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Finite temperature effects and phase transitions in the pairing force problem:
Variational approach
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Finite temperature effects in the pairing force problem are studied within the formalism of a vari-
ational approach. The formalism, which is free of the number fluctuations which are present in the
standard Bardeen-Cooper-Schrieffer approach, allows for the description of thermally-induced
phase transitions. An application of the method is discussed for the case of a two-level model.

I. INTRODUCTION

The study of temperature effects in finite nuclei has
been the subject of recent publications. ' The problem
has been motivated both by experimental and theoretical
evidence' ' ' concerning, particularly, the treatment of
pairing correlations in nuclei at finite temperatures. In
this paper we focus our attention on the treatment of the
pairing Hamiltonian within a variational approach' ' at
finite temperatures.

The temperature dependent treatment of pairing corre-
lations' ' ' within the framework of the Bardeen-
Cooper-Schrieffer (BCS) approximation, or within the
equivalent Hartree-Fock-Bogoliubov method, ' shows
that the pairing gap b, collapses at a certain value of the
temperature, thus inducing a phase transition from the su-
perfluid phase to the normal one. ' This phase transition
has been interpreted as the signature of a configuration
blocking which clearly affects the single-particle levels in
the neighborhood of the Fermi level. Within the BCS ap-
proximation, the critical temperature, T„which produces
the above-mentioned phase transition, has the values
T,=h(T =0)/2, a value which is very similar to that as-
sociated with the pairing collapse in infinite systems. '

Considering the approximations posed by the BCS
method, it would be interesting to know whether this
phase transition occurs in a more accurate description of
the pairing force. With this motivation in mind we per-
form the theoretical analysis which is presented here.

The variational approach to the pairing force problem
was reported long ago for a two-level model, ' ' and the
method proved to be able to identify a domain, as a func-
tion of the pairing coupling constant 6, where the BCS
result strongly differs from the exact solution. This
failure of the BCS method is particularly evident for
small values of 6 far from the critical value G, where the
pairing gap 6 vanishes. ' ' Moreover, the so-called F ap-
proach' ' may be successfully applied whenever the BCS
approximation or its number conserving extensions does
not work because of the weakness of the interaction. ' Al-
though the I' approach has a natural boundary of validi-
ty, ' *' the method seems to be a suitable one in order to

investigate temperature-dependent effects without the lim-
itations posed by the BCS approach.

In this paper, we extend the F approach for the finite
temperature case. The formalism is presented in Sec. II,
both for the T=O case and for the finite T case, respec-
tively. The theoretical details are discussed for a two-level
model, and the results of the calculations are presented in
Sec. III. Some conclusions are drawn in Sec. IV.

II. FORMALISM

In this section we shall briefly discuss the main features
of the F method for the case of the pairing Hamiltonian
at temperature T=O (subsection A) and at finite T (sub-
section B).

A. The F method at T=O

H' =exp( iF)H exp( iF) . —
For the pairing-force Hamiltonian, we have

(3)

(4)

j'm'

This approximation has been presented in detail in
Refs. 12 and 13. The starting point is the definition of a
unitary transformation exp(iF) under which the approxi-
mate ground state

~
Pp) is written as

14'o & =e"p('F) 14'o &

Pp) being the unperturbed ground state. The operator F
is determined by the variational condition

5(gp
~

H Pp) =0,
assuming a given order in the series expansion of the
operator exp(iF) in powers of F. The variation leads to a
set of linear equations for the matrix elements of F. Gnce
the structure of F is fixed, the eigenvalues of the Hamil-
tonian H are represented, at the same order in the series
expansion in powers of F, by the diagonal matrix elements
of the transformed Hamiltonian H' (Refs. 12 and 13):
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where

Nj ~ +jm+jm
n, 1+ (GQz/4)

r

QP —016
N —2+

2

F=fL+S +f"S+L (6)

with

and where aj (aJ ) are the creation (annihilation) opera-
tors of fermions in the shell model orbits (j, m), and
where a —. (a—. ) are the corresponding time reversed
operators. In Eq. (4), 6 is the pairing coupling constant
and ej are the single-particle energies.

For simplicity we restrict ourselves to the case of two
levels, each of them with degeneracy Q; =2j;+ 1 (i = 1,2).
The lower level (i= 1) is placed at the energy e~ ——0 and
the upper level has eq ——e. We assume a system with N
fermions. For this two-level system I' has the struc-
ture

(12)

This result is to be compared with the exact value and it
has been shown in Refs. 12 and 13 that the agreement is
quite reasonable provided that the ratio E/6 is far from
the value given by Eq. (11). In the same region where
both the approximate result, Eq. (12), and the exact one
do not differ, the BCS result is rather poor. Therefore we
can adopt Eq. (12) as a good representation of the exact
solution and we can thus study the effects of the thermal
degrees of freedom much more accurately than in the
standard BCS approach.

B. The Emethod at T&0

and

m~0

m&0

(7)

The inclusion of temperature dependent degrees of free-
dom in a finite fermionic system can be performed by us-
ing the standard techniques of quantum statistical
mechanics, ' namely, we define a density operator p in
such a way that the expectation value,

fj ——(a~~aj & =Tr(pa&~a/~), (13)

The operators I.+, I. , S+, and S, and the operators

Lz ———,
'

(Xz —Qz),

can be understood as the thermal occupancy of the
single-particle orbit (j,m). In the grand canonical ensem-
ble' we have

Sz ——,
' (X, —Q, )

exp[ P(H —A,Ã—) ]P= z (14)

define two sets of quasispin operators. The L and S
operators commute and within each set they follow the
usual angular momentum commutation algebra.

The variation, up to second order in f, leads to the re-
s lt12 13

f= e ——X —2+ 6—sG 1 &z-1
2 2 2

which has a pole at the value

and the partition function Z is therefore given by'

Z =TrIexp[ P(H —AÃ)]I, — (15)

where f3=1/T is the inverse temperature, T being the
temperature in units of energy.

In the present case, we can perform the series expansion
of the transformed Hamiltonian H' [see Eq. (3)], and by
replacing the ground state expectation values for the cor-
responding traces, we get for the different terms which
appear in the second order variation (with g =6/e)

Qg —01
N —2+6 2 2

At T=O, the energy, at the same order in powers of f,
reads

2 (+ Qz)+Qzfz (Qtf 1 +Qzfz) ~

&IH F]&=
2

(f—f')QiQz[f I(fz 2 ) fz(fl 2 )]

(16)

(17)

&[[H A +1&=2ff*QIQz[f I(fz ——') —fz(fl ——.
' )]

+Gff'QiQz (Qi+Qz —4)fN+flfz(1 —Qi)+f'9'z(1 —Q»+ (Qd I+Qzfz)
2

(Qz —QI ) 3 I 1+ (fI
—fz) +(Q& —2)f &( z

—fz)+«z —2)fz( z
—f»
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where the quantities fi and f are then q are e single particle oc-

fi
——1/[1+exp( —Pk)],

N =Qif i+Qz fz
which has the solution

j.it= ——in[A +(R —)' ],

(20)

(21)

with

R =[aQi+Qz N(a—+ I)]/2aN

fz
——1/ t 1+exP[P(e —1 )] I .

The Lagrange multiplier A, is fixed ~

dition
is ixe by the number con-
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E(T&0)= &—Q
+Qzfz ——(Qif i+Qzf z)

and

r =(N —Qi —Qz)/aN, +
QiQGB
2(2B +GA)

(23)

where a=exp(pe}. The minimization of the en
d i f, ild

f= iGB/—(2B+GA),
where

B =fi(fz —
z }—fz(f i

—
z }

A =(Qi+Qz 4)f,f +f—f (1—Qi}

+fd'(1 —Qz)+ (Qg, +Q,f,fifz

+(fi —fz) +(Q —2)f'( —'—
i z

—fz)

+(Qz —2}fz( z
—fi } .

Finally, the energy for T&0 reads

(22)

III. RESULTS AND DISCUSSION

fi ——1/[1+exp( —Pe/2)],
(24)

fz ——1/[1+exP(Pe/2)],

where the value A, =e/2, which resul, w ic results from the solution
q. , as been used. The ener E . 2

be calculated and the result is

E(T)=Nfz—GN(fz z GNB
, +fz)+ 8(2B+GA) ' (25)

where, for the symmetric cy
'c case only, the coefficients A and

A = (N —2) (4f ifz 3fifz+-z+ z

In this section we shall show the results o
o-1 1
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