different from the con-
ventional BET. %'e shall now argue, however, that the
OAI theory is not that much different from the other
BET's.

A simple way to look at the matter is to note that our

SR+ BET (and equivalently NCQP + BET), which is ex-
act, does not contain s bosons. In other words, we have
shown that it is, at least, not mandatory to have s bosons,
in order to construct an exact BET, even in the seniority
scheme. Of course if the (S,D) fermion space of (2.5) is
demanded to be mapped onto the corresponding (s,d) bo-
son space, as done in Eq. (4.2), the appearance of s bo-
sons in the image of any operator is inevitable. However,
the choice of such a mapping is by no means mandatory.
A question then naturally arises. Does the s boson have
any physical meaning, or is it purely a mathematical arti-
fice?

The presence of the s bosons is related to the presence
of the S+ operators, which represent the Cooper pairs in
the fermion description. The use of the SR, however, al-
lows one to eliminate (completely or partially) the S+
operators from the fermion formalism. Their original
presence is then accurately remembered by the U and V
factors. In other words the U and V factors are the most
important carriers of the information pertaining to the
Cooper pairs. Therefore, if one lets the U and V factors
carry all of the information (which is the same as to carry
out the SR completely, as we did-in Sec. II),. the S+
operators disappear completely from the fermion descrip-
tion, and, consequently, the s bosons do not appear in the
boson expansion.

The BCS approximation, which we have been using in
all our previous realistic calculations, is exactly the same
as the SR+ BET in this regard. The only, but somewhat
troublesome, difference is that the U and V factors in
BCS are approximate, since they do not carry any U

dependence. This in turn means that they do not count
correctly the number of S+ in the original fermion sys-
tem, which is the same as to say that BCS fails to take
into account the blocking effect.

We may now go back to the question about the signifi-
cance of the s bosons in OAI. Neither OAI nor OAIT
permit the U and V to carry the full information on S+,
but instead let s bosons share part of the burden. There-
fore, s bosons do have a physical meaning in OAI as car-
riers of part of the information about Cooper pairs. How-
ever, at the same time, we may also add that the explicit
presence of s bosons in these theories is more the result of
a choice made to suit some specific purpose, rather than
the inevitable consequence of physical requirements that
could not be satisfied otherwise. As we discussed above,
Cooper pairs, and consequently s bosons, can be totally
"absorbed away" either exactly, or appr'oximately.

In conclusion, the important point we want to get
through to the reader in this section is that we do not see
the presence of s either as indispensable, or as the "signa-
ture" of a dramatically different approach to bosoniza-
tion. Furthermore, as we remarked at the end of Sec. IV,
the OAI method is also a boson expansion method, with
ndlII as the smallness parameter. Therefore, the OAI
statement that their theory is drastically different from
the conventional BET does not seem to be justified. The
valuable contribution to boson theory made by OAI is, we
believe, in initiating the use of the seniority reduction in
the derivation of the boson expansion, a technique which
allows one to use n-particle states directly to derive the
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boson coefficients. We have ourselves used this technique
to full advantage in our formulation presented in Sec. II,
albeit in a different spirit and, consequently, with dif-
ferent results.

VI. SUMMARY AND CONCLUSIONS

In this paper we presented two different techniques to
derive a boson formalism for the ij-SM problem. The
first method was described in Sec. II. We started there by
constructing the basis states in the (S,D) space in the
seniority scheme. We then carried out a complete SR of
the matrix elements of the nucleon pair operators, and fi-
nally, we bosonized the reduced matrix elements by using
the BET technique. ' The resultant boson formalism,
which we called SR+ BET, is exact (up to the order to
which the boson expansion is obtained) and is character-
ized by the fact that it contains only d bosons.

The second bosonization method was presented in Sec.
III and is based on the NCQP approach. This method
makes use of the quasiparticle description of BCS, but re-
moves (approximately, in general) the errors due to the
number nonconservation and the presence of spurious
components in the HCS states. This is achieved by intro-
ducing a projection operator, which is effectively incor-
porated into the pair operators themselves. These new
"effective" pair operators were then bosonized by using
the BET technique resulting in the boson formalism,
which we called NCQP+ BET. In the lj-SM case, the
NCQP method is exact, and the NCQP + BET was found
to coincide with the SR+ BET.

It is clear that the SR and NCQP approaches are noth-
ing but two different ways of treating the fermion part of
the problem, before the actual bosonization is performed.
In this sense, they perform the same function as the BCS
approximation does in BCS + BET, i.e., they take care of
the effect of the Cooper pairs present in the original fer-
mion problem. This is why the Cooper-type s boson is
not present, in these three boson theories. (Note, inciden-
tally, that in the many-j case monopole pairs exist, other
than Cooper's, that are responsible, e.g., for pairing vibra-
tions. Monopole pairs of this type must be treated expli-
citly in the boson description if the underlying physics re-
quires it.) The accuracy of the resulting boson formalism
depends, of course, on the approximation made in the fer-
mion stage and on the truncation of the boson expansion.
We want to stress here that the bosonization procedure it-
self is the same in all three cases, namely the KT3 and
TTB methods.

In Sec. IV we recapitulated OAI work. We emphasized
there that the reason why in the OAI theory both s and d
bosons are present is related to the fact the OAI map the
original (S,D) fermion space onto the (s,d) boson space.
We stressed that, although such procedure is perfectly le-
gitimate and correct, it does not represent the only way to
derive a number conserving boson expansion, as the re-

suits of the present paper have shown. The choice of the
mapping made by OAI was dictated by the need of mak-
ing contact with the phenomenological IBA in an attempt
to provide a microscopic justification of this theory. The
OAI theory seems to have achieved the goal.

We remarked, however, that this theory is not suffi-
ciently accurate at the first order (zeroth in OAI terminol-
ogy). The numerical results presented in Sec. V show that
OAI does require higher-order terms in order to guarantee
an acceptable overall accuracy. The OAIT theory, which,
strictly speaking, cannot be viewed as a justification of
ISA due to the explicit n~ dependence in the expansion
coefficients, suffers from the same accuracy problem as
OAI. As for the s boson, we argued that while it does
carry physical meaning in OAI and OAIT, its presence in
a boson formalism is not mandatory in order to guarantee
that the theory is number conserving, as SR+ BET and
NCQP + BET are proof of. One should not, therefore,
overestimate the importance of the role played by the s
boson in the various boson theories that do have it, in-
cluding ISA.

All the results and discussion presented in this paper
pertained to the 1j-SM, which albeit instructive, is too
simple a model to serve as a basis for an effective ap-
praisal of the different methods. The real testing ground
for the various boson expansion approaches is the realistic
many-j cases. Up to now only the BCS + BET has been
extensively applied to describe collective motions in nu-
clei. ' In this paper we presented two boson formalisms,
the SR+ BET and NCQP + BET. However, as far as we
know, the extension of the SR method to many-j cases,
i.e., the SR in the generalized seniority scheme, ' appears
to be a quite difficult task. On the other hand such an ex-
tension of the NQCP+ BET is rather straightforward,
and is currently in progress. In this regard, the
equivalence of this formalism to the SR+ BET in the lj-
SM limit is a pleasing and encouraging fact. It indicates
that the NCQP + BET might be the answer to the prob-
lem on how to handle the generalized seniority scheme.
In any case, it provides us with a viable alternative to it.

We finally want to remark that the NCQP+ BET
method shares some features with the method of Suzuki
et al. ,

' in that they both make use of the quasiparticle
language. The two methods differ in the treatment of the
s degree of freedom. This difference is reflected in the
fact that while NCQP + BET does not have s bosons, the
boson formalism of Ref. 16 does.
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