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Many microscopic studies of both nuclear matter and s-shell nuclei have been undertaken with re-

cently developed realistic models of the nucleon-nucleon interaction. These studies have proven to
be very useful in enhancing our understanding of nuclear structure. Microscopic treatment of all

but these lightest nuclei (A ~ 5) has proven to be extraordinarily difficult, however, because of the
strong spin-isospin dependence of the interaction. We have developed a new method of performing
variational calculations with realistic interactions for larger nuclei. This method does not rely upon

spin and spatial symmetries of the system, as in nuclear matter calculations, or upon explicit sum-

mation over all spin states, as has been done in s-shell nuclei. Instead spin-isospin states are sam-

pled in a random walk which takes place in a combination of spin, isospin, and coordinate space.
Results of calculations of the oxygen nucleus with a V6 interaction are reported, including energy,
form factor, and charge distribution.

I. INTRODUCTION

In recent years, several realistic models of the nuclear
interaction have been introduced. ' These interactions
have been employed in variational calculations of nuclear
matter ' and light nuclei, and have resulted in many
useful insights into areas such as three-nucleon interac-
tions, exchange currents, ' etc. However, these micro-
scopic studies have been limited in the sense that many
facets of nuclear structure, such as surface effects,
Coulomb energy, and excited states, have been studied in
only a few special cases.

It is not feasible to directly apply the methods used for
light nuclei or nuclear matter to heavier nuclei. For light
nuclei, variational Monte Carlo and Faddeev" tech-
niques have been employed. The variational Monte Carlo
method used in these systems entails a complete summa-
tion over all spin and isospin states of the system. There
are 2"A!/[Z!(2 —Z)!] such states for a nucleus of 2 nu-
cleons with Z protons, so the summation is possible only
for very light nuclei. On the other hand, integral equation
techniques have been used in studies of nuclear matter
with many different interactions. These techniques rely to
a great extent upon the spatial and spin symmetries of the
system; symmetries that are not present in finite nuclei.

Consequently, microscopic studies of these larger sys-
tems have been limited to shell model' and coupled clus-
ter' techniques. The ultimate aim of our work is to en-
able accurate variational calculations to be performed for
much larger nuclei. The attainment of this goal would
provide the possibility of studies in many areas previously
inaccessible to microscopic calculations.

Our initial calculations have been performed on the ' O
nucleus, with a V6 interaction. We have chosen this test
case in the belief that it is a stringent test of the method,
including all of the essential elements which will be neces-
sary for yet more refined calculations in the future. We
have used a modification of the Reid soft core interac-

tion, ' which was employed in earlier studies of nuclear
matter. It is simply the Reid interaction without the L, .S
interaction terms. We emphasize that the method we
have developed can be used to treat still more realistic
two- and three-body interactions. -However, we believe
that the Reid V6 potential is an important first step in
treating these systems. The potential may be written as

V(r;J. ) =gv (r;J.)0,~)

k

with the operators 0:
k+'j 1 ~' ~j +' +j ~' ~j&' &j S'j SJ7 ' 7j

for k=1,6. (1.2)

The functions v" depend only upon the distance r;J be-
tween particles i and j.

Previous variational calculations in both light nuclei
and nuclear matter have indicated that the symmetrized
product and independent pair wave functions ' provide
accurate descriptions of many nuclear properties. The
symmetrized product wave function is given by the ex-
pression

q=S QF;, A~I), .

where S and A indicate symmetrization and antisymmet-
rization operators, respectively. The terms F;~ are spin-
isospin-dependent pair correlation functions of the form

F,~ f'(r,~) 1+g u——.(r,J)O,J.

k&1
(1.4)

The f' and u" are functions of the pair separation r; , and.gJP

the operators 0;J are the same as those included in the po-
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tential. The correlations are those used in studies of nu-
clear matter; they are chosen to satisfy the two-body
Schrodinger-like equations of Ref. 4. These equations are
solved in the spin singlet channels to determine fs p r

I

and in the coupled spin triplet channels to determine
fs ~ r and f, r. The correlation functions are then
recombined into the operator form given above. These
equations have the form

g2
f4'sr~ fsr+2~4s, r ~fsr]+[~s, r+Us, r]fsrgs, r=o

in the singlet channels and

i%sr /fsr+2~0sr' /fsrl+I ~sr+Usr]fsrksr+g[~t r+Ut r]ft rlsr =0
~ (1.6)

g2 6
Ns, r~ ft, r+2~0s, r ~ft, r , ft, rf—s,r +[~s,r+Us, r 2(~tr+, Ut, r)lft, res, r+[~t, r+Ut, rlfs, res, r

These single particle states are functions of the distance of
particle i from the center of mass r;, and the particle
spin o; and isospin r;. The single particle states tt(r) for
the oxygen nucleus are simply the s- and p-wave bound
states of a Woods-Saxon well:

VoV(r)=
1+exp[(r —rp ) /a p]

Vp is adjusted to give a binding energy Ep for the P-shell
orbitals, and the same well is used to determine the s-wave
orbitals. The energy Eo, as well as the radius ro and skin
thickness ap of the well, are also variational parameters.

Variational calculations are performed with the in-
dependent pair wave function, which is given by the ex-
pression

I+)= +f,', (;, ) 1++gu (rj)O~.
i(j k

g u k(r )
k'( )O~~kOk'

in the triplet channels. Ps r is given by
[1—( —1) + I (kfr)]'~, where / is the Slater function
and kf is taken to be a variatiqnal parameter. The boun-
dary conditions imposed upon the correlations require
that the central correlation f' heal to 1 and all noncentral
correlations u be zero beyond a distance d, which is a
variational parameter of the wave function.

A
~

4&) is a Slater determinant of single particle states,
chosen so that the wave function has the correct total an-
gular momentum:

P(»;, )X(cr;)X(r; ) .

vides a great advantage, so we will use it in the initial
studies described here.

II. METHGD

For a nuclear system with realistic interaction and wave
function, calculating the expectation value of the Hamil-
tonian is extraordinarily difficult. Each pair correlation
in the wave function is a matrix of [2"3!/(Z!&!)]~
(=10' for oxygen) elements, and there are A(A —1)/2
such correlations. Even though each correlation matrix is
sparse, it is not possible to make a full evaluation of the
product of correlations at many points in configuration
space in order to perform y variational calculation.

Therefore, in. order to determine the expectation value
of an operator, it is necessary to develop an algorithm
which allows the various spin-isospin states of the system
to be sampled in the Monte Carlo sense instead of expli-
citly summed. In this section we first present a general
description of the method which we have developed, and
then discuss the details of the calculation for nuclear sys-
tems.

The major difficulty encountered in sampling over the
spin states is the tremendous increase in the statistical er-
ror that occurs if this sampling is done in a naive way. In
order to reduce the variance, the spin states must be treat-
ed in a manner analogous to that commonly used for the
spatial coordinates of the system. That is, we try explicit-
ly to select at random from a specific subset of spin-
isospin states in a way that, for the exact wave function,
gives a zero-variance result for the expectation value of
the energy. In order to do this, we observe that the expec-
tation value of the Hamiltonian may be written as

i (j, l (m k, k'

A iC) (1.10)
fd~y~t(~)a. b~b(~)

(a)=
dR 0, R%', R

(2.1)

This wave function includes correlations over a restricted
set of those present in the symrnetrized product wave
function; the sums exclude products of noncommuting
operators. Although this truncated wave function gives
slightly higher energies in light nuclei, its simplicity pro-

where R is a 3A-dimensional vector representing the spa-
tial coordinates of the particles, and a and b represent
spin-isospin states. For simplicity, we consider the basis
of spin-isospin states to be the set of states for which each
particle has a definite third component of spin and iso-
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spin. The calculation proceeds by sampling values of R
and a, while explicitly summing over all spin-isospin
states b for each choice of R and a. The full summation
over b, although it is a lengthy computation, greatly
reduces the statistical error of the calculation, since for
the exact wave function

QH, b %g E%g—— (2.2)

a'=PqP j(a), (2.3)

where j is chosen randomly among the particles. The pro-
posed move is accepted or rejected according to the ratio
of the squares of the wave functions evaluated at (R,a)
and (R', a'), as in standard variational Monte Carlo. As
long as detailed balance is preserved and the entire
coordinate-spin-isospin space of the problem is spanned,
any type or combination of types of Metropolis steps may
be chosen.

In these studies, we have combined the two types of
steps. Half of the steps are taken using the spin-flip
operator to sample the spin-isospin space, and the other
half using a spin-isospin exchange operator. In principle,
the walk could be undertaken using only a spin flip to
traverse the spin space. However, we find that these steps
have a relatively low acceptance rate of around 10 per-
cent, so the combination of different steps is preferable.

As the walk progresses the expectation value of any
operator 0 may be evaluated from the expression

0', (R;)QO, b%'b(R;),
b

4, (R;)4, (R;)
(2.4)

where the sum from i is a sum over the set of N configu-
rations with coordinates 8; and a;. Different formula-
tions for (0 ) are possible.

This prescription would be adequate to handle many
problems, but is insufficient in itself'to treat nuclear sys-
tems with realistic interactions. In these systems, it is ex-
tremely difficult to calculate even one spin-isospin corn-
ponent of the wave function exactly, due to the extremely
large number of spin dependent correlations in the in-
dependent pair wave function.

for any values of R and a.
In order to sample R and a efficiently in the combined

coordinate-spin-isospin space of the system, we use a gen-
eralized version of the standard Metropolis technique of
variational Monte Carlo calculations. The result of this
random walk is a set of configurations with a probability
density proportional to the square of the magnitude of
%,(R).

In this type of walk, instead of simply moving the par-
ticles in coordinate space, we must also allow them to
change the orientation of the spins and isospins. This
may be accomplished, for example, by flipping the third
component of the spin of a particle (designated by the
operator f; ), or by exchanging two particles's spin and
isospin (PJPJ). In the latter case, a proposed Metropolis
step may consist of choosing a new value R' for a particle
i in the standard manner and new values of a' by

M= a 1+ u rIJO
pairs k

(2.5)

is then determined through a sampling procedure. The
matrix element M may be written as the sum of matrix
elements M, where M is the contribution from all
terms in the product with exactly 1V noncentral correla-
tions. We wish to evaluate M for N=3 to A/2.

In general, many of the A /2 pairs will be separated by
a distance greater than the healing distance of the correla-
tion, and hence will be uncorrelated. Thus, only those
spin-isospin components of 4 in which these particles s
spins and isospins are unchanged will contribute to M,
Nevertheless, there is a very large number of components
of N that satisfy this condition. A subset of the com-
ponents is chosen and all M are evaluated, for N=3 to
A /2. In order to correct for the fact that we have not in-
cluded all components of 4, the matrix elements M+ are
multiplied by the ratio of the total number of components
of @ which contribute to M to the number contained in
the subset.

This entire procedure is repeated many times with dif-
ferent choices for the pairings. The results are then aver-
aged, resulting in a value for each M . In order to calcu-
late the contribution to the wave function, each M is
multiplied by the ratio of the total number of terms in the
independent pair wave function with exactly N noncentral
correlations to the number of those terms which have been
evaluated. As an example, assume we wished to deter-
mine the contribution of the linear terms in u to the wave
function with this method. Each pairing of the particles
produces A/2 contributions to M'. There are, however,
A (A —1)/2 terms with exactly one noncentral correlation
in the independent pair wave function, and therefore mul-
tiplying the average value of M' by A —1 gives the
correct contribution of the u ' terms.

The process of pairing the A/2 particles is chosen be-
cause this ratio is reasonable for all values of N, so that it
is feasible to calculate the contribution of many terms in
this manner. The average value of the sum of these con-

We proceed in the same spirit invoked above, namely to
compute what can be done explicitly and which contri-
butes the most, and sample the rest. Here that will mean
computing explicitly terms through order u in the expan-
sion of 4 [Eq. (1.10)] and random sampling of representa-
tive terms with higher powers of u. The terms of order
u and lower represent a large fraction of the normaliza-
tion of the wave function, so it is important to include
them fully and exactly. The symmetries of 4 and the fact
that many pairs are separated by a distance greater than
the correlation length make this evaluation feasible. The
higher order terms do make significant contributions to
the energy, however, so realistic calculations must take
them into account through a sampling procedure.

In order to sample these higher order terms in the in-
dependent pair wave function, an efficient scheme is re-
quired. We first choose a random set of A/2 pairings
such that each particle is paired with exactly one other
particle. The contribution of all terms of order u and
higher to the matrix element
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tributions is equal to the contribution of all terms of order
u and higher to the wave function.

Since we want to take the walk with a probability dis-
tribution proportional to O~%', this sampling procedure is
carried out independently for 4 and 'P~. With the in-
clusion of these sampled terms, the product %~% is no
longer positive definite, so the weight for the random
walk is taken as the product of the magnitude of 4 by the
magnitude of ql:

(2.6)

The expectation value of the Hamiltonian may then be
written as

1.2-

0.4

0.2

3
R(f m)

ql, (R;)QO, b%'b(R;)
b

8; (R;)

qI, (R;)ql, (R;)

W, (R;)

(2.7)

=exp[ 0.7(r;z —1.5—)j for r;J & 1.5 fm, (2.8)

and given an additional weight factor I/p. In this way,
all nearby pairs of particles are evaluated explicitly, while
well-separated pairs are evaluated rarely.

A typical variational run involves several thousand en-

ergy evaluations, with the computer time divided roughly
equally between calculation of the kinetic and potential
energy. Also, the time spent calculating lower order
terms (through u ) is comparable to the time spent sam-
pling the higher order terms.

The matrix elements of both the kinetic and potential en-

ergy are determined as in Eq. (2.7). The derivatives neces-
sary to calculate the kinetic energy are calculated numeri-
cally.

In order to evaluate the potential energy, a sum over all
pairs of particles is required. This sum involves a large
number of spin-isospin components b. In order to in-
crease the efficiency of the calculation, only a subset of
pairs is evaluated for every configuration. Pairs to be in-
cluded are chosen with probability p (r;J ),

p(r J)=1 for rj &1.5 fm

FIG. 1. Charge. distribution of ' 0, calculated and experi-
mental (Ref. 16). The circles indicate the point proton distribu-
tion. These points are folded with the proton charge distribu-
tion to obtain the solid curve.

correlations. A comparison of these results is presented in
Table II. The total energies obtained with these simplistic
wave functions are not accurate. The minimum energy
for the linear and linear-plus-quadratic wave functions are
only about —1 MeV and —4 MeV per particle, respec-
tively. However, a large fraction of the total kinetic and
potential energies is present in these wave functions. It is
for this reason that these terms are calculated explicitly,
rather than sampled. These preliminary calculations also
proved useful in giving a guide for determining the varia-
tional parameters.

As is apparent from Table II, the error in the total ener-

gy increases rapidly when the higher order terms are in-
cluded. This fact points toward a need for more efficient
sampling of these terms. An increase in efficiency by

AMENT

III. RESULTS

We have calculated several properties of the ground
state of ' 0, including the total energy, charge radius, and
form factor. Our results are summarized in Tables I—III
and Figs. 1—3.

The set of variational parameters which produces the
minimum energy is given in Table I. The calculations are
very time consuming so the parameters have not been ful-
ly optimized. The correlation length and the depth and
radius of the Woods-Saxon well are the most sensitive pa-
rameters; changes in these parameters produce the largest
changes in the total energy.

Prior to performing calculations with the complete in-
dependent pair wave function, we calculated various prop-
erties of the system with wave functions containing only
the linear or linear-plus-quadratic terms in the noncentral

2
Q(fm ')

FIG. 2. Charge form factor of ' 0 calculated in the impulse
approximation and experimental results (Ref. 16).
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Parameter

rp

Qp

kf

TABLE I. Variational parameters.

Value

2.5
13.0
3.5
0.25
1.1

fm
MeV
fm
fm
fm-'

1 .2

1

D

o

0.6—

o CORRELATED

UNCORREI ATED

P.2 -o

roughly a factor of 10 (which would decrease the error by
a factor of 3) will be necessary to yield detailed informa-
tion about the energy of the system. Such a factor does
not seem out of reach as computational facilities improve
and further refinements are made in the algorithm.

Results of several calculations with the independent
pair wave function are listed in Table III. A correlation
length of roughly 2.5 fm appears to be optimal. This is
somewhat larger than the minimum value obtained for
nuclear matter at equilibrium density, approximately 2.1

fm for a very similar parametrization. As expected, the
magnitude of both the kinetic and potential energies in-
creases as the correlation length is increased. It is very
difficult to make fine distinctions in various parameters,
however, as the statistical errors are relatively large.

The minimum energy which we obtained with the Reid
V6 interaction is —7.0+ 1.3 MeV per nucleon. The
Coulomb energy for this system is approximately 0.8 MeV
per nucleon, so the total energy is —6.2 as compared with
an experimental value of —8. It is not apparent from
these initial studies what portion of the difference is due
to our choice of variational wave function and what part
is due to the simplified form of the interaction. Future
studies should determine the importance of using more
realistic two- and three-body interactions.

The rms charge radius of our wave function is
2.72+0.05 fm, in good agreement with the experimental
value of 2.70+0.02. We have also calculated the charge
distribution and the charge form factor. The charge dis-
tribution is given in Fig. 1, and the charge form factor in
Fig. 2. Each is compared with the experimental results of
Sick et al. '

In Fig. 1, the circles represent the point proton distribu-
tion, and the dashed line gives the charge distribution,
which is obtained by folding the point particle distribu-
tion with the nucleon charge density. The curves agree
well except at small values of r ( & 1.5 fm), where the cal-
culated charge density is considerably smaller than the ex-
perimental results would indicate. Equivalently, the

0 L

0 1 2 3 4 5 6

R(fm)
FIG. 3. A comparison of the point proton distribution of the

full independent pair wave function and the uncorrelated @.

charge form factor agrees very well with the experimental
results at small q, but disagrees at larger values of the
momentum transfer.

The discrepancy between theoretical and experimental
charge distributions at small radii arises from the choice
of variational wave function and possibly from the neglect
of exchange current contributions to the charge form fac-
tor. Since all of the single particle states in @ are func-
tions of the distance to the center of mass, the 12 nucleons
in the p shell are excluded from this region.

The central depression in the point distribution is ap-
parent in the experimental results, as there is a central
depression in the charge density. This depression indi-
cates a greater reduction in the equivalent point nucleon
distribution at the center of mass, but the experiments
would predict a much smaller effect. Also, the inclusion
of meson exchange currents will significantly alter the cal-
culated form factor, and consequently the charge distribu-
tion. The exchange current contributions are quite large,
especially in the region of the second diffraction
minimum. '

Finally, a comparison of the charge distribution with
and without correlations is presented in Fig. 3. There is
little difference between the two distributions, except for a
small decrease in the rms radius caused by the correla-
tions. Previous shell model calculations indicated that it
might be necessary to include pair correlations in the
wave function in order to reproduce the second diffraction
minimum in the charge form factor. ' Simple harmonic
oscillator shell model wave functions without center of
mass corrections will not produce a second minimum, but
on the basis of our work it seems unlikely that this feature

TABLE II. Results for linear, linear-plus-quadratic, and full independent pair (IP) wave functions.
Variational parameters other than d are given in Table I. These values are near the variational
minimum for each type of wave function.

Type

Linear
Quadratic
IP

2.25
2.50
2.50

—12+6
—58+9

—112+18

343+9
417+10
414+ 11

—355+15
—474+ 15
—525+22

( 2)1/2a
P

2.68
2.62
2.60

'( r~ ) '~2 is the root mean square radius of the point proton distribution.
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Type

TABLE III. Results for full independent pair (IP) wave functions.

( r2 ) 1/2a
P

IP
IP
IP

2.30
2.50
2.60

—77+13
—112+18
—75+18

382+ 14
414+11
445+29

—459+18
—525+22
—521+25

2.69
2.60
2.59

'(r~ ) '~i is the root mean square radius of the point proton distribution.

can be explicitly tied to the presence of correlations.
Correlations may, however, play a significant role in
determining fine details of nuclear charge distributions,
especially in areas such as the difference between nearby
nuclei. Future investigations in this area may prove very
useful.

IV. CONCLUSIONS

We believe that this variational Monte Carlo method
will prove to be very valuable for microscopic calculations
of large nuclei with realistic interactions. The calcula-
tions presented in this paper are an important first step in
this direction. In order to realize this goal more fully,
several aspects of the method should be improved.

The large computational times can be reduced by im-
proving the efficiency of the sampling algorithm for the
higher order terms, which is the limiting factor at present.
An improvement of roughly an order of magnitude seems
feasible in this area. Also, it would be very desirable to
extend the method to use the full symmetrized product
wave function.

Alternatively, one could investigate different choices

for the variational wave function. We have chosen the ex-
treme single-particle model for our uncorrelated state 4 in
this work. While this is conceptually attractive, it is com-
putationally difficult, since the wave function then re-
quires rather long range spin dependent pair correlations
in order to minimize the energy. The calculation of these
correlations dominates the calculation of the energy.
Therefore, it may be profitable to include a less restricted
shell model state as the uncorrelated wave function.

This work has shown that it is feasible to perform real-
istic variational Monte Carlo calculations on p-shell nu-
clei. Variational calculations may prove to be of signifi-
cant value in improving our understanding of many as-
pects of nuclear structure.
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