Spontaneous ¹⁴C emission from ²²³Ra

W. Kutschera, I. Ahmad, S. G. Armato III,* A. M. Friedman, J. E. Gindler, W. Henning,

T. Ishii,[†] M. Paul,[‡] and K. E. Rehm

Argonne National Laboratory, Argonne, Illinois 60439

(Received 20 February 1985)

The spontaneous emission of ¹⁴C from ²²³Ra, recently discovered by Rose and Jones, has been confirmed, and the mass of the emitted particles unambiguously identified. The present measurement was performed with a ²²⁷Th source containing 9.2 mCi of ²²³Ra. An Enge split-pole magnetic spectrograph was used to suppress the intense alpha radiation and to identify the ¹⁴C particles. The spectrograph was calibrated with tandem-accelerated beams of ¹⁴C, ¹³C, and ¹²C. In six days of decay counting, twenty-four ¹⁴C events were observed yielding a branching ratio of $(4.7\pm1.3)\times10^{-10}$ for the emission of ¹⁴C from ²²³Ra relative to that of alpha particles. The value is in fair agreement with the result of Rose and Jones, $(8.5\pm2.5)\times10^{-10}$, and with more recent measurements from other laboratories.

I. INTRODUCTION

The spontaneous emission of particles heavier than ⁴He can be viewed as an intermediate process between α decay and fission. Explicit quantitative predictions for such a process were made in 1980.¹ The first experimental evidence was found in 1984 when Rose and Jones² discovered in an ingeniously simple experiment that 223 Ra, an α emitter with a half-life of 11.4 d, occasionally emits ¹⁴C nuclei of 29.8 MeV energy. The branching ratio relative to α decay was measured to be $(8.5\pm2.5)\times10^{-10}$. ²²³Ra occurs in the natural decay chain of ²³⁵U, with ²²⁷Ac $(T_{1/2}=21.7)$ yr) being a convenient precursor to ²²³Ra. In their pioneering experiment Rose and Jones used a 3.3 μ Ci source of ²²⁷Ac with ²²³Ra in secular equilibrium as a member of the ²²⁷Ac main decay sequence: ²²⁷Ac(β^-) \rightarrow^{227} Th(α) \rightarrow^{223} Ra(α) \rightarrow^{219} Rn(α) \rightarrow^{215} Po(α) \rightarrow^{211} Pb(β^-) \rightarrow^{211} Bi(α) \rightarrow^{207} Tl(β^-) \rightarrow^{207} Pb(stable). Energy loss and total energy of particles emitted from the source were measured with a ΔE -E silicon surface barrier detector telescope. Although no mass determination was possible, certain events could be uniquely identified as carbon nuclei. The measured kinetic energy was consistent with the Q value for ¹⁴C emission from ²²³Ra. In addition, a comparison of Gamow penetrability factors favored ¹⁴C emission over any other carbon isotope.

However, the lack of mass identification and the rarity of the process (only 19 14 C decays were observed in 383 d) led to measurements with improved techniques to confirm this new kind of radioactivity. Several laboratories have since been engaged in experiments to verify the Oxford result.

Gales *et al.*³ at Orsay used a superconducting magnetic solenoid spectrometer to suppress the intense α radiation. This allowed the use of an ²²⁷Ac source approximately 60 times stronger than the one used by the Oxford group. In five days 11 events were detected and identified as ¹⁴C nuclei emitted from ²²³Ra, using a $\Delta E - E$ telescope in the

focus of the spectrometer which was calibrated with a ¹⁴C beam of corresponding energy from the Orsay tandem accelerator. Their result for the ${}^{14}C/\alpha$ branching ratio, $(5.5\pm2.0)\times10^{-10}$, agreed with the one from the Oxford experiment. An experiment with a similar technique as the one used by the Oxford group² was performed by Alexandrov *et al.*⁴ In 30 d seven carbon events were measured, yielding a ${}^{14}C/\alpha$ branching ratio of $(7.6\pm3.0)\times10^{-10}$. All three groups^{2,3,4} used ${}^{227}Ac$ as source material. In a different approach Price *et al.*⁵ used mass-separated sources of ²²¹Fr, ²²¹Ra, ²²²Ra, ²²³Ra, and $^{224}\mbox{Ra}$ and polycarbonate track-recording foils that are sensitive to energetic carbon nuclei but not to α particles. The Fr and Ra isotopes were produced by spallation of Th with 600 MeV protons from the CERN synchrocyclotron and on-line mass separated in the ISOLDE facility. Decays by ¹⁴C emission were found for ²²²Ra, ²²³Ra, and ²²⁴Ra with ¹⁴C/ α ratios of $(3.7\pm0.5)\times10^{-10}$, (6.1±0.8)×10⁻¹⁰, and (4.3±1.1)×10⁻¹¹, respectively. Upper limits of 4.4×10⁻¹² were established for ²²¹Fr and ²²¹Ra. Although the mass of the detected carbon nuclei could not be determined the measured mean ranges of the carbon tracks agreed well with the ranges expected from the decay energies of ¹⁴C from the respective Ra isotopes. The ¹⁴C/ α branching ratio for the ²²³Ra decay agrees with both the Oxford and the Orsay result.

The experiment described in this paper was designed to measure the energy and the mass of the carbon nuclei emitted in the decay of 223 Ra. A strong 227 Th source containing 223 Ra was prepared and its decay measured in an Enge split-pole magnetic spectrograph. The spectrograph is generally used in experiments with beams from the Argonne tandem-superconducting linac. This permitted an accurate calibration with a "mixed" beam of 12 C, 13 C, and 14 C ions provided by the tandem accelerator operating in a mode used for detection of long-lived radioisotopes.⁶ The spectrograph allows an unambiguous mass determination from a measurement of magnetic rigidity and total energy in the focal plane detector.

<u>32</u> 2036

II. EXPERIMENTAL PROCEDURE AND RESULTS

A. Preparation of the ²²⁷Th source

Since the maximum solid angle of the split-pole spectrograph is rather limited (5.5 msr), a strong source had to be used. To minimize the danger of long-term contamination which would conflict with other ongoing research, a particularly careful choice of the source material was required. ²²⁷Ac, the source material used in the Oxford² and Orsay³ experiments, has a relatively long half-life of 21.8 yr and is known to migrate easily. Therefore, the daughter ²²⁷Th with $T_{1/2}=18.7$ d was chosen. ²²⁷Th rather than²²³Ra ($T_{1/2}=11.4$ d) was used, since ²²⁷Th is easier to separate from ²²⁷Ac. In addition, the source yields a fairly constant ²²³Ra activity for a period of about two weeks, following two weeks of buildup from ²²⁷Th.

Thorium was chemically separated from approximately 2 mg of ²²⁷Ac and its daughters and deposited on a 50 μ m thick platinum disk. The platinum disk was mounted in the aluminum source holder shown in Fig. 1. In this configuration the source had a diameter of about 5 mm. The source was covered with a 100 μ g/cm² thick Al foil at a distance of 3 mm to prevent the escape of source material due to α recoil and secondary sputtering. The energy loss of 29.8 MeV ¹⁴C particles in the Al foil was measured with the calibration beam from the tandem to be 310 keV. The source arrangement of Fig. 1 was used in a two-week measurement in the spectrograph. Despite the Al-foil cover, ²¹⁹Rn ($T_{1/2} = 4$ sec) easily escaped the source confinement and yielded a noticeable α background at the focal-plane detector of the spectrograph. However, after completion of the experiment, virtually no contamination was left in the spectrograph target chamber one day after removal of the source when ²¹¹Pb ($T_{1/2}$ =36 min), the longest-lived daughter of ²¹⁹Rn, had decayed away.

B. Calibration of the ²²⁷Th source

Two weeks after the separation of ²²⁷Th from ²²⁷Ac the α activity of ²²³Ra was measured with a Si surface barrier detector in a well-defined geometry and found to be 9.6±0.9 mCi. At this time the ²²⁷Th/²²³Ra ratio was measured to be 1.37. This source was subsequently used

FIG. 1. Schematic view of the ²²⁷Th source mount.

for the ¹⁴C-decay measurement with the spectrograph. Two weeks after the first activity measurement the source strength was again measured with the Si detector and the 223 Ra activity was found to be 8.8 ± 0.9 mCi. The ²²⁷Th/²²³Ra ratio had decreased to 0.79 consistent with the expected mother-daughter activity ratio. Since the ²²³Ra activity stays approximately constant during these two weeks, we calculated an average ²²³Ra α activity of 9.2 ± 0.7 mCi for the period of the spectrograph measurements. In order to relate this number to the ¹⁴C-decay rate measured in the spectrograph the detection efficiency of the spectrograph system had to be measured. Since the α decay rate of the above source was too high to be measured directly in the spectrograph, a weaker source con-taining 37 μ Ci of ²²³Ra was prepared in an identical source geometry. In addition, a well-calibrated 216 nCi source of ²⁴⁹Cf ($T_{1/2}$ =351 yr) was used for comparison with the same source mount (but no Al foil). From measurements of these sources both in the spectrograph and with the Si detector, we deduced a total detection efficiency of $(4.4\pm0.5)\times10^{-4}$ for the spectrograph. This value is in excellent agreement with the nominal geometrical solid angle of 4.38×10^{-4} of 4π .

The strong ²²⁷Th source used in the ¹⁴C-decay measurements showed pronounced low-energy tailing for the α lines, indicating that the source was rather thick. The energy loss due to source thickness and Al foil was determined from measurements in the Si detector, which also revealed unbroadened α lines originating from escaped ²¹⁹Rn and its daughter ²¹⁵Po. For the 7.386 MeV α line of ²¹⁵Po the energy shift was 97 keV. (This corresponds⁷ to an energy loss of 700 keV for ¹⁴C particles of 29.8 MeV.) Since the energy loss in the Al foil was measured to be 57 keV for α particles from a very thin source, we deduce an intrinsic energy shift for alphas of ~40 keV for the strong source. This together with the strongly asymmetric line shape suggested a total source thickness of about 100 μ g/cm².

C. Calibration of the spectrograph for carbon isotopes

The calibration of the spectrograph was performed with a low-intensity beam of carbon ions provided by the tandem accelerator. For this purpose the tandemspectrograph system was operated in a mode used for the measurement of very low concentrations of long-lived radioisotopes. Details of this technique are described in Ref. 6. In the present experiment, negative ions of mass 14 were selected for injection into the tandem originating from a graphite sample in the Cs-beam sputter ion source. The sample contained traces of ¹⁴C with a concentration of ${}^{14}C/{}^{12}C \approx 5 \times 10^{-12}$. The tandem was tuned to accelerate ${}^{14}C^{4+}$ ions to 29.8 MeV, the energy expected from the ²²³Ra decay. Together with a few tens of ${}^{14}C^{-}$ ions per second, intense components of ${}^{13}CH^-$ and ${}^{12}CH_2^$ molecular ions are injected into the tandem. These molecules break up in the terminal foil stripper and subsequent charge changes in the residual gas of the accelerator tube produce a small fraction of ${}^{13}C^{4+}$ and ${}^{12}C^{4+}$ ions whose energies match exactly the magnetic rigidity of the ${}^{14}C^{4+}$ ions which therefore follow the magnetic beam transport

FIG. 2. Carbon isotope calibration of the split-pole focalplane detector. Two-dimensional density plot of total energy, E_{total} , versus magnetic rigidity, $B\rho$, with the beam passing through a nonuniform Sn foil of about 350 μ g/cm² thickness.

system to the spectrograph. As a result all three carbon isotopes arrive at the spectrograph, a few ${}^{14}C^{4+}$ ions per second of 29.8 MeV and about ten times more ${}^{13}C^{4+}$ and ${}^{12}C^{4+}$ ions of 32.1 and 34.8 MeV, respectively.

The split-pole spectrograph is equipped with a focal plane gas ionization detector⁸ which measures focal-plane position (magnetic rigidity $B\rho$), specific energy loss ΔE , and total energy E_{total} , for every particle. For the calibration runs the spectrograph was set to zero degrees with respect to the beam direction. The magnetic field of the spectrograph was set to focus C⁶⁺ ions into the detector. A calibration of magnetic rigidity versus energy was obtained by passing the beam through a highly nonuniform Sn foil of about 350 $\mu g/cm^2$ thickness. The resulting E_{total} vs $B\rho$ spectrum of carbon isotopes is shown in Fig. 2.

D. Spectrograph measurements with the ²²⁷Th source

The measurements with the ²²⁷Th source were performed with exactly the same spectrograph setting as used in the calibration measurements. In this setting the spectrograph accepts ¹⁴C⁶⁺ ions from 20 to 33 MeV. This eliminates doubly-charged α particles at the low-energy end and singly-charged α particles at the high-energy end of the focal-plane detector. However, since about 5×10^5 α particles per second were entering the spectrograph from the strong ²²⁷Th source, even low-probability scattering and charge-exchange processes produced a considerable α background rate. In addition, the low-energy tails of singly charged α particles also contributed to the background.

In order to investigate the possible causes of α -particle background we measured the ⁴He⁺/⁴He⁺⁺ ratio for two different α sources. It is interesting to note that Rutherford⁹ had already investigated the question of singlycharged α particles emitted from an α source. He found a ⁴He⁺/⁴He⁺⁺ ratio of 5×10^{-3} for 7.68 MeV α particles from ²¹⁴Po. As he noted in his paper, this ratio was independent of whether the source was covered with a thin sheet of mica establishing charge state equilibrium or whether a bare source was used. We measured for a thin, bare ²⁴⁹Cf source (E_{α} =5.81 MeV) a ratio of 8×10^{-3} . With the weak ²²⁷Th source (37μ Ci ²²³Ra) covered with a 100 μ g/cm² Al foil we found a ⁴He⁺/⁴He⁺⁺ ratio of (7.2±1.0)×10⁻³ for the main α group of ²²³Ra (E_{α} =5.7 MeV). These results agree well with equilibrium values reported for 6.0 MeV α particles by Allison.¹⁰

With the strong ²²⁷Th source facing the spectrograph entrance the α counting rate in the focal plane detector was ~700 sec⁻¹. When the source was rotated 180° to face away from the spectrograph entrance, the counting rate was still ~200 sec⁻¹ due to the decay of ²¹⁹Rn and its daughters having escaped from the source and diffused to locations near the focal plane detector. The difference in the background was due to α particles emitted from the source and somehow scattered into the detector.

The measurement with the strong ²²⁷Th source (9.2 mCi ²²³Ra) extended over a period of 6.09 d. The resulting ΔE vs E_{total} spectrum is shown in Fig. 3. A total of 24 events was observed in the region indicated by the dashed window. Figure 4 shows the result of a background measurement of 2.85 d where the only change from the previous measurement was to turn the source holder by 180° so that the source did not face the spectrograph entrance. No events were observed in the same region. The large scatter of the ¹⁴C counts in Fig. 3 is mostly due to the large acceptance angle of the spectrograph and the resulting spread in angle of incidence and energy loss signal in the focal plane detector. An additional spread in total energy due to the source thickness is apparent. A much clearer

FIG. 3. Two-dimensional density plot of energy loss, ΔE , versus total energy, E_{total} , of a 6.09 d decay measurement with the strong ²²⁷Th source containing 9.2 mCi of ²²³Ra. The intensity scale is chosen such that single counts are visible. The window contains 24 ¹⁴C events.

FIG. 4. Result of a 2.85 d background measurement with the strong 227 Th source, but turned by 180° and facing away from the spectrograph entrance aperture. No 14 C events are observed.

picture evolves in Fig. 5, where these events are plotted in the E_{total} vs $B\rho$ plane. The bulk of the events clearly follow the ${}^{14}\text{C}^{6+}$ mass line. Without doubt these particles are ${}^{14}\text{C}$ nuclei. Three out of a total of 24 events fall on a different mass line, which is consistent with the one expected for low-energy ${}^{14}\text{C}^{5+}$ ions. Comparison with the tandem beam calibration gives a maximum ${}^{14}\text{C}$ energy of 29.1 ± 0.2 MeV. This corresponds to ${}^{14}\text{C}$ particles of 29.8 MeV emitted from ${}^{223}\text{Ra}$ and experiencing a total energy loss of about 700 keV in the source and Al foil (Sec. II B). The strong tailing to lower ${}^{14}\text{C}$ energies is due to the source thickness of about 100 $\mu g/\text{cm}^2$. One-dimensional

FIG. 5. E_{total} vs $B\rho$ spectrum of the events contained in the window of Fig. 4. The mass lines for the carbon 6⁺ ions were established in the calibration runs. Three events fall into the region corresponding to low-energy ¹⁴C⁵⁺ ions.

FIG. 6. Mass spectra for C^{6+} ions obtained by projecting the events along the mass lines; (a) for the calibration run of Fig. 2, (b) for the ²²³Ra decay events of Fig. 5.

mass spectra can be obtained by projecting the events along the mass lines. A comparison of such spectra for the calibration measurement (Fig. 2) and the ²²³Ra decay measurement is shown in Fig. 6. Again the ¹⁴C nature of the events is unambiguously established.

In order to extract a ¹⁴C/ α branching ratio from the observed ¹⁴C events the ¹⁴C charge state distribution was measured with the thick, nonuniform Sn target (cf. Fig. 2) using 29.8 MeV ¹⁴C ions from the tandem accelerator. This was thought to be a reasonable approximation to the actual source conditions. The charge state fractions were 58.1% (6⁺), 36.7% (5⁺), and 5.2% (4⁺). Fractions for charge states $\leq 3^+$ were assumed to be negligible. For comparison a 100 μ g/cm² Al foil produced the following fractions for 29.8 MeV ¹⁴C decay rate was calculated from the 21 ¹⁴C⁶⁺ events using the 58.1% 6⁺-charge state fraction and the detection efficiency (4.4±0.5)×10⁻⁴. We obtain a decay rate of 0.16±0.04 decays per second. Since the average α decays per second we obtain for the ratio of the decay constants

 $\lambda_{14_{c}}/\lambda_{\alpha} = (4.7 \pm 1.3) \times 10^{-10}$.

With an α -decay half-life of 11.4 d we obtain from this ratio a partial half-life for ¹⁴C decay of 6.6×10^7 yr.

III. DISCUSSION

In Table I the presently available information on the ${}^{14}C$ emission from Ra isotopes is summarized. The ${}^{14}C/\alpha$ branching ratios measured for ${}^{223}Ra$ agree very well with

				TABLEI	. Summary of ¹⁺ C decay	results for Ka iso	topes.			
	\mathcal{Q}_{a}	$T_{1/2}$	Q14C	Observed			¹⁴ C/ α branchin	g ratios ^a		
Isotope	(MeV)	(sec)	(MeV)	¹⁴ C decays	Measured	Ref.	$Gamow I^b$	Gamow II ^c	PISG ^d	SSe
²²¹ Ra	6.88	30	32.40	0	$< 4.4 \times 10^{-12}$	5	2.4×10^{-7}	1.8×10^{-12}	7.4×10^{-13}	8.1×10^{-12}
²²² Ra	6.68	38	33.05	52	$(3.7\pm0.5)\times10^{-10}$	5.	2.2×10^{-5}	1.6×10^{-10}	3.8×10^{-12}	1.7×10^{-9}
²²³ Ra	5.98	9.85×10^{5}	31.84	19	$(8.5\pm2.5)\times10^{-10}$	2	2.0×10^{-4}	1.4×10^{-9}	$2.5 imes 10^{-9}$	6.9×10^{-9}
				11	$(5.5\pm2.0)\times10^{-10}$	3				
	•			7	$(7.6\pm3.0)\times10^{-10}$	4				
				56	$(6.1\pm0.8)\times10^{-10}$	5				
				24	$(4.7\pm1.3)\times10^{-10}$	This work				
²²⁴ Ra	5.79	4.53×10^{5}	30.53	22	$(4.3\pm1.1)\times10^{-11}$	5	6.3×10^{-6}	3.6×10^{-11}	1.8×10^{-12}	6.1×10^{-11}
^a Ratios of ^b Standard	decay constai Gamow pene	nts are given exce trability calculati	spt for the last ion with $R = r_i$	column where rati $_0(A_1^{1/3} + A_2^{1/3})$ and	ios of penetrabilities are c $r_0 = 1.20$ fm.	alculated.				
^c Same as t	but using R	$=r_0A_2^{1/3}$ and $r_0=$	=1.48 fm.	,						

^dCalculation of Poenaru, Ivascu, Sandelescu, and Greiner (Ref. 14).

Calculation of Shi and Swiatecki (Ref. 15).

2040

each other, despite the fact that quite different detection techniques have been used. This, together with the present confirmation of the mass-14 nature of the emitted particles, leaves no doubt on the existence of this decay mode. The weighted mean of the five branching ratio measurements for ²²³Ra is $(5.9\pm0.6)\times10^{-10}$. Price *et al.*⁵ have very recently discovered the ¹⁴C decay of ²²²Ra and ²²⁴Ra using track-recording foils. This technique¹¹ of using foils which are sensitive to energetic heavy particles but not to α particles is probably the most efficient way to detect these rare decay modes.

Four different calculations for the ${}^{14}C/\alpha$ branching ratios are shown in Table I. Gamow I and II refer to standard Wentzel-Kramers-Brillouin (WKB) penetrability calculations in the framework of Gamow's theory of α decay.¹³ In Gamow I we have repeated the calculation of Rose and Jones² using a pure Coulomb potential cutoff at a distance $R = r_0(A_1^{1/3} + A_2^{1/3})$ with $r_0 = 1.20$ fm. A_1 and A_2 are the masses of the emitted particle and the daughter nucleus, respectively. Although such a calculation helped Rose and Jones² to find the most probable decay mode, it fails to reproduce the measured branching ratios by several orders of magnitude. It was argued² that one may deduce from this discrepancy a preformation probability of ¹⁴C which is suppressed by a factor of about 10^5 relative to α particle formation. In a different approach, adopting a procedure used a while ago for α particle decay,¹³ we have calculated in Gamow II the branching ratios with $R = r_0 A_2^{1/3}$, where A_2 is the mass of the daughter nucleus. Similar to the prescription of Ref. 13 we determined a value $r_0 = 1.48$ fm from the measured absolute α decay constants of the even-even nuclei ²²²Ra and ²²⁴Ra. With this value of r_0 we calculate ¹⁴C/ α ratios which compare very well with the measured ones. This description may be viewed as a very crude approximation of a fissionlike process which assumes preformability equals 1 for both α and ¹⁴C decay. The result of more refined fissionlike descriptions are given in the last two columns of Table I. In essence, both Poenaru et al.¹⁴ and Shi and Swiatecki¹⁵ perform penetrability calculations with potential-energy barriers which include in approximate form the nuclear interactions between the fragments in addition to the pure Coulomb potential.

A comparison of calculated and measured ${}^{14}C/\alpha$ branching ratios is shown in Fig. 7. It is noteworthy that the calculations give a reasonable agreement with the experimental branching ratios without the need of resorting to a poorly defined preformability of the emitted cluster. One might argue that the more detailed calculations based on the models of Poenaru *et al.*¹⁴ and Shi and Swiatecki¹⁵ are more generally valid and should be taken as a basis for future estimates of other cluster emission. Nevertheless, the simple Gamow II estimates, based on the concept of emission from the extended surface of the respective daughter nucleus and calculated with the same radius parameter r_0 from absolute α emission probability, gives a surprisingly good agreement with the data. For a simple zero-order estimate this approach seems very useful.

Predictions for other rare decay modes in the actinide region have been made with some detail in Refs. 14 and 15. These cover a fairly large number of cases with heavy

FIG. 7. Calculated and measured ${}^{14}C/\alpha$ branching ratios of Ra isotopes (from Table I). For better comparison, the calculated values are connected with straight lines. Labels refer to the respective calculations in the table. The experimental value for 223 Ra is the weighted mean (see the text).

cluster-to-alpha branching ratios between 10^{-10} and 10^{-12} . Both the more refined calculations^{14,15} and the simple Gamow factor calculations favor the emission of neutron-rich heavy clusters leaving N=126 nuclei around ²⁰⁸Pb as daughter products. Most recently, the decay of ²³²U into ²⁴Ne + ²⁰⁸Pb has been measured¹² with the track-recording foil technique. The result was a ²⁴Ne/ α branching ratio of $(2.0\pm0.5)\times10^{-12}$ which can be reproduced within an order of magnitude by the calculations of Gamow II (2.06×10^{-11}) , Ref. 14 (1.58×10^{-12}) , and Ref. 15 (4.87×10^{-11}) . It seems clear that the finding of more cases of heavy cluster emission will provide important information about the link between α decay and fission. On the other hand, better statistics and resolution of individu-

al cases such as ²²³Ra may eventually allow one to resolve transitions to excited states and to study for example the interesting effects of octupole deformation in the A=225 mass region.^{16,17}

Finally, we would like to point out an interesting aspect of the ²²³Ra and ²²⁴Ra decays related to the fact that they occur in the natural decay series of ²³⁵U and ²³²Th, respectively. It can easily be estimated¹⁸ that ¹⁴C $(T_{1/2} = 5730 \text{ yr})$ will build up to an equilibrium concentration of $\sim 1.4 \times 10^{5}$ ¹⁴C atoms per gram of uranium in natural uranium minerals. A similar estimate for ²³²Th gives $\sim 5 \times 10^{4}$ ¹⁴C atoms per gram of thorium from the ²²⁴Ra decay. Uranium and thorium minerals with a carbon content in the ppm range would then have ${}^{14}C/{}^{12}C$ ratios near 10^{-12} , comparable to the cosmic-ray-produced 14 C concentration in the biosphere. Provided that the 14 C production by α -induced reactions will not mask the ¹⁴C from the Ra decay it should be quite feasible to measure the effect in a suitable mineral using the technique of accelerator mass spectrometry.⁶ At this point one may wonder whether ¹⁴C produced in uranium or thorium ores could have any effect on ¹⁴C dating. Although in the vicinity of these ores this may well be the case, the total amount of ¹⁴C produced in this way is rather small. For example, from an estimated¹⁹ average uranium content of the earth's crust ($\sim 10^{14}$ tons) it follows that about 200 g of ¹⁴C should be present from the ²²³Ra decay. Since the global inventory of ¹⁴C produced by cosmic rays in the at-mosphere is estimated²⁰ to be about 75 tons, the ²²³Ra effect is clearly negligible.

ACKNOWLEDGMENTS

We should like to thank D. E. Alburger, R. R. Chasman, C. Davids, S. Gales, A. Ghiorso, J. C. Hardy, A. E. Litherland, P. B. Price, J. P. Schiffer, and L. P. Sommerville for discussions. This research was supported by the U. S. Department of Energy under Contract W-31-109-Eng-38.

^{*}Also at University of Chicago, Chicago, IL.

- On leave from Nagoya University, Nagoya, Japan.
- [‡]Permanent address: Racah Institute of Physics, Hebrew University, Jerusalem, Israel.
- ¹A. Sandulescu, D. N. Poenaru, and W. Greiner, Fiz. Elem. Chastits. At. Yadra 11, 1334 (1980) [Sov. J. Part. Nucl. 11, 528 (1981)].
- ²H. J. Rose and G. A. Jones, Nature 307, 245 (1984).
- ³S. Gales, E. Hourani, M. Hussonnois, J. P. Schapira, L. Stab, and M. Vergnes, Phys. Rev. Lett. 53, 759 (1984).
- ⁴D. V. Alexandrov, A. F. Belyatsky, Yu. A. Gluhov, E. Yu. Nikolsky, B. V. Novatsky, A. A. Oglobin, and D. N. Stepanov, Pis'ma Zh. Eksp. Teor. Fiz. **40**, 152 (1984) [JETP Lett. **40**, 909 (1985)].
- ⁵P. B. Price, J. D. Stevenson, S. W. Barwick, and H. L. Ravn, Phys. Rev. Lett. **54**, 297 (1985).
- ⁶W. Henning, W. Kutschera, M. Paul, R. K. Smither, E. J. Stephenson, and J. L. Yntema, Nucl. Instrum. Methods 184,

247 (1981).

- ⁷L. C. Northcliffe and R. F. Schilling, Nucl. Data Tables A7, 233 (1970).
- ⁸J. R. Erskine, T. H. Braid, and J. C. Stoltzfus, Nucl. Instrum. Methods 135, 67 (1976).
- ⁹E. Rutherford, Philos. Mag. 47, 277 (1924).
- ¹⁰S. K. Allison, Rev. Mod. Phys. 30, 1137 (1958).
- ¹¹R. L. Fleischer, P. B. Price, and R. M. Walker, *Nuclear Tracks in Solids: Principles and Applications* (University of California, Berkeley, 1975).
- ¹²S. W. Barwick, P. B. Price, and J. D. Stevenson, Phys. Rev. C 31, 1984 (1985).
- ¹³E. K. Hyde, I. Perlman, and G. T. Seaborg, *The Nuclear Properties of the Heavy Elements* (Prentice-Hall, Englewood Cliffs, N.J., 1964), Vol. I, p. 201.
- ¹⁴D. N. Poenaru, M. Ivascu, A. Sandelescu, and W. Greiner, J. Phys. G 10, L183 (1984).
- ¹⁵Yi-Jin Shi and W. J. Swiatecki, Phys. Rev. Lett. 54, 300

(1985); Nucl. Phys. A438, 450 (1985).

- ¹⁶R. R. Chasman, J. Phys. (Paris) Coll. C6, 167 (1984).
- ¹⁷R. R. Chasman, Phys. Rev. C 30, 1753 (1984).
- ¹⁸W. Kutschera, Nucl. Instrum. Methods **B5**, 430 (1984).
- ¹⁹Encyclopedia Britannica (Encylopedia Britannica, Chicago, 1973), Vol. 22, p. 778.
- ²⁰D. Lal and B. Peters, in *Encyclopedia of Physics*, edited by S. Flügge (Springer, Berlin, 1967), Vol. XLVI/2, p. 551.