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Impulse approximation and pion-exchange current contributions to the trinucleon magnetic mo-
ments are calculated using wave functions generated by solving the configuration-space Faddeev
equations for a variety of nucleon-nucleon force models. Careful attention is paid to the origin of
important exchange current contributions. Numerical results are compared with previously pub-
lished calculations and with the experimental data. An attempt is made to isolate and understand
sources of discrepancy between our results and those previously published. Calculations which in-
clude both impulse and pion-exchange current contributions are in fairly good agreement with ex-
periment, whereas calculations which include only the impulse approximation term are not.

I. INTRODUCTION

The study of nuclear magnetic moments has played an
important role in our understanding of nuclear forces.
Deviations from the Schmidt limits gave an early indica-
tion of deficiencies in the extreme single-particle model.
Apart from the suggestion that nuclear collective motion
was the cause, another possibility lay in the quenching of
nucleon moments inside nuclear matter. ' The intriguing
aspect of quenching is that it offers a window into the
modification of nuclear properties due to subnuclear de-
grees of freedom. In today's parlance, subnuclear degrees
of freedom are referred to as meson exchange currents
(MEC's) or, more recently, as quark percolation or decon-
finement effects, although calculations of the latter are
only qualitative. Unfortunately, for most of the periodic
table the uncertainties which arise in theoretical treat-
ments of the many-body problem make it difficult to as-
cribe differences between calculated and measured mag-
netic moments as due to subnuclear effects.

The few-nucleon systems H, He, and H are free of
nuclear structure uncertainties associated with the diffi-
culty of solving a multinucleon Schrodinger equation.
That is, given a nucleon-nucleon (NN) potential, the wave
functions for these nuclei can, in principle, be computed
to arbitrary numerical precision. Therefore these nuclei
have played an all-important role in elucidating the char-
acter of meson exchange currents. In the case of the
deuteron, explanation of the magnetic moment does not
appear to require exchange currents at the few percent
level. This says only that isosealar MEC's are small, a
fact in agreement with current understanding which says

that isoscalar MEC's are of the same order as relativistic
corrections. It was in the process of radiative n-p capture
where the real importance and size of isovector MEC's
was immediately apparent. The 1972 paper by Riska and
Brown demonstrated that including isovector MEC's
could remove the 10%%uo discrepancy (in the capture rate)
between experiment and impulse approximation theory.
Apart from some refinements, these same MEC's play an
important role in accounting for the inelastic Ml form
factors measured in the H(e, e')np reaction.

A measurement of the magnetic moments of He and
H was encouraged by Sachs and Schwinger in 1946. At

that time, the interest in such a measurement was to
determine the deviations from L Scoupling -in these nu-

clei. For example, Gerjuoy and Schwinger had predicted
an admixture of four percent "Di&2 state to the predom-
inantly pure Si&z ground state. Using this wave func-
tion, Sachs and Schwinger predicted trinucleon magnetic
moments which were closer to the (then unknown) experi-
mental values than are given by similar (impulse approxi-
mation) calculations today. Modern trinucleon wave
functions reflect the increased sophistication both in NN
potentials and in computing power compared to that
available in the 1940's. However, as will be seen in what
follows, contemporary impulse, approximation calcula-
tions of the trinucleon magnetic moments give results
nearly 20% different from the measured values. Most of
this difference is expected to be explained by MEC's.

Calculations of MEC corrections to trinucleon magnet-
ic moments and form factors using modern potentials and
Faddeev wave functions can be traced back to the early
1970's. One of the first papers was the work by Harper,
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Kim, Tubis, and Rho in 1972. Phenomenological wave
functions were used by Riska, while Maize and Kim,
Strueve et al. ,

' and Torre and Goulard" used wave func-
tions generated by Faddeev methods. All agreed on the
dominant processes contributing to the MEC
corrections —processes in which a pion is exchanged be-
tween two nucleons. They differed somewhat in their
treatment of the contributions of heavier meson (i.e., p
and to) exchange. Strueve et al. , for example, included a
more complete treatment of terms which involve virtual
excitation of the b,(3,3) isobar. When compared to the
dominant pion exchange terms, heavy-meson effects con-
tribute at the order of 10%, and their reliable calculation
is problematical. Much of this suppression results be-
cause the trinucleon wave functions. become very small at
nucleon-nucleon separations corresponding to the range of
the heavy mesons.

Although previous groups agreed on the dominant
MEC diagrams (see Fig. 1) contributing to the trinucleon
magnetic moments (basically the same diagrams con-
sidered by Riska and Brown), they did not always agree
on the numerical values. We believe it is important to es-
tablish these values as well as possible. There is little
point in computing higher-order corrections, or heavy-
meson exchange terms, unless one has confidence in the
size of the major effects. In this paper, we present a care-
ful, detailed analysis of these MEC corrections to the
trinucleon magnetic moments. Whenever possible, we will
emphasize agreement with previous work or attempt to
explain any lack thereof. Our calculations are performed
using six different NN potential models. In this way the
dependence of the magnetic moments on binding effects,
for example, can be partially explored.

The presentation is as follows. In Sec. II we give gen-
eral formulae for the magnetic moments in terms of the
nuclear current density. Also presented here are our im-

pulse approximation results for the six NN potentials con-
sidered in this paper. These potential models are the Reid
soft core (RSC), ' the Argonne V~q (AV14), ' the super
soft core C (SSCC),' the de Tourreil-Rouben-Sprung 8
(TRS),' the Malfliet-Tjon I—III (MT13), ' and the RSC
with Coulomb potential (RSCC).' Ground-state trinu-
cleon properties resulting from these potentials are given
in Refs. 17, 18, and 19. In Secs. III, IV, and V, we deal

separately with each of the main MEC diagrams —the
pair diagram, the pion diagram, and the 6-isobar dia-

gram. In each section, we compare our results with those
of earlier publications. Finally, in Sec. VI, we conclude
with a summary of calculated trinucleon magnetic mo-
ments.

II. GENERAL FORMULAE
AND IMPULSE APPROXIMATION

The current density at the point r is denoted by J(r).
We define a magnetic dipole density p,s(r) by means of

p,s(r) = —,fdQ[rX J(r)], , (1)

so that the magnetic dipole form factor p(q) is given by

Xtr(i)5(r —x;) . (5)

In Eq. (5), p„(=2.793 pN) and p ( = —1.913 pN) are the
free proton and neutron magnetic moments in nuclear
magnetons (eR/2M~c).

The contribution of J,s to p, s splits naturally into
two pieces: p (r), directly proportional to the magnetic
spin density g,.p(i)o, (i), and pY~, proportional to the

product operator g,.p(i)[I'z(r)o(i))0. From j, arises a
term pL proportional to the operator g,.e(i)L, (i). The

impulse approximation to p, s takes the form

imp
pmag pL +pYa 3 (pn pYa) ~ (6)

and the corresponding magnetic moment becomes (after
an integration by parts)

P =
0

~ pa+PL, (7)

%'e note that p~ does not contribute to p although we
shall see later that it makes a non-negligible contribution
to p~,s(r) The rea.der should note that we have assumed
point nucleons. The charges e(i) and the nucleon mag-
netic moments p(i) must be replaced by the appropriate
nucleon form factors when computing p(q&0).

It is useful to examine how the densities p, pL, andz'

pY depend on the various wave function components.
All our ealeulations have been performed using a five-
channel Faddeev approximation: only the dominant two-
nucleon partial waves 'So and S~- D~ are retained. The
corresponding L-S components in our trinucleon wave
functions are Sggp, S(g2, P)gp,

Pygmy,

Pygmy, and three

D~~2 components. For the notation, we refer the reader
to the paper by Friar et al. The formulae are cumber-
some to write out in detail, especially if all the, above com-
ponents are included. We have, therefore, elected to
suppress the small P wave parts from our formulae.
Their effect has been included, however, in all numerical
results. The formulae are

m 3j)(qr)
p(q) = p,s(r)r'dr .

qr

The static magnetic moments are then given by

p= f p,@(r)r2dr .

Thus, the magnetic moment is just the volume integral
(apart from a factor of 4m.) of the magnetic dipole density.
Each process contributing to J(r) will generate its own
contribution to p, s(r)

In the impulse approximation, the current density arises
from convection currents J, and magnetization currentsJ,z where

1 1+&3(i)
J,(r) = g [p;5(r—x;)+5(r—x;)p;]

(4)
and

I +r3(i) 1 ~3(i)—J, (r)=VX+ p + p„
l
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Pp+Pn Pp P—n . ~5 . 1
p (r)=4m. d x d y 5(r+ —,y) .

2 2 v'3 v'3[F~(u~ul~u2~U3~U4) —4uul ]—(2T3) F& u, V&~l ~ V2~lv3~ ~ U4

where

F~(u, u»V2, V3,V4)=I(u +vl+uz) —(1+3p )[(u4) +(V3 ]
—3(1—p )[(u4 ) +(U3 ) ]—(3+@ )[(u4) +(V3) ]—SP(V4V4+U3 3)j

All "radial functions" (i.e., u, v l, etc.) depend on the three scalar quantities x, y, and p =x y. Here x, y are the usual
Jacobi coordinates x=rz —r3 and y= —,(r2+r3) —r&. The radial function u is associated with the spatially symmetric
principal S state, v& and uz are associated with the mixed symmetry S state, while V3 and V4 are associated with the vari-
ous families (L,M, N) of mixed symmetry D states. The quantity (2T3) has the values + 1 and —1 for He and H,
respectively. Corresponding expressions for pL, and pz are given below:

3 3 ep+e„ ep —en i
pL (r) =4m. d x d y $(r+ —,y)g 2

FL (u3, v4)+(2T3) FL, U3~ U4
2 3

(9)

where

FL(V3,V4)=I(1+3p )[(v3 ) +(u4) ]+3(1—p )[(v3 ) +(v4 ) ]+(3+@)[(v3 ) +(u4 ) ]

+8@(V3V3+v4V4)+2@(1—p )(V4B„V4 +u3B„uq ) —4(v4u4 +v3u3 )

+2(1— ')(u a uM+u, a„uM) 4p(u—,u~4+ux3VM) )

and where ep and e„(=0)are the proton and neutron electric charges. We use the abbreviation

AB„8=A — B .
Bp Bp

We also have

3 3 Pp+Pn-
pz~(r) =4m. d x d y 5(r+ —,y)

2
F3 (uyulyv2yv3yv4)+(2T3) FY u, vl, ~ U2, V3p ~ U4

2 9'3 v'3 (10)

where

Fz(u, ul, v2, V3,V4)=(1+3p, )(uu3 V2V4+u—&v3 )—3(1—p )(uu3 uzu4 —+vlv3 )
2 L L L 2 M M M

+4@(uu3 —uzv4+u&v3 )+—,(9P, —1)[(V3 ) +(V4) ]

—3(l —i4 )(U4U4 +U3U3 )+p(3p +5)(U4U4 +U3U3 )

+ 2 (1—p, )[(U3 ) +(u4 ) )—3p(1 —p )(V4 v4+uq u3 )+—,(3+5@ )[(u3 ) +(u4 ) ] .

—(2T3 ) [P(S)——,
' P (S') + —,

' P (D) ]

+ —,
' P(D)[l+ —,

' (2T, )] . (12)

Here P(S) is the probability of the principal S state, etc.
Apart from the appearance of the probability of the
mixed symmetry S state, P(S'), Eq. (12) is identical to

Integration of the densities p~ and pL according to Eq.
(7) does not yield an expression for p in terms of configu-
ration probabilities. The difficulty lies with terms in pz
which cannot be reduced to probabilities. %'e note, how-
ever, that if only one of the D-wave components is kept
(i.e., X, L, or M), then the magnetic moment is given by

Pp+Pn
p = [P(S)+P(S')—P(D)]

2

that derived by Sachs and Schwinger in Ref. 5. However,
as clearly pointed out by those authors, Eq. (12) holds
only if P waves are neglected and only if just one form of
the D wave is retained. (This formula has appeared in the
literature as tile impulse approximation result. ) The error
is not large, though, because the offending terms are in
the L, piece. For example, with the Reid soft core (RSC)
potential model, Eq. (12) gives p, =0.404 and
p„=—2. 139 for the isoscalar and isovector magnetic mo-
ments. Numerical integration of Eq. (7), however, yields
p, =0.404 and p„=—2. 149. All of the results which we
quote below were computed by numerical integration of
Pmag

We illustrate, using the RSC model, the impulse ap-
proximation isoscalar and isovector densities in Fig. 2. In
this figure, we include in succession p~, pL, , and pz~. Thez'
effect of pz. is almost too small to be noticeable, whereas
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0.6— (o)

4 r{fm)

(b)

FIG. 1. (a) Seagull or pair diagram, ' (b) pion (true exchange)
current diagram; (c) 6-isobar diagram.

-02—

-0.4—

-0.6—

the addition of pr to p produces a marked change in the
density. This is due to the S-D overlap which is allowed
by the [ Yzeo]' operator. Of course, the addition of pr
still produces no change in p but it does produce a signifi-
cant change in the form factors. This is illustrated in Fig.
3. (Nucleon form factors are used in computing the
curves of Fig 3; .however, for our purposes, it is not
necessary to elaborate on these details. )

Table I lists our values of the trinucleon magnetic mo-
ments computed in the impulse approximation. Also tab-
ulated are the results of Maize and Kim (MK), Strueve,
Hajduk, and Sauer' (SHS), Torre and Goulard" (TG),
Torre, Goulard, and Hadjimichael ' (TGH), and of
Harper, Kim, Tubis, and Rho (HKTR), all of which used
RSC wave functions. In addition, we include the results
of Hadjimichael, Goulard, and Bornais z (HGB) who used
the TRS potential.

Several points should be made with respect to the en-
tries in Table I. The magnetic moments computed with
the MT13 potential are at variance with the others. This
potential has no tensor force and hence there is no D wave
in the ground state wave functions. We include it only for
pedagogical purposes. The values of p, and p„computed
by MK differ somewhat from ours. However, this may be
a result of their using a parametrized wave function ob-
tained by an approximate fit to the RSC wave function of
Brandenburg et a/. The values of HKTR are in excel-
lent agreement with our own. Finally, we note the values

0.6— (b)

ro 02
t

E

0.00 r
t

I' (fry)
2 4

of TG appear to be at variance with the others. This is
puzzling in view of the fact that there. is agreement among
HGB, TGH, and ourselves.

III. THE PAIR TERM

Derivations of the various exchange currents can be
found in any one of several references. ' The pair (or
seagull) current [see Fig. 1(a)] is given by,

-0.4—
FIG. 2. (a) Impulse approximation isovector magnetic densi-

ty. Dash-dot, dashed, and solid lines depict the densities corn-
puted using Eq. (6) and p only, p +pL, , and p~+pL, +pr~,
respectively. In this figure, the dash-dot and dashed curves are
indistinguishable. (b) Impulse approximation isoscalar magnetic
density. Labeling of curves as described for Fig. 1(a).

TABLE I. Impulse approximation magnetic moments.

Reference

Present
work

Potential

RSCC
RSC
AV14
SSCC
TRS
MT13

0.405
0.405
0.405
0.409
OA07
0.440

—2.143
—2.149
—2.165
—2.179
—2.166
—2.292

p(3He)

—1.738
—1,744
—1.760
—1.769
—1.759
—1.852

p( H)

2.547
2.553
2.571
2.588
2.573
2-732

Comments

Coulomb corrected

S state only

MK
SHS
TG
TGH
HKTR
HGB

RSC
RSC
RSC
RSC
RSC
TRS

0.37
0.40
0.397
0.395
0.408,
0.41

—2.19
—2.16
—2.109
—2.127
—2.152
—2, 17

—1.83
—1.76
—1.711
—1.732
—1.744
—1.76

2.56
2.S6
2.S06
2.521
2.560
2.57

fit to RSC
18-channel
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2

J(r)~„,= 2 g[r(i) Xr(j)]3rr(i)5(r —x;)
Pl ~ J~~

I'IJ & I I I
J

I I I
)

I I I I I I I
t

I I I I I I I
)

I I I I I I I
)

I I I
t

I I
ol

IOo

(13) IO-I

where

2—mr ~, Ar
ho(r) =—e —e '— 1 — e " (14)

A2

IQ 2
D

IO-3

and

j" =0.078 .

Io-5

4 6 8

q(tm ')

't

I I I I I I I I I I I I I I I I I I I i I I i I I I I I II I I I I I I I I I I

2

For m we use 0.708 fm ' (140 MeV). The value of the
pion-nucleon (monopole) form factor parameter A is more
controversial, although current practice suggests a value
of 4.12 fm ' (5.8m~). However, we shall present results
using a range of values for A. The sensitivity of the trinu-
cleon magnetic moments to this parameter will then be
evident.

Before proceeding, it is useful to restate several points
relating to J~„,. The first concerns the influence of the
m.N coupling model selected for the derivation of Eq. (13),
i.e., pseudoscalar (PS) or pseudovector (PV). As pointed
out many times in the past, these couplings lead to the
same formula for J~,, to (nonrelativistic) order f /m .
The second involves the disparities that can arise when
different electromagnetic form factors are used in the two
couplings. As discussed by Lock and Foldy there are
reasons for associating the axial vector form factor
Gz(q )/Gz(0)= Fz(q ) with—the contact term that arises
in the PV theory. Then the difference between the pair
current calculated in each theory would be proportional to

IO0

lo-I

lo 2

IO-5

IO-6

Io

IO8

q {fm ')

I I

lo

I
I

I I I I I I I
I

I I I I I I I
[

I I I I I I I~

In any case, such a term would not contribute to p(q =0).
A final point concerns the cutoff parameter A and the
gauge invariance of the theory. Strictly speaking, gauge
invariance holds only for the case A= oo. However, by
altering the definition of the pion-nucleon form factor
such that gauge invariance holds for finite A, Maize and
Kim9 found that the overall effect on magnetic form fac-
tors is small. They estimate an effect on the trinucleon
magnetic moments of about 1%. Their prescription for
restoring gauge invariance is not unique, however, and

FIG. 3. (a) Impulse approximation isovector component
F„(q) of the magnetic form factor p(q). Dashed, dotted, and
solid lines depict form factors computed using the densities p,
p +pl. , and p +pI. +pz . In this figure, the dashed and dot-2' z

ted lines are indistinguishable. (b) Impulse approximation iso-
scalar component F,(q) of the magnetic form factor p(q). La-
beling of curves is as described for Fig. 2(a).

making no changes in the solenoidal part of t. he current is
also acceptable.

The magnetic density corresponding to J~„, is denoted
by Io»I, It is given in terms of the trinucleon wave func-
tion by (P waves omitted)

TABLE II. Partial wave contributions to p~ . Entries calculated using 4=5.8m .

S-S
S-D
D-D

RSCC

—0.244
—0.082

0

RSC

—0.249
—0.084

0

AV14

—0.258
—0.086

0

SSCC

—0.262
—0.082

0

TRS

—0.263
—0.085

0

MT13

—0.301
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pp«g( r) (2T3)6(f /m~) fd x d y 5(1+ p y)ho(
~ 1 2 x g y ~ )

X I(r + —,'rxp)(u —u~ —u2)+2[r P3(p)+ ,'r—xP~(p)](uzv4+uu3 U/U3)

2(r —+ ,
'

rxP—&)(u~v3 v—2u4 u—u3)+2[ —,
' (1+ ,'P2)—rx+2r p]

X(U2U4 +QU3 V]U3 )I
E K K (15)

where IV. THE PION CURRENT TERM

hv(z)= — hv(z) .
z dz

This result is more conveniently expressed in the I,J,K
representation of the D waves than the I.,M, IC represen-
tation used earlier in Eqs. (8), (9), (10), and (11).

We illustrate the density p~„, in Fig. 4 for the case of
4=5.8m~. It is clear that ppz$p does not have a strong
dependence on the wave function. This is probably due to
the fact that the dominant contributions to p~„, arise from
S-S matrix elements. We elaborate on this in Table II by
detailing the pair term contributions to the magnetic mo-
ment from the S-S, S-D, and D-D matrix elements. The
D-D matrix elements vanish because of isospin permuta-
tion symmetry.

We postpone giving the final-pair term results until
after our discussion of the pion current, because some au-
thors have given their results as a summed pair plus pion
e ect.

The pion current [see Fig. 1(b)] or true-exchange
current is given by

2

y[6i) X &(j)]3[4r(i) V ho(
~
r xj

~
)]V

8~m ~ ~~i

X [~(j).V„h, (
~

r —x,
~
)] .

This current differs from the pair current and b, -isobar
current in one essential way —it is not localized at the
point where the nucleon absorbs the photon. That is,
there is no factor like 5(r —x;) in the current. Such a fac-
tor permits one to reduce the calculation of p,s(r) to a
two-dimensional integral. Without it, however, as in the
case of J~, the numerical calculation of p,s(r) involves a
time-consuming multidimensional integral for each value
of r. For this reason, we have not calculated p (r). How-
ever, because we only focus on the magnetic 1noment, p~,
due to the pion current, our problem simplifies immense-
ly. We obtain the following expression for p:

p = —,
' rr)&J r

r

2
=3 ~Jdxdydpx y ——,(G'+ —,x G")(u —uf —u2)+ 9xG py +

m~ 3

I

pxyG" + p(1 p')x'yG"' T—+ —', x'G" U P2
9 3 3

+ —'xzG"pU + (5xyG" +x yG"')(3+p )T — x yG Pz(p)T
45 3 45 3

(17)

(e ~H e
—Ax)

(A —m )x

and

1 dG'
x dx

1 dG"
x dx

The quantities T, U, etc., are defined below by Eqs. (29)

I

and (30). Multiplication by 2M&c/6=9. 51 converts the
dimensions of p from fm to nuclear magnetons.

Table III enumerates the partial wave contributions to
p~. %'e note that, as in the pair current, the S-S matrix
elements are dominant and the D-D matrix elements van-
ish identically. (Both the pair and pion currents contain
the same isospin factor [~(i))&r(j)]3.)

Our results for pv«, and p~ calculated using A=5.8m~
are collected in Table IV. Comparison with previous
work is complicated by the A dependence of these quanti-
ties and by the fact that not all authors have used the
same value for A. Fortunately, the A dependence is not
severe for these terms, as we illustrate in Table V for the
RSC model. Finally, we present in Table UI a compar-
ison of our results with those of others.
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TABLE III. Partial wave contributions to p . Entries calculated using A=5. 8m and (2T3)=1.

S-S
S-D
D-D

RSCC

0.106
—0.024

0

RSC

0.109
—0.024

0

AV14

0.115
—0.023

0

SSCC

0.118
—0.022

0

TRS

0.120
—0.023

0

MT13

0.140

. It is evident from Table VI that substantial agreement
exists for the contributions to p from the pair and pion
currents. As mentioned previously, these contributions
are due mainly to the S-state component of the wave
function. Thus, one does not expect to see much variation
in the results. It should be pointed out, however, that

some calculations of p, , e.g., that of TG, use an approxi-
mation described as "keeping only the translationally in-
variant parts of the operator. " This approximation, to
our knowledge, first appeared in the pioneering work of
Chemtob and Rho. In order to describe this approxima-
tion, we first displ"y the operator p:

2

p = —3(32m ) z [v(2))&r(3)]34mi V2[[cr(2)o(3)]'[Yo(x)SYO(y)] ]o(6'+ —,xiG")
7?Z ~

X+ [[o'(2)o(3)] s[Yi(x )s Yp(y)] ]06"(x)

+ —,
' &2/3xy[[o(2)o(3)] [Yi(x) Yi(y)]']06 "(x)

I

——,V10/3xy[[o(2)eo(3)] e [Y,(x)e Y, (y)]']OG"(x)

+ 9 ~10xy[[o(2)eo(3)] e[Yi(x) Y'i(y)] ]OG"(x)

+ 9 &2/3x y[[o'(2)&(3)] 8 [Yi(x) Yi(y)] loiG ' (x)

——,
' v'2/15x'y[[o(2)o(3)]2I3 [ Yi(x)I8I Yi(y)]']06"'(x)

+ —,
' v'2/5x y[[o.(2)eo(3)] I3[Yi(x) Yi(y)] ]06"'(x)

+ —,
' V'4/15x3y[[o(2)o(3)] [Y3(x)I8I Yi(y)] ]06'"(x)

——', V'2/15x y[[o(2)@o'(3)] S[Y3(x)SYi(y)] ]OG'"(x) (18)

~e note that the operator is manifestly translationally invariant because it only depends on the relative coordinates x
and y. The first two te~s within the curly braces do not depend on y, whereas all subsequent te~s depend linearly on
y. The approximation referred to above consists of dropping all terms depending linearly on y. The improp«nomen-
clature, "translationally noninvariant terms, " refers to these dropped terms, presumably because in a system where the
nuclear c.m. is located at the origin, i.e., R=O, then y= —,(ri+r3) =3R23 is proportional to the center of mass of the 2-3

TABLE IV. Pair, pion, and isobar current contributions to p in nuclear magnetons. These entries
are for (2T3)=1 and A=5. 8p .

P~r
Pe
Pa

RSCC

—0.330
0.083

—0.092

—0.338
0.086

—0.095

—0.349
0.093

—0.095

SSCC

—0.348
0.097

—0.085

TRS

—0.353
0.098

—0.091

MT13

—0.301
0.140
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pair. It does appear, however, that keeping only the first two terms of Eq. (18), i.e., the [Yo(x)ISI Yv(y)] and the
[ Y2(x )S Yo(y )] pieces, is a very good approximation .This is primarily because the first term is the only piece which has
a nonzero S-S matrix element. Recall that Table III shows that S-Smatrix elements provide the dominant contributions
to p~. For example, if we compute p using only the first two terms of Eq. (18), we obtain @~=0.074(A=8. 6m~, RSC),
whereas retaining all terms of the operator yields the result in Table V, p =0.082. The difference arises because the
second term, [ F2(x }SYo(y )], does not pick up the complete S-D contribution.

V. THE 5-ISOBAR CURRENT

The current due to virtual photoexcitation of the 3-3 resonance on one nucleon with its subsequent decay by pion emis-
sion [see Fig. 1(c)] is denoted J~(r). It is given in the static b,-propagator approximation by

J~(r)=—, VX +6(r—x;).{[~(i)XV„][~(i)X~(j)]3413(J)V Io(j) V„hp( ~r —xj
~

) .8 f Pp Pn—
25 m2 2Mp(Mg —Mp)

(19)

It should be noted that this current is solenoidal and hence is automatically conserved, independent of the form of ho.
However, there does appear to be some latitude in the choice of the yNb coupling constant used to derive J~. That used
in Eq. (19) is the value obtained by Riska and Brown using the static quark model. Thakur and Foldy, on the other
hand, obtain —, times this result on the basis of a correct treatment of pion rescattering in the Chew-Low model. Chem-
tob and Rho used a dispersion theory analysis of ~N scattering in the b, and Roper channels and obtained slightly dif-
ferent coupling constants. Using their values, the overall current of Eq. (19) would increase by 6% and the factor of 4
multiplying the r3(j)V, term in the curly braces would be replaced by 3.56. We shall see that this uncertainty in the cou-
pling constant is insignificant compared to the dependence of p~ on A.

Unfortunately the expression for p~ is algebraically complicated and, as a result, not that illuminating. We include it
(without the P waves} for completeness.

I

p~(r)=(2T3)r Fo(r)+V'5/2 +—Pi(p)
d 3 (20)
dr t& l'

16~ f' (S „—V.)

~3 ulu2 —', u2 [—", &0 +—', (i + —,x'+ , xrpi )Ii0']+—3(r P2+ —,
' x + 3 xrp, )8' ho'

+ —,(r + , x P2+ , xrPi—)W ho'+——,[(r + —,'x )Pi+ —,xr(5+P2)]W ho'

27 [F ' +F ' +(3+@ )F ' ]ho —
9 [r (1'—2P2) —9x —3xrpi]Y ' ho

+ , [(r + —,'x )Pz—+, xrp, ]YIJIio'+ —,", [r—2(2Pi+3p~)+—,'x2pi+ —,'xp (5+pi)]YI «go

+ —,'[r ——,'x (1—2P2)+ —,'xrpi]Y ' hei'+ ", [r Pi++~x (2Pi—+3pi)+—,'xr(5+P2)]Y ' ho'

+ ,", [(r + —,
' x )(1+2P2 ) + ——,

' xr(6P, Pi )]F««h
0 + —,

"—, (1 3p, )YI ~h 0 —",,'—p( Y «+ Y «)h 0
(21)

where

8' = 3v4v2+ v 3u4u —— (ugui+uiv2),V3

F '~=vguf, — (v4ui +ugv3 ) y

W3
2

(22)

(23)

1 d, 1 d 1 d
hp' ——— hp ——— hpz dz z' dz z dz

and Pi(p) are Legendre polynomials.
Similarly, the S S, S D, and D-D c-ontributions to-Fz(r) are given by:
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F ( )
16m f Hp

—Pn 3fd3 d3 ~(
z

)
( —„)

25 pyg2 2Mp(Mg —Mp)

X (r + , x—P2+,'xr—P)) 3u —3U) ——,uz — uiu2 ho'+
3

[( H —1)Z +2Z +4HZ ]ho+3 10

)& I [(r + —,'x )Pz+ ', rxP)—+ 's rxP3]Si —[(" + 9x )P2+ —,', rxP)+ ,'rxP3—]SzIho'

+ ~30 I [r + 9x (2—Pz)+ —', rxP)]S) (r + ,'—x P2+—,'rxP)—)S2Iho

+ f[ )sxr(1+11 Pq) +r Pi++9)x (13P)—3P3}]S)30

[)8xr—(7+5P2)+r P)+ ~x (7Pi+3P3)]S, Iho

——', P2/5[(r + —,'x }P2++oxr(11P)+9P3)]Xho' —', 3/2/5[r +——,', x (1+Pq)+ ', xrPi]X —ho

——', P2/5[ —,'xr(11+13P2)+4r Pi+ —„x (17Pi+3P3)]X ho

[(1 3 2)yI I+2(1 3 2)yI J 6H(H2+ & )yI K 2yJJ 8HyJE (3'+5H2)y&&]h'
27M 10

+ [r ( 1 —2P2 ) —,' x Pz —+—,xr(P) +9P3 )]y ' h o'
9 10

9 10
[2r Pz+ —,'x (1+P2)+ ,', xr(1lPi+—9P3)ly ' ho

45 10
[r (P, + —,'P3)+ 7'2x (17P, +3P )3+, ~rx(2 95+36 P5+2126P )4]y' ho'

9 10
(r + —,'x + ', xrPi)y ' ho'—

9 10
[4r Pi+ 45x (23Pi 3P3)+ —,xr(11+13P3)]y ' ho

27 10
[sr (1+2P2)+ „',x (364+620Pz —144P4)+4xr(3P, +P3)]y ho (25)

where U =U4Ug+U3Q —V3Uy (30)

Z = —veau — v4U2+V3(U3Q U3Ui)3v3

+ T~ ( U 3 V 3 +U 4U i ),
X =V3U4Q+ g U4U3 —(U3Q —U3Ui)

The derivatives of Fo and F2 were computed by fitting a
cubic spline to each of these functions. Note that Fz does
not contribute to p~.

TABLE V. A variation of pp and p for the RSC potential.

ppmr+p~

(U3U3+U4ui )
e a

3

Si ——T + U, S2 ——T 3/3U~, —

T =U4Q+U4Uy+U3U2, (29)

2.0
4.0
5.8
8.6

17.2

—0.241
—0.333
—0.338
—0.334
—0.330

+ 0.036
+ 0.081
+ 0.086
+ 0.082
+ 0.072

—0.205
—0.252
—0.252
—0.252
—0.258
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TABLE VI. Comparison of p and p~, computed by others to the present work. All calculations
use the RSC potential.

Reference

HKTR (A= oo)
present (A=17.2m }
SHS (A=8.6m )

present (A=8.6m )
MK (A=4m )

present (A=4m )

TG (A=oo)
present (A=17.2m )

—0.33
—0.334
—0.33
—0.333

0.07
0.082
0.11
0.081

@pair +pm'

—0.241
—0.258
—0.26
—0.252
—0.22
—0.251
—0.246
—0.258

TABLE VII. Partial wave contributions to p~. Entries calculated using A =5.8m .

S-S
S-D
D-D

RSCC

0.000
—0.091
—0.002

RSC

0.000
—0.093
—0.003

AV14

0.000
—0.093
—0.003

SSCC

0.000
—0.083
—0.002

TRS

0.000
—0.089
—0.003

MT13

0.000

TABLE VIII. Comparison of' p~ computed by others to the

present (RSC) calculation. SHS find —0. 145 in a static approx-
imation which corresponds to our treatment.

Reference pg

HKTR (A= oo)

present (A=17.2m )

SHS (A=8.6m )

present (A=8.6m }
(A —4m )

present (A=4m~)
TG (A=oo)
present (A=17.2m )

—0.166
—0.172
—0.05
—O. i 35
—0.036
—0.057
—0.175
—0.172

I 2
l I I } l } I I I I I

0.2—

-O. I

tO
I

-0.2
lK
G.

-0.5

P0 i li i &
l' I

~O

r (frn3

-0.4

-0.5—

FIG. 4. pp~ computed using various NN potentials. Dash-

dot, dotted, long dash, short dash, and solid curves are for the

potentials MT13, RSCC, SSCC, AV14, and TRS, respectively.
FIG. 5. p~ computed using various NN potentials. Labeling

of the curves is as described in Fig. 4.
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TABLE IX. Summary of our.magnetic moment calculations. Entries are calculated using A =5.8m„.

Potential

RSCC
RSC
AV14
SSCC
TRS
MT13

BE (MeV)

6.41
7.02
7.44
7.46
7.49
8.53

0.405
0.405
0.405
0.409
0.407
0.440

—2.482
—2.496
—2.516
—2.515
—2.512
—2.453

p{ He)

—2.077
—2.091
—2.111
—2.105
—2.105
—2.013

2.886
2.900
2.921
2.924
2.919
2.893

Experiment 0.4257 —2.553.2 —2.1275 2.9789

Table VII displays the partial wave contributions to p~.
It is evident from this table that the S Dove-rlap is almost
the sole contributor to p~. The S-S contribution is listed
as 0.000 to indicate that it is very small, but certainly not
identically zero. In fact, one can see from Fig. 5, where

p~ is plotted as a function of r, that S-S matrix elements
have a sizable effect on the magnetic density. To see this,
one should note that the potential model MT has only S
states. Certainly much more model dependence is evident
in p~ than in p&„,. The variation with A is also more
severe in the case of p~. We illustrate this in Fig. 6,
where a cubic spline is fitted to five values of p~ calculat-
ed with different A' s. It is apparent from this curve that
the A~oo value of p~ must be almost the same as our
A = 17.2m value.

Our results for the total contribution to p~ are con-
tained in Table IV. Comparing these results with those in
Table VII shows that the P-wave contributions do not
contribute significantly. The comparison with other au-
thors is given in Table VIII. One notes from this table a
disparity with our results and those of SHS. However, as
pointed out in the Introduction, SHS's calculation con-
tains a more refined isobar contribution (a nonstatic b,
propagator). The comparison is nonetheless instructive,
since it gives an idea of the importance of a more realistic
treatment of the b, propagator. The small disagreement
with MK probably is a result of their use of a
parametrized wave function.

VI. CONCLUSIONS

Table IX summarizes our results for the six potential
models we have chosen. The H binding energy varies
from 6.41 to 7.49 MeV for those potentials which include
a tensor force. We see that this =15% variation in the
binding energy is accompanied by a less than 2% varia-
tion in the magnetic moments. Thus, the influence of
binding on the magnetic moments appears relatively
unimportant.

Table X compares our calculations with the results of
others. In addition, this table shows the A dependence of
the magnetic moments since it gives our RSC results for
A=4m„, 8.6m, and 17.2m . This variation in A pro-
duces about a 5% variation in the magnetic moments.
Table V shows that p~», +p is essentially independent of
A; it is the isobar current which is responsible for the sen-
sitivity of the magnetic moments to A.

In comparing with others, it is possible in most cases to
pinpoint the areas of disagreement where any exist. We
are in essential agreement with HKTR. The only differ-
ence between our results and those of SHS is in the contri-
bution from the 5 isobar. As pointed out previously,
their nonstatic treatment of the b propagator gives a
value for p~ of only one-third of our value. This results
in an approximate difference of about 3% in our magnetic
moments. Our small disagreement with MK 'seems to
arise from their use of approximate RSC wave functions.

TABLE X. Comparison of.magnetic moments computed by others to our own calculations.

Reference

HKTR {A=oo)
present (A=17.2m )
SHS (A=8.6m )

present (A=8.6m )
MK (A —4m )
present (A=4m )
HGB (A=8.5m. )
present (A=8.6m )
TG {A=00)
present (A=17.2m )

Potential

RSC

RSC

RSC

TRS

0.408
{0.405)
0.40

(0.405)
'

0.365
(0.405)
0.414
(0.407)
0.397
(0.405)

—2.559
(—2.579)
—2.47

( —2.536)
—2.451

(—2.458)
—2.602

(—2.548)
—2.529

{—2.579)

p( He)

—2.151
(—2.174)
—2.07

( —2.131)
—2.086

(—2.053)
—2.188

( —2.141)
—2.132

(—2.174)

p{ H)

2.967
(2.983)
2.87

(2.941)
2.816

(2.863)
3.016

(2.955}
2.927

(2.983)
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This approximation leads to a larger error to their impulse
approximation results than in their exchange current re-
sults. We are cognizant of the fact that MK were ad-
dressing themselves more to questions regarding current
conservation and that, for their purposes, the approximate
wave functions were sufficient. It has nevertheless been
beneficial for us to have their work to compare with, espe-
cially the individual exchange current pieces which agree
quite closely with our own.

It appears from our work that the greatest source of un-
certainty in calculating trinucleon magnetic moments is in
the treatment of the b, isobar. This term is sensitive to
both the parameter A and to the treatment of the 6 prop-
agator. In addition, there are various prescriptions for
choosing the yN coupling constant used in Eq. (19). Our
rough estimate of the uncertainty in this process is +50%%uo

or —0.09+0.05 pN. The additional small short-range
contributions' ' tend to increase p„and thus improve
agreement between theory and experiment, if one uses the
preferred value of A/m =5.8.

We note again that our calculations have included only
pion-range exchange current operators. %'e have ignored
all other meson exchange currents, which are of shorter
range. One consequence of this choice is that all of our
exchange currents are isovector, and the isoscalar currents
are determined by the impulse approximation. Moreover,
the underlying dynamics and all the electromagnetic
current operators are nonrelativistic in nature. We expect

020 I I I I

l

I I I I
[

I I I

O. l 5—

0.05—

000 I I I I I I I

5
I I I I I I ! I I

lo l5

A/m

20

FIG. 6. Variation of pq with A. These points were computed
using the RSC model.

modifications to the magnetic moments of the order of a
few percent from relativistic corrections.
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