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The accuracy of the optimal subset approximation, which reduces the number of coupled equa-
tions in the hyperspherical harmonic method, is checked theoretically and numerically. The critical
parameter that determines the error of the method is shown to be proportional to the product of po-
tential matrix elements connecting the K=0 state to states with K >0, and the matrix elements be-
tween K >0 states. In particular this means that the accuracy is largely independent of the degree
of excitation of the system. The numerical precision of the optimal subset method in calculating en-
ergies and expectation values of Coulomb-bound three-body systems is checked by comparison of
optimal subset results with exact results for fixed maximum global angular momentum K. Er-
rors range from less than one percent for the helium atom ground state energy to 100 percent or
more for certain positronium ion expectation values. This precision is consistent with the theoreti-

cally determined error parameters.

I. INTRODUCTION

The hyperspherical method of solution of the N-body
Schrodinger equation was introduced nearly simultaneous-
ly, in slightly different forms, by several authors in the
early sixties.!~® Since then it has been used successfully
in a wide variety of atomic®~!* and nuclear'3—3* physics
calculations. Among the advantages of this method one

can count, besides its natural elegance and generality, are -

the possibility of analytic calculation of hyperspherical
harmonic (HH) potential matrix elements,” ' the
knowledge of the analytical structure of radial solutions!*
and convergence properties.?>3336:37

The method consists of the expansion of the N-body
wave function into a series of products of so-called hyper-
spherical harmonics (which are solutions of Laplace’s
equation on the 3N-3 dimensional sphere), and radial
wave functions (depending only on the radius of this
sphere). The subsequent substitution of this series into the
Schrodinger equation gives an infinite system of coupled
radial second-order differential equations, which after
truncation, can be solved numerically. Also, when the
wave function is represented by the HH series, containing
a complete set of basis functions, one is assured that the
wave function and the corresponding energy and expecta-
tion values converge to the correct values, an advantage
which is not present with ad hoc variational wave func-
tions.

The convergence of the hyperspherical expansion is ex-
plained by the fact that each hyperspherical function is
characterized by a global angular momentum K, which
determines the height of the potential barrier. Therefore,
the probability of particle interactions and with it the con-
tribution of the hyperspherical harmonics, decreases with
K. Thus hypersphericals with large K can be neglected,
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which results in truncating the number of radial coupled
equations. Unfortunately, because of the enormous de-
generacy of the hyperspherical harmonics, the number of
coupled equations is still prohibitively large, which
prevents, at least for N >4, taking into account the com-
plete basis in practical calculations. To overcome this dif-
ficulty it was suggested by Fabre de la Ripelle** that for
each particular problem one has to select a so-called “op-
timal subset;” that is, to use only a part of the complete
HH basis especially appropriate for a chosen problem.
This subset was shown®® to contain specific linear com-
binations of hyperspherical functions. The enormous ad-
vantage of working with the optimal subset (OS) basis is
that it removes all the degeneracies, resulting in a dramat-
ic reduction of the number of coupled equations. For ex-
ample, in the case of fully symmetric S-state systems, one
equation results for every global momentum K. The ap-
plication of the OS method made possible not only nu-
clear three-body calculations, with realistic nuclear poten-
tials,?® but also allowed the extension of hyperspherical
calculations to systems of four and even larger number of
particles. (See, for example, Ref. 33 and the references
therein.) A

The main assumption of the OS method is that the
basis functions outside the “optimal> subset contribute in-
significantly to the energy as well as to the wave function,
and thus also to expectation values. Indeed, the first
atomic'® and nuclear!>? computations carried out with
the OS method have shown very satisfactory agreement
with other methods. Even more delicate features, such as
the numerically calculated convergence trends of energies
with maximal global momentum, K ,,, were proven to be
in agreement with analytical, theoretical predictions.3¢3
More extensive comparison, made by Erens et al.,'” led to
the same conclusions. This last work demonstrated that,
in the case of a simple triton model, the inclusion of non-
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potential harmonics, orthogonal to the optimal subset,
changes the binding energy at most by 0.0001 MeV (i.e.,
about 0.001 percent). In these calculations it has been
shown that the norm of the partial waves not correspond-
ing to the optimal subset did not exceed 10~7, even for
potentials with unreasonably high repulsive cores, which
are, of course, especially difficult to treat by the hyper-
spherical method. These results seem so convincing that
since then practically all three- and N-body hyperspheri-
cal calculations were done using the optimal subset
basis. >

The proof that the OS method leads to a good solution
cannot as of yet be considered complete. Indeed, the
overwhelming majority of optimal subset calculations are
compared with those done by variational or some other
method, so that the effect of the neglect of harmonics out-
side the OS is mixed with those caused by the neglect of
harmonics with larger K. Only Erens et al.!” studied ex-
clusively OS error by considering the solutions in which
some harmonics not belonging to the OS were included.
In this investigation comparisons with the full set of cou-
pled equations for a given K., occur only up to
K _..=38, and then only for a symmetric system where
only four coupled equations are involved. Furthermore,
in their test case, over 98% of the wave function is K=0,
so there was not much room in their test for nonoptimal
subset contributions to begin with. Also, only the influ-
ence of contributions on energy levels and wave function
norms was studied, while their neglect of expectation
values was never explored. Besides, the question of the
applicability of the OS method for excited states was also
left unanswered.

Recently, the results of very precise hyperspherical
computations of energies, wave functions, and expectation
values of ground and excited states of systems of three
Coulomb bound particles, which used the complete set of
hyperspherical harmonics, for a given maximal global
quantum number K,,,,, have become available.'"'* Com-
parison of these calculations with those with the same
K ..x using only the optimal subset would provide an ac-
curate estimate of nonoptimal subset harmonic contribu-
tions to different physical quantities. In the present work
we report the results of just such a comparison. The
Coulomb potentials considered have the same type of
(1/r) singularity at the origin as most nuclear potentials
(e.g., Yukawa), and it is this behavior that ultimately
determines the convergence of the hyperspherical and op-
timal subset expansions. Of course, we would expect both
types of expansions to work better for smoother (e.g.,
Gaussian, Morse) potentials.

Our investigation is ordered as follows: In Sec. II we
give a short description of the optimal subset method and.
our notation. Section III is devoted to the results of actu-
al comparisons of full HH calculations with those of the
OS method, while the conclusions are summed up in Sec.
IV. Our main conclusion is that the accuracy of the OS
method is determined by the product of parameters €85,
where € is a measure of the matrix element ratio
Voo.xv/Voooo (K,w>0) and & of the ratio
Vikv,k'v/Voo,00(K,v,K',v'>0). The error of the OS
method ranges from a fraction of a percent for the ground
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state energy of the He atom, to order one for correlation
integrals of the positronium ion (P ).

II. THE OPTIMAL SUBSET METHOD
AND ITS ERRORS

The notion of an “optimal” subset of basis functions
spanning the most “important” part of the considered
solution space is a perfectly general concept. However,
the choice of the OS basis is not unique. In what follows
below we adopt the particular choice of Refs. 10 and 17
because, to date, this choice has been employed in most
OS calculations of atomic and nuclear systems. This
choice also leads to the greatest reduction of number of
coupled equations (one for each K).

In this section and throughout the paper we will use the
notation of our previous work.!* Consider the Green’s
function bound state equation

|W)=GV |¥), 2.1)
which in the hyperspherical basis will be written as
Yiolp)= 3 [ dp'Gilp,p Wiy, kv Wlp) . (22)

' K'v '

We have restricted ourselves to three-body systems of zero
angular momentum so the hyperspherical basis | Kv) is
characterized by two indices only. In this case the partial
hyperspherical Green’s function can be written explicitly’
and we will use the usual notation W, (p)=(Kv|¥) and

Vivgvp)=(Kv|V |K'V') .

Let us assume now that of the matrix elements of the
potential, the element Vo is dominant, while the ele-
ments Vi, 00=Voo,xkv and Vg, g /(K,v,K',v'>0) are of
order € and &, respectively. In this case one can proceed
using perturbation theory. Clearly the zero-order wave
function is the following:

Wi(p)= [ dp'Golp.p')Woo,00(0 ¥R (p") ,

2.3)
vp)=0, K >0.
In first-order the terms of order € will enter:
Yio(p)=0,
(1) _ ' ] ’ (0)f #
Wiip)= [ dp'Gxlp,p) Viy,00p ) ¥R (p), K,v>0.
2.4)

The next corrections will be

YF(p)=3 [ dp'Golp.p)Woo, kv (e WP

K'v'>0
) (2.5)
¥RUp)= 3 [ dp'Grlp,p) Vv ke 1WRY(P)
K'v>0

which are of order £? and &8, respectively.
If we confine ourselves to the first-order approximation
(2.4), the full wave function

(W)= [Kv){Kv|¥) 2.6)
Kv
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will be given by

W)= | WO) 4 |,
where

| W) =|00)¥(p)
and

(W =3 [ dp'Grlp,p)) | BxpV¥Rp), @)

K,v>0

where we introduce a new p-dependent orthogonal basis

|Bk(p)) =3 |Kv)Vky,00lp), (K>0). (2.8)

v

Since |00) is a constant vector, Vkv,00#0 only for those
(so-called potential) harmonics that enter the expansion of
the potential ¥. The | Bg(p)) thus is a certain linear
combination of the potential harmonics which form the
so-called “optimal” subset. We see that for a description
of the wave function | W), up to an error of order £ and
€6 in the small parameters €,5, we need only the optimal
subset. Since all the calculations with orthogonal basis
functions are necessarily variational, the error in the bind-
ing energy will be governed by the parameters €, €2, &%,
and €6.

We will show that the optimal subset basis contains all
powers of € even if we are calculating Wg, nonperturba-
tively in parameter ¢, that is, if we take into account all
powers of Vi, go.

Assuming 8=0 (i.e., Vk, k=0 for K,v,K’,v' > 0) then
(2.2) yields

Yoolp)= 3, fdp'Go(p,p’)Voo,K'v'(p')‘I’Kr,v'(p') (2.9)
, KV

and for K, v>0
Vi (p)= [ dp'Gxlp,p ) Vis,0000" ) Woolp') -

Substitution of (2.10) into (2.9) yields an integral equation
for Wo(p) that takes into account all powers of €

lI/()()(p)= fdpldpuGo(p,pl)U(pl’pu)woo(pn)’

where the effective nonlocal potential U (p’,p"') is given by

(2.10)

(2.11)

Ulp',p")=Vo0,00(p")8(p"—p")

+ 3 Vooxv(p)Grlp',p" Wk 00p") -
K'v>0
(2.12)
The substitution of a solution of (2.11) into (2.10) will
yield Wk, with K,v> 0, which will be of order € smaller
than Wy, but precise in all orders of «.

Using the optimal subset definition (2.8) we can rewrite
Egs. (2.10) and (2.12) in somewhat different form

(W)= [ dp'Gk(p,p") | Bx(p'))¥oo(p"), (K >0),
(2.13)
U(p,p')=Voo,00(p )8(p—p')

+ 3 Gglp,p'){By(p)|Bg(p')) .
K'>0

(2.14)

The full wave function thus will be given by

[¥)=3 |¥k) (2.15)
K

where

| Wo)=]00) Wy .

We see that for =0 the optimal subset approximation
yields, in fact, the exact result; for small 8 the error in
Ve (K, v>0) will be of order €8 [see Eq. (2.2)]. That
means that if all the coupling between K=0 and other hy-
perspherical harmonics is zero (e=0), or if all coupling
between hypersphericals Kv and K'v' (K,v,K’,v' > 0) van-
ishes (8=0), the optimal subset formulation is exact. The
error in the full wave function thus is also of order €8, i.e.,
it is determined by the product of matrix elements Vg, oo
and Vk, k. The energy error, since calculations that are
carried out with a truncated orthogonal basis are neces-
sarily variational, will be of order €28%. Note that while
the quality of the OS method is determined by €8, the state
probabilities (for K> 0) are determined by €. Thus, for
small 8§ and rather large €, values of state probabilities for
K >0 do not give a direct indication of the precision of
the OS approximation.

Another way of deriving the OS prescription makes use
of matrix considerations. Let us split the space spanned
by the hypersphericals for K < K., into three subspaces:
(1) the “0” space, consisting of K=0 only, (2) the “P”
space, consisting of an “optimal” subset, to be determined,
and (3) the “Q” space, being the remainder which is
neglected in OS calculations. We assume that kinetic en-
ergy T and the matrix element Vg oo are the dominant
parts of the Hamiltonian H, with the remaining matrix
elements Vi, o0=Voo,xv and Fk, g being described, as
earlier, by small parameters €,5, respectively. The matrix
equation in the eigenvalue problem will look like

T + VOO—E VOP VOQ \1/0
VOP T+ Vpp—E VPQ ‘IIP =0.
VOQ VPQ T + VQQ-—E \I/Q

(2.16)
Clearly, Vop, Voo, Vrg, and Vg are all of first order in
the smallness parameters €,6. The third equation generat-
ed by (2.16) implies that Wy is of first order in these pa-
rameters, while the second equation implies that W¥p is
also of first order. However, if Vg vanishes, then

(T +Voo—EWNg=—VpoW¥p . 2.17)

The right-hand side of (2.17) is of second order in this
case, and therefore W, is of second order, and eigenvalue
errors are of fourth order with the neglect of Wg. So the
condition

Voo=0 (2.18)

is the prescription of the “optimal” subset.
Let, for each K, the “P” vector be described by | Bg )
such that

| Bg )= 3 ag,|Kv) (2.19a)
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and the Q vectors by

K
) ]—1] . (2.19b)

|Qk Y= qk, |Kv), i=1"-" [

Orthogonality requires, assuming that all vectors are real

2 aquIi(v=O s
v

S akvaky=8; , (2.20)
v
> agyag,=1.
The requirement Vg =0 yields
(00 VS ak, Kv) =0
or
(2.21)

2 qu(VVOO,sz E qu(vVKv,00=0 .
v . v

Obviously, in view of (2.20), (2.21) is satisfied if we choose

agy~Voo,kv (2.22a)
and, for orthonormality
172
aAgy= VOO,KV/ 2 V(%O,Kv’ (222b)
<

(Note, since ay, is of order one, it is reasonable to assume
that the gg, are also of order one.)
Now we evaluate matrix elements of different types:

VOP~<OO IVE agy K‘V>~E s

Vop=0, (2.23)

VPQ ~ E GKV<K‘V
v

VS abo i) 5.
v

Likewise Vg is of order 8. Therefore, by the third equa-
tion of (2.16), when Vyp=0, Wo~VpoWp~8e. [The
second equation of (2.16) implies ¥p ~eW,.] Thus, again
the wave function error by including only the “optimal”
subset is ~€e8 and the energy error, by the variational
principle, is ~g%8%. In reality, £,6 are determined not
only by the ratios with Vg g0, but also with the kinetic en-
ergy T (and the total energy E). So this will vary some-
what for different states of the system. One can also see
that the energy correction is of order £28% directly from
considering perturbation theory up to fourth order.*3

As might often be the case, the diagonal elements
Vkv,kw N0t Vg, op, may actually be the dominant matrix
element of the Vg, , for a given K,v. Then the matrix
elements in the PQ sector are given by

172
{ 2
Veo= 2, Vv, kv Viv,008k'y / > Viv,o0
w v

(2.24)

For K =K', only small nondiagonal terms of order § are
involved. For K =K' the contribution from (large) diago-
nal matrix elements to the right-hand side of (2.24) is
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2 VKV,KVVKV,OOqu(v

v

Vro = 172

2 VIZ(V",OO
V'

T/sz VKV,Ooqu(v +8 E VKV,OOqli(vav
v v

172 ’

(2.25)

S Vivoo
<

where we have set Vi, g, = Vi +8vk,, and Py is the aver-
age value of Vi, g, over all possible v’ values for a given
K. In view of (2.21) the first term on the right-hand side
of (2.25) vanishes, and thus, for K =K', the diagonal con-
tribution to Vpg in (2.24) gives

Vpp(diagonal contribution)
; 172
=8 2 UK‘VVKV,OOqK‘V/
v

S Vi (2.26)
<

Therefore, according to the definition of V,vy,, it is the
departure of Vk, g, from the average over v that deter-
mines 8, so  may actually be small even if the diagonal
matrix elements are large.

III. RESULTS

We now discuss the results of optimal subset calcula-
tions of energies and correlation integrals for the
Coulomb-bound three-body systems of the H ~ ion, posi-
tronium ion (P~ or ete~e™) and the ground and excited
states of the helium atom (He, He*, respectively). We
compare our present results with our previous complete
set (CS) hyperspherical calculations,'* where all the hyper-
sphericals up to K =K, were taken into account. Gen-
erally K., is taken to be 12, but for the ground state of
He the case of K.,,=10 is also considered to enable
direct comparison with the previous OS atomic calcula-
tions of Ballot and Navarro.!'® The present calculations
were carried out with the same version of the computer
program used earlier for CS calculations,'* so all the
values in our CS and OS calculations were computed ex-
actly the same way.

Let us consider Table I, where the results of our CS and
OS calculations for the ground and excited states of the
He atom are presented along with the OS calculations of
Ballot and Navarro.”® One can see that for the ground
state the OS method gives excellent results for the binding
energy and rather good results for most of the correlation
integrals and state probabilities. Only the state probabili-
ties and correlation integrals sensitive to the electron-
electron repulsion, such as P,, Ps, Py,”° and r¥
(p =7%1,%2), 8(r;) show unsatisfactory agreement with CS
calculations. Table I also shows that the use of the power
series method of Ref. 14 with the OS method improves
the agreement between the OS numerical calculations and
the exact CS calculations. The improvement over Ballot-
Navarro is small, except for P,. The important point,
however, is that our present OS calculations give 0.2%
too little binding in comparison with the CS computa-
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TABLE II. Comparison of complete set (CS) and optimal subset (OS) hydrogen and positronium ion

calculations.
Ton P H™

Calculation type CS oS CS (O1]

K max 12 12 12 12
Ep 0.25040 0.22101 0.51261 0.50135
Py 0.694 62 0.82505 0.85805 0.895 34
P, 0.19832 0.154 19 0.014 60 0.01236
P, 0.05426 0.01157 0.10902 0.08152
Pg 10.03290 0.007 282 0.0001861 0.000071 34
Py 0.004 962 0.001 160 0.01527 0.009 141
Py 0.004 121 0.0005168 0.000014 70 0.000006 486
Py, 0.002111 0.000292 6 0.002 863 0.001 592
ry? 0.23901 0.090 65 0.988 94 0.95245
ry! 0.341 89 0.23894 0.686 17 0.68090
r) 4.65048 5.52738 2.37393 2.30653
r3 29.989 65 37.605 58 7.99779 7.31367
ry? 0.047 39 0.199 60 0.18701 . 0.28174
ry! 0.18223 0.34056 0.34702 0.41218
r3 6.890 10 4.05785 3.77712 3.28163
r3 56.38553 20.891 43 17.44902 13.44017
8(ry) 0.01108 0.001 621 0.0983 0.092 418
8(r3) 0.000 305 0.006 553 0.003 97 0.009 845

tions. This result is consistent with the variational princi-
ple, since OS calculations use a restricted subset of a full
hyperspherical basis. The previous numerical estimates of
Ballot and Navarro' resulted in 0.2% too much binding
energy, in contradiction with the Ritz principle, as was re-
cently pointed out.'>3® Note also that this discrepancy
could not be attributed to center-of-mass effects connected
with different prescriptions'®!# for the nuclear mass.
Indeed, the change of the mass of the He atom from in-
finity to the correct value of 7349.12m, decreases the
ground state binding in the OS power series calculations
from 2.84560 to 2.84517 for K,,=10, that is, by less
than 0.02%.

The agreement of the OS and CS calculations is only
slightly worse for the excited helium atom than for the

H™, He, or He*.

We stress that, as we mentioned in Sec. II, the size of
the K >0 state probabilities are determined by the small-
ness parameter €2, while the quality of the OS approxima-
tion by £8. Therefore, the value of Pgx (K> 0) does not by
itself give the correct indication of how the OS method
will fare. In view of this remark, it should not be surpris-
ing, for example, that though the K=4 state probabilities
for excited helium contributes about 33% of the norm
(compared to a 53% contribution for K=0) the quality of
the method is still quite satisfactory, since, as we saw in
Table III, €8 is reasonably small. On the contrary, in the

TABLE III. Matrix elements Fx, g/ Voo,00-

ground state. This result seems surprising in view of the X v X' v He H™ il
fact that the He* wave function extends much further 0 0 2 1 0.086 0.219 0.800
from the nucleus and has to be described by a much larger 0 0 4 0 —0.148 —0.148 —0.148
number of hypersphericals. However, as we conclude in 0 0 4 2 —0.300 —0.460 —0.420
Sec. II, the quality of the OS method is governed by the 0 0 6 1 —0.029 —0.074 —0.269
product of the parameters € and & which characterize 0 0 6 3 0.029 0.074 —0.135
smallness of different nondiagonal potential matrix ele- 2 1 2 1 0.841 0.727 0.743
ments. 2 1 4 0 —0.073 —0.186 —0.682
Since potential matrix elements are the same for ground 2 1 4 2 0.104 0.264 0.614
and excited states, we expect that the quality of the OS 2 1 6 1 0.014 0.097 0.086
method should not change for excited states. This idea is 2 1 6 3 —0.205 —0.340 —0.58
indeed supported by our present numerical results for the 4 0 4 0 1.061 1.061 1.061
excited states of helium, for which the maximum values 2 g 2 ‘:' 3823 0.515 0.492
of 8 and € are of the order 0.3, so €5 <0.09. We can ex- 4 o p 3 0‘039 8(2;; g?gz
pect also reasonably good agreement between the OS and - - e
. _ 5 R 4 2 4 2 1.235 1.235 0.962
CS calculations for the H™ ion, since (see Table III) there 4 > 6 1
. . —0.072 —0.183 —0.341
Emax=0.44 and &,,,=0.51, so €5 is less than 0.22. That is
. X . 4 2 6 3 0.106 0.269 0.985
indeed confirmed by the results of our numerical calcula- 6 1 6 1 0.825 0711 0.727
tions in Tables I and II. The OS method, however, should 6 1 6 3 0.160 0.277 0.534
be and is consistently poor for P;~, where €,,,=0.8 and 6 3 6 3 1.100 1.059 1.249

Smax=0.98, so €8 is of order one and much larger than for




TABLE 1V. Matrix element products Vi, 00 Vgy,xv— Vk)/
V0,00

K v He H~™ P

0 0 0.0 0.0 0.0

2 1 0.0 0.0 0.0

4 0 0.013 0.013 —0.007

4 2 —0.026 —0.038 0.021

6 1 0.004 0.013 0.070
6 3 0.004 0.013 —0.035

case of P, where K=0 contributes about 70% of the
norm (and K=2 contributes about 20%) the agreement
between the OS and CS calculations is much worse, due to
a large €8. Also, as we pointed out in the end of Sec. II,
for diagonal matrix elements it is only the departure
Vi, kv from the average over v that determines 8. We ta-
bulate the contribution of diagonal elements to €6 in Table
IV. The comparison of Tables III and IV shows that
though the diagonal elements are rather large, their con-
tributions to Vpy [Eq. (2.26)] are quite small for all the
systems studied.

IV. CONCLUSIONS

We have presented the first comprehensive tests of the

OS method, which were made by direct comparison be-
tween the CS and OS calculations with the same global
quantum number K.,  for different systems of three
Coulomb-bound particles. We have found the critical pa-

rameters which govern the convergence of the method.

We have checked our analytical conclusions numerically
using systems that have very large (up to 47%) contribu-
tions to the norm from states with K>0. (Previous
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tests'? were carried out only for systems where
Py ~98% for K>0.) In this paper we have shown
analytically and numerically that, if the OS method works
for the ground state, it will also work for excited states,
even in cases of large nonzero hyperspherical contribu-
tions to the norm. Also, our tests include, unlike all the
previous tests, comparisons of not only binding energies,
but also correlation integrals.

Our main conclusion is that the OS method works
reasonably well if the dimensionless product of matrix
Voo,kvViv.k'v/Vao,00 is small. Since the pair Coulomb
potentials are singular when any of the interparticle dis-
tances approach zero, the convergence of the hyperspheri-
cal expansion is much slower than for smooth potentials,
and close, qualitatively, to those of nuclear potentials with
strong repulsive cores. In such cases one can expect that
the serious restriction of the number of basis states, as in
the OS method, could reflect itself quite unfavorably on
the results of calculations. Nevertheless, we have shown
numerically that this does not happen if €8 is small, in
agreement with our theoretical estimates. Thus the result-
ing precision should be generally rather good even for
singular nuclear potentials. In nuclear calculations, where
OS methods are usually used, and where a few percent
agreement is usually good enough, the OS method should
be quite satisfactory. However, the OS method cannot be
recommended for the precise demands of atomic calcula-
tions.
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