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A new fluid dynamical description of giant resonances which avoids the scaling approximation
and takes into account the interplay between first sound and zero sound is presented. The new
method leads to equations satisfying the sum rules S l, Sl, and S3 for the electric modes and the
sum rule Sl for the magnetic modes. The model describes surface modes and separates the low ly-
ing modes from the giant resonances. Numerical results for the energy spectrum of Pb are
presented.

I. INTRODUCTION

Semielassieal methods have been used quite successfully
in the interpretation and description of some properties of
atomic nuclei with large mass number, which arise from
the coherent motion of many nucleons. ' Giant reso-
nances are highly collective excited modes of nuclei which
exhaust an appreciable fraction of the appropriate sum
rules. A semiclassical description of the many-body nu-
clear dynamics has the advantage of providing important
information about some macroscopic properties such as
frequencies and transition amplitudes of the giant reso-
nances without a detailed knowledge of the underlying
nucleon-nucleon interaction.

Recently a simple fluid-dynamical model, appropriate
to describe the interplay between the zero and first sound
modes of finite droplets of nuclear matter and leading to
the splitting of the giant resonances and to low-lying
modes, has been proposed. '

In Sec. II we present the model. The equations of
motion and their solutions are discussed in Sec. III. In
Sec. IV the sum rules verified by the model are proved
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where pk denotes the momentum of particle k and a and
b are the force parameters of the zero-range two-body and
three-body interactions between the nucleons. Let fo(r, p)
be the equilibrium distribution function which minimizes
the energy functional

and Sec. V deals with the results of the model. Finally in
the last section some conclusions are taken.

II. CLASSICAL DERIVATION
OF THE LAGRANGIAN

The model is based on the classical many-body dynam-
ics in the independent-particle approximation except for
effects of quantum statistics which are taken into account
by allowing the distribution function to take only the
values zero and one. It assumes a spherical atomic nu-
cleus described by the Hamiltoman
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where A is the number of particles of the system.
The time evolution of the distribution function is given by the Vlasov equation '

dI= d rdp
2~3

and f(r,p) is an arbitrary distribution function which only takes the values zero or one and is subjected to the restriction

f f(r, p)dI =A,

8 (r p, t) + If(r, p, t), h(r, p, t) I =0 (2.4)

where I, I means the Poisson bracket and the single particle Hamiltonian is given by

bh(r, p, t)= +a f dI"5(r—r')f(r', p', t)+ —f dI"dI"'5(r —r')5(r —r")f(r', p', t)f(r",p", t) . (2.5)
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This equation describes a system of particles moving in a
mean field and preserves the allowed values of 0 and 1 for
f(r,p, t). In order to obtain approximate solutions of the
Vlasov equation it is convenient to derive this equation
from an action principle.

For this purpose we consider the set of all trial func-
tions f(r, p) related by a canonical transformation to
fc(r,p). If, for all times t, the time dependent distribu-
tion function f(r, p, t) belongs to this set a generating
function E(r, p, t) may be found such that

fc(r,p) =8[A,—ho(r, p)] (3.1)

III. APPROXIMATE SOLUTION
OF THE VLASOV EQUATION

FOR SPHERICAL FERMI LIQUID DROPLETS

We present in this section a fluid-dynamic calculation
of the collective states of the model proposed, which illus-
trate the variational approach. The equilibrium distribu-
tion function of this model is

~If Ej=0. (2.6)

The action principle may now be written as

5S=5 JLdt=0,
where

L, = f dI f(r,p, t)F(r, p, t) E[f] . —

(2.7)

(2.8)

We wish to study small deviations from equilibrium, so
we consider distribution functions which satisfy

8(x)=1 if x )0,
=0 if x &0.

The single-particle Hamiltonian is

Ii0(r, p) = + Uo(r)
2p?l

+~pa(r)+ —po(r),
b

where

(3.2)

f(r,p, t) =fo(r, p)+ Ifo 6 I (r,p, t)

I tfo GI GJ(r p t (2.9)

y3P 2PF(r)
po(r) = fo(r, p) =

2~3 ' 3~2
(3.3)

where the infinitesimal generator G(r, p, t) can be decom-
posed into a time-even and a time-odd part

is the ground-state density and

pz(r) =[2m (A, —Uo)8(A, —Uo)]i~2 (3.4)

G(r, p, t) =P(r, p, t)+Q(r, p, t),
Q(r, p, t) =Q(r, —p, t),
P(r, p, t) = P(r, —p, t)—.

(2.10)

(2.11)

stands for the Fermi momentum.
The time-odd generator P(r, p, t), which produces the

static deformations, is defined by writing the time-even
distribution function

fE(r p t)=f0(rp)+ If0 PI(r p t)+ 2~

I Ifo»I, PI(r p t)+
1=8 2, —ho(r, p) —W(r, t ) —g p~ pX~p(r, t )

p 2PPl
(3.5)

where W(r, t) and X p(r, t) are scalar and tensor fields which hopefully provide an adequate description of the monopole
and quadrupole deformations of the Fermi sphere. For the time-even generator we make the ansatz

Q(r, p, t) =P(r, t)+ —, gp~pg p(r, t),
aP

(3.6)

where P(r, t) and P p(r, t) are, respectively, scalar and symmetrical tensor fields. This is the simplest choice allowing for
the possibility of transverse flow. "

Taking into account the approximation (2.9) and the ansatz (3.5) and (3.6) the Lagrangian will be, from expression
(2.8) and subjected to the constraint (2.3),

—2

1.= f d'r pi — X p+ I FPO
X p

5 p

(3.7)

The first integration is over the whole coordinate space and the field p, (r, t) replaces the field W(r, t),
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2m
pi(r, t) = — pF(r) 8'(r, t) .

~2
(3.8)

The surface integral takes into account the possibility of surface displacements. In fact, if we denote by f and f two dis-
tribution functions corresponding to slightly displaced nuclear boundaries, we find

r —2

f «(f' f)(—4+ 2I upk p) = J d& 5RPO 0+,0 0

where 5R is the displacement of the nuclear surface. As the equilibrium self-consistent density is a spherical square den-
sity we write

Po(r)=poS and pF(r)=pFS . (3.9)

In these expressions and in the sequel the factor 8 denotes 0(R r), whe—re R is the nuclear radius fixed by the particle
number and the equilibrium nuclear matter density Po. The potential energy functional is given by

2

PF GO PO Po
[Pi»aP1j= d y

2 P1 2
Xaa +

10 XaP
3 Xyy2m 3PO 2

(3.10)

with Go ——i+F0, Fo being the Landau parameter

3m
Fo ——

2 (aPO+bp p) .
pp

The kinetic energy functional is
r

(3.11)

—2 —4

T[y,y p]= Jd y — agcy+ ay(5 =y p+ ,'ay )+—[(ay p+ ,'ay )+—,'(a y p+a—y +5 spy) ] O,

(3.12)

d pP(r~t)= f(r~p*t)=Po+P1 —2POXaa 2P1Xaa
2m3

+ —,
'
Pp(X +2X' p) (3.13)

where Op=8!Bxp.

According to their definitions the expressions for the
density P(r, t) and the current density j (r, t) are

Po 5T
Pl 2 aa

5y
t

—2 ' —2—
Pug& PrPo .

+p 6 2O
~CIA

L

—2
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~
5E+
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Po P Fjo ~
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(3.16a)

Xa =—,(3.16b)
10 P 5$p'

(3.16c)

P FPO 5E
10 5Xap

- dpPk f(r p t)I
= ——dk0+ (dk4. +2d&4&v )-

po

1 2
0k 5 (P FPO) .

5m
(3.14)

We emphasize that Eqs. (3.16) are valid only in the interi-
or. Free variations at the surface give the boundary con-
ditions

—2

xp BP+ (d P p+ —,'Bg ) +m(5R. n)

(3.17a)

In order to ensure that the current density is not singular
at the surface, the following boundary condition on the
field P p is imposed

x P pi„ ti
——0. (3.15)

—2

5 p 'x„a„y+ (a y + —,
'
a„y )+m(5R n)a aq 2 g yy

+x Bpqt + (Bygpy+ ,' dybyy) gp +—a~g—
CX

The equations of motion and the additional boundary
conditions that are needed to specify the dynamical fields
arise naturally from the variation of the action subjected
to the restriction (3.15). Arbitrary variations of the fields
lead, in the interior, to the set of equations

2Pr+""y
7

(~y& p+dW-y+d &py) (3.17b)
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r=R
=0. (3.17c)

2
~(n)

n (3.20c)

In the second boundary condition the vector g is the
I.agrange multiplier that takes into account the restriction
(3.15)

We seek solutions of the form

2 —2—
PO ~(n)+ ~ FPO ~(n)~n ap 2

9' +
20 Yaa +

1O
Y'ap

~ (n)

(3.20d)

A(r, t) =Ap(r)+A((r)t+ g A'"'(r)sin(co„t +a„) (3.18)

B(r,t) =Bp(r)+ g B'"'(r)cos(co„t+a„) (3.19)

for the fields p, (r, t) and J &(r, t) and the displacement
5R(r, t), and of the form 2

V2y(p)+ +
(a ay(p)+ ) V2y(p)) ()

5
(3.21)

For the zero frequency modes the fields p) and p~)3 are
zero and the fields P and P~p satisfy the following equa-
tions:

for the fields P(r, t) and P gr, t).
Equations (3.16) lead to the random phase approxima-

tion (RPA) equations for the eigenmodes A'"' and B'"'
[we recall that Eqs. (3.20a) and (3.20b) are valid only in
the interior]

V2y(p)+ F
(a ay(p)+ ( V2y(p)) +2a ay(p)

+ ' (v'(().",'+ a.ap,",)+2a,ap.",'+2a,a.(t,",)) =o .
7

(n) PO (n)
pin pi &au

—2 (n) —2—
P FP1 P FPO (n)

pin f)a~ 6 20

(3.20a)

P FPo (n) 5T
1() ~)3 5y(n)

(3.20b)

(3.22)

Zero frequency modes appear because the model does not
account for the surface tension that opposes the free ex-
pansion of the surface. Obviously, these modes should
not be forgotten. Indeed they will be shown to be very
important in the development of the model.

The following normalization conditions are satisfied

—2 —2— 5 5(n) PO ~(n) ~(m) I F ~(m) I FPO ~(n) aP ~(n) ~(m) ~P ~(m)
pl 2 aa ')t' +

6 Y'aa + j0 +p 3 yy &~p 3 &yy

We introduce now the solutions for the tensor fields
and the coupled scalar field both for electric and magn«ic
modes.

A. Electric modes
(3.24a)

[It.,]„=I (a.a,—s.,v')I' —[a.(v x 1),+ a,(v x 1).)
—[(Vxi).(V x I)p

+(VXI)p(VXI) ]Ij((k(r)I'(p,

The general solution is a linear combination of the
eigenmode solutions. The angular dependence of the
fields X~p and P~p is a linear combination of the four
linearly independent angular tensor functions with even
parity for angular momentum /,

[y.,], = a.a,—
5 p

3
V J((kir»(p

[p p]3z ——[a (VXI)p+ap(VXI) ]J&(k3r)I'(p .

(3.24b)

(3.24c)

aaapI Im

~ap+Im

(x.a~+&,a.)r,
&a&p&im-

From these tensors we construct three traceless solutions

The radial dependence of these solutions is given by the
spherical Bessel functions j((k;r). The fields [p ~](E and
[p~p]3E verify the relations

a [P p]i@——0 and a.a~[y.~]3E—0,
and are, therefore, transverse fields which are not coupled
to scalar fields. To each one of these solutions corre-
sponds a different sound velocity c)T and c3T,
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—2PF
CiT=

7m
—23PF

C3T
7%i

(3.25)

[0"p] = a ap—CX

11-2
[p'o']2= — (2l + 3)r'Yio ~

21

(3.3 lc)

—2PF 6 F0
2 7 3

96+—„(—, +8+o)
1/2 '

(3.26)

and the scalar fields coupled to [p p]2, and [p p]2b (one
tensor field for each sound velocity) are

—22PF 2
(t'i ci k 2iJ!( k 2

' r ) Yl 015 l l (3.27)

The longitudinal solution [p p]2E yields two different
sound velocities

[y."p'],= (a.a,—|.pV')r'+'Y, .
—2

[P' ']4—— (2l +3)r'Yio,
7

[y.",'],= t(a.ap
—n.pv')I'

—[(VXl).(V XI)p+(V Xl)p(V X1).]
+(2l+1)/3[a (Vxl)p+. ap(Vxl) ]
—5(l+1)(l +2)/3a. ap]r'+'Y ..

[P' ']5=2pF(I+1)(l+2)(2I+5)r +
Yio .

(3.31d)

(3.31e)

where the constants

S FGO
—2

C;= 2 2, (i =ah)
P FGo —3m c2;

contain the dependence on the longitudinal sound veloci-
ties.

A fifth nontraceless solution for Pap is chosen taking
advantage of the invariance of the equations of motion
and boundary conditions with respect to the transforma-
tion

—2

P'= P+ V(r),
2

(3.28)
Q'

p
——P p

—5 pV(r),

where V(r) is an arbitrary function.
We then choose

The solution for a given normal mode is a linear com-
bination of the five particular solutions fixed by the boun-
dary conditions and the normalization conditions.

B. Magnetic modes

For the purely transverse magnetic modes the equations
obtained in Sec. III become simpler because the fields
pi(r, t) and i'(r, t) vanish and the fields i' p(, r, t) and
Xap(r, t) are traceless tensors.

To construct the tensor fields pap and Xap we use the
two linearly independent transverse angular functions
with angular momentum l,

(a.tp+ a,I.) Yio

and

(x lp+xpl )Yio .

[4' p]5E=& «r»io
with the scalar field

—2PF05= — F(r) Yio
2

(3.29)

(3.30)

[p p],M=[(VXur)pl lr+(VXur) Eplr].

Xji(k i r) Yio (3.32a)

From these, two linearly independent solutions are built

F(r) being an arbitrary function. This solution is not
trivial because (3.15) is not invariant under the transfor-
mation (3.28) since we have

xayap=xayap xpZ(r) —Y„.

[i' p]2M (I ap+~pa j)i(k2r)Yio (3.32b)

where u is a unit vector, and ji(k;r) are spherical Bessel
functions. These solutions correspond to two different
sound velocities, c~T and c2T,

The fields pi and gap are obtained from the fields Pap
and P through Eqs. (3.16).

For zero-frequency modes there are five linearly in-
dependent solutions of the local equations for the fields P
and Pap. These solutions are written as follows

[@ p]i=[a (Vxl)p+. ap(VXl) —(l+1)a ap]r + Yio,

(3.31a)

[P' ']i ——0,

—2
2 PF

CiT 7'

—2
3P F

C2T
7@i

7

and the following relations are verified

a [P p],M ——0 and a.ap[P p] M =0 .

(3.33a)

(3.33b)

[0"p]i=a apr'Yio (3.3 lb) The general solution is

itaP +1M[daP]1M++2M[kaP]2M (3.34)
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where E,~ and I'2~ are constants fixed by ihe boundary
conditions and normalization conditions.

Observing that T[P,&Pap] is a quadratic functional in the
fields we may write, from the equations of motion

This model satisfies several important sum rules: for
the electric modes, the sum rules S~, S &, and S3 and for
the magnetic modes the sum rule S~. We will derive these
sum rules using an adequate set of initial conditions for
each case.

In order to prove the energy-weighted sum rule for the
electric modes we consider the following initial conditions

—f D pi — X Od r —f dX.5RpoD

= fD d'r
5D

=2T[D,O] .

Finally from (4.3), (4.5), and (4.6) we obtain

co+ +co„c„=2T[D,O] .

(4.6)

(4.7)

P(r, O) =D (r),
P p(r, O)=pi(r, O)=X p(r, O)=5R(r, O) =0 .

We expand the fields P(r, O) and P p(r, O),

[P(r,o),g.p(r, O)]= g c„(P(")(r),P("p)(r)),

where, from the orthogonality relations, we have

(4.1)

(4.2)

In a similar way we may derive the inverse energy-
weighted sum rule S 1 from the following initial condi-
tions

y(r, o)=y.p(r, 0)=0,
[pi(r, O),X p(r, O), 5R(r, O)]

= g g„(p')"'(r),X.' p(r), 5R'"'(r)), (4.8)

c„=%2(n (D(r) [0) . (4.4)

c„=—f der p',"'— X'"' D(r)O —f dX 5R'"'poD(r) .
1 2 aa

(4.3)

The coefficients c„are closely related to the probability
amplitude for a transition from the ground state to the ex-
cited state

~
n), —2—

p EpG 5ap (.) ~ ~ (.).X p
— X P "p — P"' O

The density field pi(r, t), the tensor field Xap(r, t), the sur-
face displacement 5R(r, t) and the respective derivatives
are then I f g.5R— y(»)+ P + y(») (4.9)

[pi(r, t),X p(r, t)]= g c„(pI"'(r),X'"p(r))sinco„t,
n+0

[pi(r, t),X p(r, t)]= g ~„c„(p)"'(r),X'"p)(r))cosco„t
n&0

5R(r, t)=c05R' 't+ g c„5R(")(r)sino&„t,
n+0

(4.5b) (PpfaP)= —gg»SinCt7»t((I) (i),(t)ap(1')),

(pi, Xap, 5R)= g g»cosco»t

X(p(1 )(r),X( p(r), 5R( )(r)) .

Thus, it may be written for an arbitrary time t4.5a

(4.10)

5R(r, t) =co5R' '+ g to„c„5R'")(r)cosco„t .
n+0

(4.5c) From the equations of motion we have

—2—
Po ~ Pr Pagor pi Xaa 0+ 4pp Xap

5 p
Xrr P p—

5p.
O

—2

+ f d& 5Rpo 0+
1

0aa = f d'» pi 5 +Xap5 (4.11)

Finally, from Eqs. (3.23), (4.10), and (4.11) the following
sum rule is easily derived

I

Now we consider the system perturbed by an external stat-
ic field

(4.12) D(r)= g D(rj) .
j=l

(4.13)
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The perturbed energy of the system is

E'=E[p(,x~p]+ f d r D(r) p) — X 8aa

+ f dX.5RpoD(r) . (4.14)

2

d„= f d'r X y(p)O.

From the expansion

(t) p(r, O) = —g co„d„P'"p(r),

(4.23)

(4.24)

D(r}O=—5E
5 Po D( )o 5E

ap (4.15)

In order to determine the fields pi and X~p we minimize
E' and obtain the following equations

d r=2E[O,X p]
Sap

(4.25)

and the equations of motion which lead to

f— ,
'x.y.p8d'r= f x.p

in the interior. The perturbing field D(r) must satisfy
D(R)=0 at the boundary. The solution of these equa-
tions is

with

E[ Ox~ p]= f X~p8d r, (4.26)

3PlPp
XP——0, Pi ———

z D(r).
P FGP

(4.16) we obtain the sum rule

+co„d„=2E[O,X p] . (4.27)

The coefficient d„ is related to the transition amp1itude

We now expand the field D(r) in the normal modes

D(r) = g c„P'"'(r) (4.17)

with

c„=—f d r D(r)p'("'(r)O (4.18)

c„=f d'r p',"'(r) +X'"p'(r)

d r P,(r) („) +X p(r) ( )

f d "~n Pid Xapap—=ange (4 19}
10

The desired sum rule is finally obtained from Eq. (4.12)

There is no surface contribution- to c„because D(r) is
zero at the boundary. Considering Eqs. (4.10) and (4.15)
and the fact that E is a quadratic functional we have

d. =~2&n II.AIO&, (4.28)

IH, D]=— VD .
PP2

We choose the following initial conditions

P(r, O) =P p(r, O) =0,
[pi(r, O), 5R(r,O)] = gd„(p'i"'(r), 5R(")(r))=0,

X p(r, O)= gd„x'"p(r)= 8 BpD(r),
m

(4.29)

(4.30)

where the coefficients d„, n &0, are given by

—2

where p. A denotes the sum —,
' g [p; A(r; ) + A(r; ) p;].

From this last sum rule we may easily derive the sum
rule S3 for the electric modes observing that

+co„'c„=2E[p),0]= f d r D (r)8. (4.20)
I FGO

In order to derive the sum rule Si for the magnetic modes
we observe that the magnetic transition operator

I FPP+ Xap
ap (n) ap (n) 3

Xrr y~p — pre Od r

—,
' $ [p; A(r;)+A(r;) p;], divA=O,

induces a deformation in the system which is described by
the tensor X~p of the particular form

(4.31)
and do ——0. The sum rule (4.27) is still verified. From the
initial conditions and the definition of the d„ it may be
shown by partial integration that

gap —BaA p+ BpAa o

Vfe consider the initial conditions

P p(r, O}=0,

X p(r, O) = g d„x'"p(r) =B A p+ 8pA

(4.21)

(4.22)

d„= f d.D 'T,

= —f co„p')"'DOd r —f dX.5R'"'co„poD

~n~n (4.32)

where d„ is determined by the normalization relations The coefficients c„have been defined by expression (4.3).
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TABLE I. For the states indicated, energies and percentages of the EWSR are given. The following excitation operators have been
used: r Y for l=O and r'K~0 for I&1.

E=Ace
(MeV) %%uo' of EWSR

18.11 90.94
20.03 5.11
29.72 0.278
38.95 0.3S7

E=Am
(MeV)

0
6.07
9.24

24.S
25. 1

29.2
33.9
34.1

100 2.96
11.00
17.49
19.82
21.12
28.88
29.05
37 21

E=Ace
% of EWSR (MeV)

32.26
63.11
4.06X 10-'
2.4S X 10-'
0.022
3.29 X 10
8.81 X 10
1.16X 10

0
8.05

17.68
22.75
23.89
26.82
32.77
33.14

E=fico
% of EWSR (MeV)

36.7
3 X 10-'

50.36
6.95 X 10-'
3.31
6.97
8.61 X 10-'
6.58 X 10-'

0
11.75
22.96
26.58
28.61
33.03
36.45
37.31

37.2
1.96 ~

34.98
5.2X10-'

10.38
10.77
4.7X10
2.43

E=Pm
of EWSR (MeV) %%uo of EWSR

This result also relies on the assumption that

(4.33)

a = —799.13 MeV fm

b =6711.23 MeV fm

The result (4.32) is in agreement with the following rela-
tion

(4.34)

Finally the sum rule S3 is obtained from (4.27) if we re-
place d~ by M~c~,

+co„'c„=2E[0,B dpD] . (4.35)

V. NUMERICAL RESULTS

The results presented in this section refer to the nucleus
Pb. We consider a zero-range effective interaction

which corresponds to a single particle potential of the
form U= ap +bp The -param. eters a and b are adjusted
in order to reproduce the saturation properties of the nu-
clear matter,

k~ ——1.26 fm '
(po

——0.135 fm );
E/A = —13.8 MeV,

which yield

In Table I the energy levels and the corresponding per-
centages of the EWSR for the electric modes are given for
several multipolarity states.

I =0+. For the monopole modes, which are purely
longitudinal, we obtain a very collective state at 18 MeV
which exhausts about 91% of the EWSR.

P=l . The lowest 1 state is a zero frequency mode
(co=0), amounting to the uniform translation of the nu-
cleus; for the transition operator chosen in the present for-
mulation it exhausts the total EWSR.

P=2+. For the quadrupole modes, the strength is di-
vided between a low state which occurs at -3 MeV and
carries 32.26% of the EWSR and a very collective state
(giant vibration) at 11 MeV with 63.11%of the EWSR.

P=3 . In the case of the octupole vibrations we get
one state at 17.68 MeV which exhausts a considerable
fraction of the EWSR (50.36%); a zero frequency mode
occurs due to the free expansion of the surface and carries
about 36.7% of the EWSR; the remaining part of the
EWSR lies in the range of 23—26 MeV (-10%).

P=4+. The results for these modes are similar to the
3 case.

Table II shows the numerical results obtained for the
magnetic modes.

For the magnetic modes, since the model does not allow
for the spin-flip mechanism, only isoscalar spin zero

TABLE II. For the states indicated, energies and percentages of EWSR are given, for a transition
operator of the form 1r'Y~o.

0
27.52
43.43
58.85

7.84
15.19
24.48
33.5
34.07
42.42
50.19
51.23

% of EWSR

80.12
8.45
0.57
8.3 X10-'
3.95
5 8X10
1.76
5.47 X 10-'

15.44
19.04
28.21
37.36
42.47
46.33
5S.2
56.72

62.63
18.41
0.58
0.049
5.97
6.3X10-'
0.55 X 10-'
2.92
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modes are taken into account. The energy levels obtained
are in good agreement with other calculations. ' It is re-
markable that the transition strength splits over several
levels for the states 2 and 3+.

VI. CONCLUSIONS

A variational formulation of nuclear fluid dynamics
has been proposed which is valid for zero temperature.
The equations for small amplitude oscillations around a
stationary state and the boundary conditions which must
be satisfied by the fields arise naturally from this varia-
tional formulation. As an illustration of the variational
approach, a fluid-dynamical calculation which avoids the
so-called scaling approximation but takes duely into ac-
count distortions of the Fermi sphere related to the first
sound and zero sound modes has been discussed.

The model presented satisfies some important sum
rules: the energy-weighted sum rule, Si, both for electric
and magnetic modes and also the inverse energy-weighted
sum rule, S ~, and the cubic energy-weighted sum rule,
S3, for electric modes.

The results obtained for the energy levels of the nucleus
Pb exhibit a remarkable splitting of the giant reso-

nances and allow for the separation between the giant res-
onances and the low-lying modes, as we can see, for exam-
ple, for the quadrupole states where we obtain the giant
resonance state at about 11 MeV and a low-lying state at 3
MeV. For the monopole case, there are no low-lying
states and the "breathing mode" appears in good agree-
ment with the corresponding RPA results. ' Our model
accounts for surface modes. These modes occur at zero
frequency due to the use of zero range forces which leads
to the absence of a surface tension. Although the descrip-
tion of these modes is not realistic we may emphasize that
the fraction of the EWSR absorbed by these states is
essential to obtain good agreement with experimental
data. Similar modes are discussed in Ref. 2.
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