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Three-particle equations for the pion-nucleon system
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An analysis is carried out of a m-N-6 field theory using projection operator techniques developed
recently by the author. Relationships are derived between matrix elements of resolvents formed
from bare mm. N and mm4 states and various three-particle amplitudes. These relations are exactly
analogous to those obtained in potential theory between the three-particle Green s function and the
transition operators of Alt, Grassberger, and Sandhas. When the three-particle amplitudes are in-
tegrated over with appropriate weighting functions, the elastic scattering and production amplitudes
are obtained. The weighting functions are the analogs of bound state wave functions for the mN and
nb, subsystems. A separation of the production amplitude into its one-fermion irre-
ducible and reducible parts is derived. It is shown that the three-particle amplitudes are solutions of
AlT, Grassberger, and Sandhas type of equations as extended by Kowalski to allow for a three-body
interaction. When the AlT, Grassberger, and Sandhas quasiparticle method is applied to these
equations, the two-particle equations developed previously by the author are recovered. If the one-
fermion irreducible part of the three-body interaction is neglected a closed set of coupled nonlinear
integral equations for all of the quantities of interest is obtained.

I. INTRODUCTION

It is a widely held belief that the most general frame-
work for describing the interactions of particles with each
other is quantum field theory. In principle with such a
theory it is necessary to deal with an infinite variety of
particle states in analyzing a physical process, whereas in
practice only a finite number of particles is of interest.
One of the perpetual problems of theoretical physics is to
find ways of reducing a quantum field theory to a system
of equations which describe a finite number of physical
particles.

In describing the interactions of pions with nuclei it is,
in principle, essential to start with a quantum field theory
since the number of pions is not conserved. In recent
years, effective field theories which treat the rr, N, and 6
as elementary particles have been developed' starting
from the MIT bag model or the constituent quark
model. There have been several calculations on the
pion-nucleon system based on these effective field
theories. The calculations employ various techniques, i.e.,
the summing of a subset of diagrams, ' ' low order per-
turbation theory, ' or dispersion relations. ' Recently, "
the author has carried out an analysis of a m-N-6 field
theory using an extension of the Feshbach' projection
operator technique.

The use of projection operators in analyzing field
theories is quite old. Okubo' used them over 30 years
ago in a discussion of the Tamm-Dancoff method in
meson theory. More recently the Feshbach formalism has
been used to analyze the pion-deuteron system, ' ' pion-
nucleus reactions, ' as well as several sectors of the Lee
model. ' ' The author's use of this formalism is most
closely related to the applications given in Refs. 15 and
17—19 in that the projection operators project onto sub-
spaces characterized by a definite number of bare parti-

cles. It differs in that for the models in these references
each physical sector is spanned by only a few types of
bare particle states. For example, in the Stingl and Stelbo-
vics' model for the pion-deuteron system the only bare
states allowed are ~NN), ~NNm ), and ~NNmm).

The projection operator relations developed in Ref. 11
(hereafter referred to as A) are extensions of the equations
given in the Green's function formalism of Fonda and
Newton. ' ' In applying these relations to quantum field
theory it is necessary to handle the interplay of the
creation and annihilation operators and the various
Green's functions or resolvents with some finesse other-
wise the analysis becomes unmanageable. A set of identi-
ties which make this possible is given in A. These identi-
ties are relations between resolvents which act in different
subspaces, where the projection operators for these sub-
spaces are related by the action of the creation and annihi-
lation operators. For example, if I' I; projects onto the
subspace of bare one-pion —one-fermion states then
a(q)P ~ PFa(q), where——a(q) is a meson annihilation
operator and P~ is a projector for bare one-fermion states.
In this case the identities relate a Green's function which
acts in the one-meson —one-fermion subspace to one that
acts in the one-fermion subspace.

In a n-N-b, field theory with static fermions the things
that are of interest are the propagators and self-energies of
the N and 6, the vertex functions for the various elemen-
tary processes (N+~N + ~,
4~~6, +m. ), and the various scattering and production
amplitudes (N+ ~~N+ rr, N+ vr~N+ 2~, . . . ). Us-
ing the techniques referred to above, it has been shown in
A that these entities can be obtained from bare matrix ele-
ments of resolvent operators of the form Gt (z)
=P(z PHP) 'P, where H—is the complete Hamiltonian,
z is a complex energy parameter, and I' is a projection
operator onto bare states. For example (Ni G(z)

i N),
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n.N) are related to the
nucleon propagator, the vertex function for b~~N+m,
and the m-N elastic scattering amplitude, respectively.
Here G(z)=(z H—) ' and

i
N), i

b, ), and
i
mN) are

bare states. It has also been shown that with projection
operator techniques it is straightforward to define and
separate out the reducible and irreducible contributions to
various amplitudes. For example, (mN

~
Gp(z)

~
mN) is

simply related to the one-fermion irreducible n-N .elastic
scattering amplitude if the projection operator P excludes
all one-fermion states.

The relationships found between the matrix elements of
the type (~N

~
G~(z)

~
~N) and the elastic scattering am-

plitudes are in a sense reduction formulas. They differ
from the well-known Lehmann, Symanzik, and Zimmer-
man (LSZ) reduction formulas ' in that the matrix ele-
ments involve bare states rather than physical states. The
reduction formulas obtained in A lead naturally to an
off-shell exterision of the elastic scattering amplitudes
which is different from the one on which the well-known
Chew-Low analysis ' of n Nscat-tering is based.

The off-shell amplitudes introduced in A satisfy an ex-
act set of Lippmann-Schwinger equations. If a certain ap-
proximation is made for the effective potentials that ap-
pear in these equations, it is found that the one-fermion
irreducible amplitudes satisfy a set of three-particle equa-
tions that are analogous to those that occur in the quasi-
particle method for solving nonrelativistic three-particle
problems. The starting point of this method is a set of
coupled integral equations, the so-called Alt, Grassberger,
and Sandhas (AGS) equations, which are exact within the
framework of nonrelativistic potential scattering. In the
quasiparticle method, the off-shell two-particle arnpli-
tudes that appear in the kernels of the integral equations
are split into separable terms and remainders. When this
is done it is possible to rewrite the AGS three-particle
equations as two-particle equations with effective poten-
tials. These potentials can be obtained by solving three-
particle equations of the same form as the original equa-
tions but with only the remainder terms appearing in the
kernels. If the remainders are weak enough the potentials
can be calculated by perturbation theory.

There are some differences between the AGS quasipar-
ticle equations and those obtained in A. First of all, the
equations developed in A allow for the inclusion of an un-
stable particle, i;e., the 5 resonance. Second, solving the
equations of A does not lead immediately to the physical
scattering amplitudes, but rather to their one-fermion ir-
reducible parts. Finally, the off-shell, two-particle ampli-
tudes that appear in the kernels of the AGS-type equa-
tions of A are obtained from the solutions of the equa-
tions, i.e., the equations are nonlinear. The Nm and Nmm.
sectors are coupled and must be solved self-consistently.
It has been shown that a first approximation can be ob-
tained by solving a set of linear equations which are of the
same type as those obtained with the isobar model.

One of the shortcomings of A is that it is not clear
what is left out when the approximation is made which
leads to the AGS-type, three-particle equations. The
motivation for the approximation was that it leads to a
closed set of coupled, nonlinear integral equations for the

coupled Nm-N~~ system. Also, the development of A is
incomplete in that no expressions were obtained for the
production amplitudes. Here we will remedy these
shortcomings by developing an exact three-particle for-
malism for pion-nucleon scattering using the same quan-
tum field theory model as A.

The starting point of the analysis to be presented here is
the derivation of reduction formulas that relate matrix
elements of the type (m.m.N

~
G(z) ~~n.N) to the three-

particle scattering amplitudes. It turns out that these
reduction formulas are of exactly the same form as the re-
lations between the three-particle Green's function in po-
tential theory and the three-particle transition operators
introduced by Alt, Grassberger, and Sandhas. We will
show that when certain of the three-particle amplitudes
are integrated over with appropriate weighting functions,
we get back the off-shell, two-particle amplitudes of A.
These weighting functions are proportional to the projec-
tions of off-shell state vectors for the N and 5 onto the
bare g-N and m.-A states, and are analogous to two-
particle bound state wave functions in potential theory.
We will also show that the production amplitudes can be
obtained by integrating over appropriate three-particle
amplitudes with these weighting functions. In analyzing
the production amplitudes we will obtain a separation of
them into their one-fermion irreducible (OFI) and one-
fermion reducible (OFR) parts, and in this connection we
will introduce one-to-three vertex functions (N~&—N
+ ~+~, &~~N+~+~, N~~b, +~+~, b~~A+~+~).

We will refer to these as production vertex functions.
By starting with an effective Hamiltonian that acts in

the subspace of bare nmN and n.mb. , states, we will show
that the three-particle amplitudes satisfy an extension of
the AGS equations which allows for three-particle interac-
tions. We will see that when the quasiparticle method
is applied to these AGS-type equations we are led back to
the exact two-particle equations of A, and furthermore
when the OFI three-particle interaction that appears in
the equations for the OFI three-particle amplitudes is
dropped, we obtain the approximate three-particle equa-
tions of A. This gives the meaning of the approximation
discussed above. With the help of the AGS equations, we
will obtain two expressions for the production vertex
functions. One of these expressions shows that they can
be obtained from the one-fermion, one-fermion —one-
meson irreducible three-particle amplitudes and the
dressed one-to-two vertex functions (N~~N+ z, b,+~N+g,
N~~4+m, dL~~b, +m. ), while the other gives them in terms
of the OFI three-particle amplitudes and the bare one-to-
two vertex functions.

The outline of the paper is as follows. Section II sum-
marizes the identities obtained in A which are essential to
the analysis presented here and serves to establish nota-
tion. Also, in this section we will derive a couple of new
identities that are useful in deriving the reduction formu-
las. These formulas will be derived in Sec. III, where we
will also obtain the relations between the AGS-type
three-particle amplitudes and the elastic and production
amplitudes. Here we will also obtain the separation of the
production amplitudes into their OFR and OFI parts, and
will introduce the production vertex functions. In Sec. IV
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II. IMPORTANT IDENTITIES

We begin by summarizing some of the identities
developed in A so as to make the present work more self-
contained and to establish notation. We will also develop
a couple of new identities which will prove very useful in
the subsequent analysis.

We introduce projection operators labeled with sub-
scripts and superscripts. The projection operator P& in-
cludes the states denoted by the cover index p, while P~
includes everything but the states labeled by p. Obviously
the two are related by

P +PI'=1 .P (2.1)

These operators we combine with the Hamiltonian H to
define the operators

Hgp ——PgHPp, Hg~ ——PgHP~,

H', =P'HP, , H'~=P'HP~ .
(2.2)

We also define Green's functions or resolvents according
to

1G(z) =
z —H

PA,
G "(z)=

(2.3a)

(2.3b)

we will derive the ASS equations for the three-particle
amplitudes and show how we get back to the results of A
by using the quasiparticle method. The two alternate ex-
pressions for the production vertex functions are also ob-
tained in this section. Section V gives a brief' discussion
of the results and suggestions for future work.

It will be necessary to refer to several of the equations
given in A. Their numbers will always be prefixed with
an A, e.g., A(4.86).

Pp
gp(z) =

z HI—(z)
(2.7)

where

HI(z) =Hpp+H pr G r(z)H r
p . (2 8)

H =Ho+H (2.9)

where Ho is the free Hamiltonian and Hi contains the in-
teractions We. introduce a set of operators, a (p) and
a (p), which create and annihilate bosons labeled with the
cover index p. These operators satisfy the commutation
rule

[a (p},a'(q}]=5(p,q), (2.10)

with their other commutators zero. Here 5(p, q) is a prod-
uct of Dirac delta functions and Kronecker delta symbols.
We assume that

[Ho, a "(p)]=co~a "(p),

[H„a (p)]=J(p),
(2.11)

(2.12)

We see that g p(z) is a resolvent for the pseudo-
Hamiltonian H&(z). The first term in (2.8) is simply the
true Hamiltonian II projected onto the subspace p, while
the second term describes a transition from this subspace
to the subspace of P"=P P~, p—ropagation there ac-
cording to the Hamiltonian H~~, and return to subspace
P. By multiplying (2.7) by z Hp(z},—we see that g~(z) is
the solution of an equation in which all of the operators
act in the subspace P. Usually this type of equation is
only of formal value but here we will see that it leads to
useful results.

The results presented so far do not depend on the
specific nature of the Hamiltonian. We now assume a
quantum field theory of the form

Gg(z) =

(2.4a)

Pg
(2.3c)

Hu.
where z is a complex parameter.

We will frequently decompose a projection operator P
into orthogona1 projection operators Pp and P~ according
to

a(p)P, =P.a(p) . (2.13)

where co~ is the energy of meson p, and J(p) is an opera-
tor which depends only on fermion creation and annihila-
tion operators, and hence commutes with a (p) and a (p).

We now assume that P& and P are two projection
operators related by

which by (2.1) implies that

P~=1—P —Pp ——P P . (2.4b)

Here, for example, if P& projects onto an n-meson —one-
fermion subspace, P projects onto an (n —1)-me-
son —one-fermion subspace. It is shown in A that

It is shown in Sec. II of A that

G (z) =Gr(z)+[1+6 ( )Hz]g~( )[1z+HG (z)], (2.5)

where

a (p) G~(z)'= G (z —~~ )[a (p)+J (p)Gp(z)],

G~(z)a (p)=[a (p)+G~(z)J(p)]G (z —co&),

(2.14a)

(2.14b}

g p(z) =PpG (z)Pp . (2.6)
which when combined with A(3.8) and A(3.7) leads to the
important identity

These equations relate the resolvent G (z), which acts in
the subspace of P, to its projection, gp(z), onto the
smaller subspace p, and to a resolvent Gr(z), which acts
in the subspace of P~, obtained by removing Pp from P~.
The operator g~(z) can also be written in the form

a (q) Gz(z)a t(q') =G (z —co~ )5(q,q')

+G (z —coq)Qp(q, q';z)G (z —coq ),
(2.15)
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where

Qp(q, q';z) =a (q')(z —coq coq—H)—a (q)I ~ t I

+J (q)G (z)J(q') . (2.16)

We assume that

a (p)P =P,a (p) . (2.17)
Using this, (2.15), (2.16), (2.14), (2.11), (2.12), and (2.10), it
is straightforward to show that

a (p)a (q) G&(z)a (q') =G, (z —co& —co& ) I (z —co& —co~ —H)[a (p)5(q, q')+a (q)5(p, q')]

+a (q')(z —co& —co& mz H—)a (p—)a (q)+J (q)a (p)G&(z)J(q')

+Jt(p)a (q) Ge(z)J(q') I G (z —coq ) . (2.18)

We will see that the identities (2.15) and (2.18) make it
possible to relate bare matrix elements of the Green's
functions to physical scattering and production ampli-
tudes.

III. FEW-PARTICLE GREEN'S FUNCTIONS

one-fermion subspace according to

P. =Q If&(f I

.
f

The states with mesons and a fermion are denoted by

I
pp'p". f & =a'(p)a'(p')a'(p")

I f & .

(3.4)

(3.5)
We assume that our field theory Hamiltonian describes

the interaction of P-wave pions with a static nucleon (N)
and a static delta (b, ) through the virtual processes

The projection operator for the one-meson —one-fermion
subspace is given by

N

N~~h+m,

4~~N+ m,
(3 1)

P, =X f Ipf&dp&fp I, (3.6)
f

where it should be noted that I dp is actually a shorthand
for g „f dpp . For notational purposes we also de-
fine

The details of the various vertices involved are irrelevant
for the subsequent development. A specific version of the
type of model we have in mind is given in Ref. 9.

In a fleshed out notation the meson annihilation opera-
tor would be given by a „(q) where q is the magnitude of
the meson's momentum, and m and n are the z com-
ponents of its angular momentum and isospin, respective-
ly. Here we let q be a cover index for q, m, and n, i.e.,
a „(q)~a(q). The product of delta symbols that appear
in the commutation relation (2.10) are abbreviated accord-
ing to

5(p —p')
5 5„„~5(p,p') . (3.2)

Half)=Mf 'If), (3.3)

and are used to construct the projection operator for the

In A the index f was used to distinguish N and b„and the
cover index r was used for the z components of the fer-
mions' angular momentum and isospin. Here we will use

f as a cover index for f and r, i.e., (fr)~f.
The bare fermion states satisfy

Po ——0,

P =1—Po ——1.
In analyzing three-particle Green's functions we will

need two-particle Green's functions defined by"

Gff (p,p';z)=Zf (fp I
G'(z)

I
p'f')Zf (3.8)

where here and in'all of the equations in which it appears

e=O, a . (3.9)

When e=O all intermediate states are allowed, while the
single fermion states are excluded when e =a [see (2.3b),
(2.1), (3.7), and (3.4)]. Here ZN is the wave function re-
normalization constant for the nucleon, and gives the
probabBity of finding a bare nucleon in the physical nu-
cleon. In principle Z~ can be any real, positive number.
A practical choice for it is given in Sec. IV of A.

VVe will need to know the-result of acting on a one-
meson —one-fermion state

I pf ) with G'(z). If in (2.5) we
choose a=e, P=s, y=es, and use (2.6), (3.6), (3.8), and
the fact that P "Ho

I pf ) is zero, we find

G'(z) =G"(z)+ g f I Pf(p;z))dp Gff (p,p;z)dp (Pf (p';z*)
Iff'

where

I df(p'» & =[I+G "«)Hi]
I pf &Zf"

(3.10)

(3.11)
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Using the fact that P"
l pf ) is zero, we obtain from (3.10) and (3.11) the results

G'(z)
l pf &Zf

' y——J l
Wf'(p', z) )dp'Gf f(p', p;z),

f'

Zf (fp l
G'(z) = g I Gff (p p';z)dp'( pf (p';z' )

f'

We now define three-particle Green's functions by

Gpf'(pq;p'q', z)=Zf '"&fpq
l
G'(z)

l
q'p'f'&Zf '",

where here and in all of the equations in which it appears

g =O,a, as .

(3.12a)

(3.12b)

(3.13)

(3.14)

We not«hat when g =as, one-fermion, and one-meson —one-fermion intermediate states are excluded. If jn (2.15) we let

Pz Pg and —u—se (2.13), (3.8), and (3.12), we obtain

Gf~ (pq;p'q';z)

= Gff'(p, p';z —~~@(q,q')+ g I Gff-(p, p";z —co~)dp" Ug-f (p "q; p'"q'; z) dp"' Gf-, f(p"',p';z —~ ),
fllf tll

where

Upj (pq;p'q';z) = &pf(p;z* co&)
—

l

Qg(q, q';z)
l pf'(p z coq ) ) .

(3.15)

(3.16)

Here, and wherever g and e appear in the same equation,
they occur in the combinations

Ugf (pq;p'q';z)

—(pf (p;z' —co~ )
l
fig(q, q';z)

l pf (p', z co ) )—
(g,e)=(0,0),(a, O), (as, a) . (3.17)

(3.21)

l~f(p ')&= l6(p»&+ X lf'& (o)
f f(p)Zf

fI Z —mf". '

where we have defined

(3.18)

off'(p») = &f l
J (p)

l

f'&,

off'(P)=off (P) .

(3.19a)

(3.19b)

The functions given by' (3.19) are bare vertex functions
and were introduced in A in a slightly different way. If
we flesh out the notation we can write

gf f (pp)=yff (p)(fry
l
f'r'), p=(mn), (320)

where (frp,
l

f'r') is a product of Clebsch-Gordan coeffi-
cients defined by A(4.28). In A, we called yf~f'(p) the bare
vertex function. It has the virture of depending only on p
and the fermion labels N and h. If in (3.16) we consider
(g, e) =(as,a), and use (2.16) and (3.18), we find that

We will see that when the quantities Ugf are integrated
with functions analogous to bound state wave functions,
we obtain the elastic scattering amplitudes or pieces of
them. Keeping this in mind, it is not difficult to see that
(3.15) is a relation of the type used by Alt, Grassberger,
and Sandhas to define three-particle transition operators.

We will now show that when g =as in (3.16), we can
use e=O on the right-hand side of the equation. Accord-
ing to A(4.78), (3.11), and (2.12), we have

where

l
F(z)) =[1+6'(z)Hi]

l f )Zf
It is shown in A that

l
N(MN+ie)) is the physical nu-

cleon state. Using (3.22), A(4.66), and A(4.29), we have

lF(z)) =
l f)Zf '+ g I l pf (p', z))dp'Ff (p';z), (3.24)

f'

with

Ff (p', z) =Zf (f'p'
l
F(z)), (3.25a)

—I f'(z cop')gf'f (p', z)

Here I f(z) is a renormalized fermion propagator which,
according to A(4.5) and A(4. 15), is given by

I-f(z)5ff' Zf ' (f l
G(z) lf')Zf-'—", (3.26)

(3.25b)

while off (p;z) is a dressed vertex function defined by

off'(p;z) = (F(z —co& )
l
J (p)

l
E'(z) ), (3.27a)

where we have used A(4.26a). We also define

off'(P;z) =g f(P;z* ) (3.27b)

We now wish to relate the Ugf 's to the elastic scatter-
ing amplitudes. In order to do so it is convenient to
derive an alternative expression for the

l
pf)'s. Accord-

ing to (3.11) and A(3.6b), we can write

l
pf(p;z)) =[a (p)+G"(z)J(p)]

l
E(z —~~)), (3.22)
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f —
&( )Z

—& /2

+ ~f) f z f
z f

(3.29)

If we flesh out the notation we can write

gfp f'I'(pp;z) = )pff'(p, z col&—,z)(fry
~ f'r' ), p = (mn )

(3.28)
In A we called yff the dressed vertex function. It is in-

dependent of the quantum numbers r and p.
According to (3.25a) and A(4. 17), Nf (p;M N+i e) is pro-

portional to the projection of the physical nucleon state
onto a one-meson —one-fermion state. %e will see that it
plays a role analogous to a two-particle bound state wave
function. Of course, its norm is not one unless all of the
other Fock space components vanish.

If we put (3.18) into (3.24), use (3.25b) and the ortho-
gonality relations for the Clesbsch-Gordan coefficients in
off' and off, as well as A(4.33), A(4. 11), and A(4. 15), we
find

F(z)) = y f I yf(p';z))dp'Ff(p';z)
f'

We note that I N'(MN)=0, i.e., the nucleon propagator
has a pole at the physical nucleon mass, therefore the
second term on the right-hand side of (3.29) vanishes
when f=N and z =MN. According to A(4.38), A(4.50),
A(4. 19), and (2.16)

=(F(z*—co )
~

0"(q,q', z) iF'(z —co )) . (3.31)

Here the Xff 's are off-shell extensions of the pion-
nucleon elastic scattering amplitudes, while the Xff 's are
their one-fermion irreducible parts. ln A it is shown that
these off-shell atuplitudes satisfy Lippmann-Schwinger
equations with potentials given by (3.31) and propagators
given by I f(z —co~ ). According to A(4.40), (3.28),
(3.27b), and A(4.27), the two types of amplitudes are relat-
ed by

Xff' (q, q';z)

=(F(z —co&) Q (q, q';z)
~

F'(z coq —)), (3.30)

Vff (q, q';z)

(3.33)

(3.35)

where

I

Xff'(q, q, ;z) =Xff'(q, q', z) + g off-(q;z)I f-(z)gf-f (q';z) (3.32)
fII

If we put (3.29) into (3.30) and (3.31) with e =a, and use (2.16), P'J (q)
~
f ) =0, as well as (3.21), we find

Xff (q, q';z) = g I Ff (p ",z* co~ )dp "U—f f (p "q;p '"q ',z)dp ' "Ff ~ (p "';z —co& )

fllf III

Vf'f (q&q'&z)= g f Ff*-(p "&z*—io )dp "Uf"f- (p"q&p"'q', z)dp"'Ff- (p"';z —co ) . (3.34)
fIlf It&

Equation (3.33) is also true if we replace the index a by 0 and assume that we have the on-shell relations
z =MN+co~+ie, f=f'=Nr, and q =q'. Off shell, additional terms come in. These equations are important in that
they relate the two-particle amplitudes and potentials treated ip A to the three-particle quantities introduced here.

We now obtain the relation between the three-particle Careen s functions defined by (3.13) and the production ampli-
tudes. In order to do this we make the identifications Pz Pg, P =P——, P,= 1 in (2.18) and use A(4. 18), (3.12a), (3.8),
A(4. 19), (3.17), (3.18), and P 'J(q')

~ f ) =0. We find

Gf~ (pq;p'q', z) = I f (z —po —io ) g f Yf~ (pq;p "q',z)dp "Gf' f (p",p';z —co~ ),
fII

f (pq'p'q"z)=rf '(z oo, &, )5ff [5—(p,p—')5(q, q')+5(q p')5(p, q')]

+(F(z*—Io~ —io, )
~
[a(p)a(q)+ J (q)a(p)G (z)+J (p)a(q)G (z)]J(q')

~ pf (p';z —~, ) ) .
From (3.25b), (3.36), and (3.29), it follows that

BJf' (pq; q ';z )—:g f Ygf (pq;p "q '; z )dp "Ff"(p z coq ' )

ftl

=off (p;z —co&)5(q,q')+off (q;z loz)5(p, q')—
+(F(z*—Ioz —co~)

~

[a(p)a(q)+J (q)a(p)G (z)+J (p)a(q)G (z)]

(3.36)

(3.37a)

XJ(q')
i
F'(z —coq ) ) —

~

f') (0)z —co —Mfq

(3.37b)

It should be noted that the second term in the second square bracket vanishes when g =a,as, or when g=0, f'=N, and
z =MN+co~ +i@ Using A(4. 1.7) and Eq.' (l4) of Ref. 31, it is straightforward to show that

BNN'(pq'q 'E+'e)= —(Npq I
J(q )

I
N )+, on shell, (3.38a)

where on shell means

E =MN+co&+coq ——MN+coq (3.38b)
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Here
I
N )+ is a physical nucleon state, and

I
Npq ) is an out state of two pions and a nucleon which is defined by Eq.

(14) of Ref. 31. Using the results of Sec. II of Ref. 31 it is straightforward to show that (3.38) gives the amplitude for
wq +N' —+~p+m.q+N.

From (3.37), A(4.24), and (3.27), it follows that the relation between Bff and Bff 1s given by

I f (z —coq )Zf
Bff (pq;q';z) =Bff (pq;q', z)+ g off (pq;z)I"f"(z) gf f (q';z) —(F"(z )

I
J(q')

I

f' & (0)fIl Z —e —Mf

with

(3.39)

(3.40b)

and

ff'(pq z)= &F(z top to&) I
[J (q)a (p)+J (p)a (q)] I

F'(z)), (3.40a)

= (F(z —cop —coq)
I
Jt(q)G(z —cop)Jt(p)+ Jt(p)G(z —coq)J (q) I.F'(z))

where the second form of off is obtained by using A(4. 19). We note that (3.39) and (3.40) are analogous to (3.32) and
(3.27), respectively W.e will refer to off (pq;z) as the production Uertex function

According to (2.14a), (3.40), and A(4. 18), we have

& fpq I
G(z)

I
f') =Zf I f(z co& —to&)off.(pq—;z)I f (z)Zf'," (3.41)

off'(pq;z) = I f '(z to~ co~——)Zf ' (fpq I

F'(z) ) (3.42)

(3.44)

where

Aff'(qp ~p 'z) = (Ijflf (q;z* —cop )
I

J (p)
I
6'(p';z) ) (3.45)

We note that according to (3.18) and (3.11), we can replace (pf I
in (3.45) by (pf I

. Using this, as well as (3.22), A(4. 19),
(3.29), (3.21), and (2.16), we find that the quantity defined by

Af~ (pq;q', z)—:g I U$y-(pq;p "q',z)dp "Ff-(p";z —co& )

fJl

(3.46)

thus the production vertex function is related to a bare matrix element of the complete resolvent and to the projections of
I
F(z)) onto the two-meson —one-fermion states. Clearly (3.42) is analogous to (3.25). Putting (3.24) into (3.42) and us-

ing (3.18), we obtain

off'(pq;z) = I f '(z —co& —co& )Zf ' g f (fqp I Pf (p";z) )dp "Ff-(p";z) (3.43)
fII

We note that according to (3.22) and A(4.85)
I pf (p;z) ) is the same as the vector

I p(f,p;z) ) in A.. Keeping this in mind

and using A(4.88), (3.25), and (3.12b), we find

Zf '
(fpq I pf (p';z)) =I. f(z —co~ co~)off (q, z——co~)5( p,

p') +g I Gf'f (q, q";z co~)dq —"Af"f (q"p;p';z),
fII

agrees with (3.45) when g =as. In comparing results ob-
tained here with those of A, it should be noted that
Aff'(pq;q', z) is there written as [see (4.87)] Aff'(q, p;q', z).

We will see in Sec. IV that the combination of (3.43),
(3.44), and (3.46) leads to useful relations for the produc-
tion vertex function. There we will derive a set of equa-
tions for operators that act only in the two-meson —one-
fermion space. Matrix elements of these operators lead
back to the entities encountered in the present section.

IV. THREE-PARTICLE EQUATIONS

We begin by introducing a projection operator for the
two-meson —one-fermion subspace, as well as three
pseudo-Hamiltonians that act in this subspace. %'e write

P =X I lpqf& &fqpl
f 2

(4.1)

and

Hf (z) =P, [Ho+ H ~
Gg'(z)H

~ ]P, , (4.2)

where we have used (2.8), (2.2), and (2.4). In writing (4.2)
we have used the fact that we are dealing with a quantum
field theory Hamiltonian for which P,H ~ P, =0 and
P'HoP, =O.

We are going to use (2.7) to derive integral equations
for the three-particle Green's functions defined by (3.13).
To this end we write

Zf"&fqp I
z —H((z)

I

p"q'f')Zf" =I f '(z ~p ~q@ff (p p" +(q q') Vff'(p p "z ~—q)@q q')

Vff
' ( q, q ';z —to~ )5(p,p ') —Vlf (pq;p 'q ';z) + (p '=.q ') (4.3)
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G "(z) 6"'(z—)=P G"(z)P

It is easy to verify that

Gt'(z)=G (z)+6~(z)H, G (z),
where

(4.4)

(4.5a)

where I f and Vff are given by (3.26), (3.31), and (2.16).
The symbol (p'::q') represents the adding on of all of the
previous terms with p' and q' interchanged. The quantity
Vlf�' is a three-particle potential, and, in a sense, (4.3) is
its definition. Of course, it is necessary to verify that it is
truly such a potential, i.e., it must not contain delta func-
tions such as appear in the other terms. This can be done
by using the techniques employed in A for analyzing the
two-particle potentials. It is important to note that (4.3)
implies that Vlf (pq;p'q', z) is invariant under the inter-
changes p = =q or p'= =q'.

We shall now show that V3ff' —V3ff" In (2.5) and
(2.6), we identify P =P", Pts P„P——r=P"' and use
HOP, =P,HoP, and HIP, =(P, +P, )HIP, to show that

PP
G~o(z) =

z —P~HpPI'

If we use this in (4.4), we find

6"(z)—6 '(z) =P,GO'(z)P, .

Prom (2.12), (3.6), and (3.19), it follows that

(4.5b)

(4 6)

P,HI
I pqf &= g [ I

pf'&gf'f(q)+
I
qf'&g f'f(p)] ~ (47)

f'
Now if we use (4.3) and (4.2) to calculate V3ff V3ff
find with the help of (3.17), (4.6), (4.7), (3.20), A(4.79), and
A(4.76) that

V3ff'(pq p q ) V3ff'(pq p 'q (4.8)

Thus we have shown that there are only two three-particle
potentials defined by (4.3), i.e., V3ff' aIld V3ff" It is not
difficult to show that V3ff' can be obtained from V3ff' by
deleting all intermediate processes in which only one fer-
mion is present, so V3ff is one-fermion irreducible.

According to (2.7), (2.6), (4.1), (4.3), and (3.13), we have

y f [rf (z cop coq)5ff'5(p, p")5(q, q")—Vff-(p, p";z coq)5(q,—q") Vff-(q, q—";z—co&)5(p,p")
fII

Vlf' (pq;p "q";z)]dp "dq "Gg-f (p "q";p'q';z) =5ff [5(p,p')5(q, q')+5(p, q')5(q, p')] (4 9)

where we have also used the invariance of GJ f under the
interchange p"==q". We will now reformulate (4.9),
which is our basic three-particle equation, as an operator
equation in which the operators are to be thought of as
the type of entities which appear in three-particle poten-
tial theories. To this end we introduce free three-particle
states

I pqf & and &fqp
I

where a=1,2. In these states
pion a is labeled by q, while pion P&a is labeled by p. In
contrast to pock space states, the order of the pion labels
is significant. We have

lpqf&. = qpf&t3, a&P.
We assume that these states are normalized so that.&fe p'q'f' &.=5ff'5(Ptp

& f lpqf& dpdq &fqp I
=1, ,

f
and define operators according to.&fe

I
Go(z) p'q'f'&.

(4.10)

(4.11a)

(4.11b)

= rf(z —co& —coq)5ff'5(p, p')5(q, q'), (4.12a)

.&fe
I
v:(z)

I

p'q'f'&.

—Vff'(p, p', z —coq )5(q, q'), a = 1,2

&fe I
vf( )

I
p'q'f'& =vie'(Pq P'q'»

u&fqp I
Gis(z)

I
p'q'f'&a=Gtsff (pq;p'q';z) .

(4.12b)

(4.12c)

(4.12d)

Here we are using the standard three-particle notation in
which, e.g., VgI(z) is the potential for subsystem 1 which
consists of pion 2 and a fermion. The operator Gf(z) is
defined by

6 (z) = [6o '(z) —V (z)]

where

3

V (z)= y V ( ) .
a=1

(4.13)

(4.14)

According to (4.10)—(4.14), Gfff' obeys an equation just
like (4.9), but with only the first term on the right-hand
side. Using (4.10) we have

2

Ggy(pq P'q', z)= g t3&fqp I
6'(z) P'q'f'&

a=1
2

= g tt&fqp I
6'(z)

I
p'q'f'&. ,

P=l

(4.15a)

(4.15b)

where (4.15a) can be verified by substituting into (4.9), and
(4.15b) follows from the fact that Gf(z) must be sym-
metric in the pion labels, 1 and 2, which implies that

Gtff'(Pq q P ) Gfff'(e P'q', ) '

It is convenient to introduce

GII(z) =Go(z),

Gg(z)=[60 '(z) —Vg(z)] ', a=1,2, 3,

(4.16)

(4.17a)

(4.17b)

where (4.17a) is only for notational convenience, while
(4.17b) defines resolvents for three-particle systems in
which only one of the potentials act. If we write out the
integral equation that follows from (4.17b) when a=1,2,
we obtain an equation like (4.9) but with, only the first two
terms in the square bracket on the left-hand side and the
first term on the right-hand side. Upon comparison with
A(4.51), we find
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&fqp I
G'(z)

I
p'q'f' &.

—Gff' (p,p';z —co~ )5(q, q'), a = 1,2 . (4.18)

Following Alt, Grassberger, and Sandhas, as well as
Kowalski, we introduce transition operators Usp (z) by

3
UgP (z) =5P GP '(z)+ g 5PrTsr(z)GP(z)Ugr (z),

y=1

(4.22a)

where

Gf(z)=5p Ggp(z)+Ggp(z)UL(z)Gg(z); 13,a=0, 1,2, 3 .

(4 19) and

6p ——1 —6p (4.22b)

If we take matrix elements of this equation when P=1,2
and a=1,2, and use (4.18), (4.lib), and (4.15), we find
upon comparison with (3.15) that

Tgr(z) = Vgr(z)+ Vsr(z)Gsr(z) Vgr(z),

= Vgr(z)+ Vsr(z)Gp(z)Tgr(z), y=1,2, 3 .

(4.23a)

(4.23b)

Ufy (pq;p'q';z)= g p&fqp I Up. (z)
I
p'q'f'&. , (420)

P/a= 1

where +pi &
means gp, or g, . If we take matrix

elements of (4.19) with P=O and a=1,2, and use (4.17a),
(4.12a), (4.18), (4.11b), and (4.15), we find upon compar-
ison with (3.35) that

2

P/a=1
(4.21)

Thus we have shown that the matrix elements of the tran-
sition operators taken with respect to the free states lead
to the quantities from which the scattering and produc-
tion amplitudes can be calculated.

Et can be shown ' that the transition operators de-
fined by (4.19) satisfy the equations

Tr(z) Tr (z)+Tr (z)

it can be shown that

(4.25)

If we take matrix elements of (4.23a) when y=1,2, and
use (4.12b), (4.11b), and (4.18), we find upon comparison
with A(4.53), A(4.57), and A(4.52) that

&fqp I
T'( ) Ip"q'f'&,

Xff'(P,p';z —~, )5(q,q'), y = 1,2, (4.24)

thus the operators Tsr (z) with y = 1,2 are simply related to
the two-particle, off-shell scattering amplitudes.

We now consider solving (4.22) with g =a by the AQS
quasiparticle method. ' If each of the transition opera-
tors Tr(z) are split into two parts according to

3

Up (z)=Up (z)+ g Upr(z)Gp(z)T'r" (z)Gp(z)Ur (z), (4.26)

where

Up (z)=5p Gp '(z)+ g 5prTr '(z)Gp(z)Ur (z), (4.27a)

2

=5prGp (z)+5p3T3 (z)53~+ g [5pr+5p3T3 '(z)Gp(z)53r]Tr '(z)Gp(z)Ur (z) . (4.27b)
y=1

According to (4.24) and (3.17), Tr(z). with y= 1,2 is related to the complete off-shell amplitudes Xff' which ln turn can
be split into their one-fermion irreducible and reducible parts by (3.32). These splittings suggest that we define

Tr"(z)= X f Ikf(z —mq)q)rdq I f(z ~, )r(qkf—(z* ~, ) I, y=1,2
f

=0, y=3, (4.28)

~here

r(fqp I
gf'(z)q ) off'(P z)5(q q ) .

F«m (4 25), (424), (428), (4.29), (3.27b), (3.32), (4.8), and (4.23b), it then follows that

Tr"(.) = Tr'(z) .

Upon comparing (4.27a) with (4.22), we find that

Up (z)=Up~(z) .

If we use (4.lib), (4.12a), (4.29), (3.27b), (3.25), (4.20), (3.33), and (3.34), we can show that
2

Xff '(q, q';z) = g p( qgf (z*—co& )
I
Gp(z) Uj (z)Gp(z)

I gf (z —co&')q
' )

P/a=1

(4.29)

(4.30)

(4.31)

(4.32)



32 THREE-PARTICLE EQUATIONS FOR THE PION-NUCLEON SYSTEM 2033

2

Vff'(q«q «z) — g p( qgf (z coq )
~

Gp(z) Up~ (z)Gp(z)
~
gf'(z coq')q )+

P/a= 1

(4.33)

These relations provide the connections between the three-particle formalism presented here and the two-particle ap-
proach in A. In particular, if we put (4.28) into (4.26) and use (4.31)—(4.33), we find

Xff'(q, q', z) = Vff (q, q', z)+ g f Vff (q, q";z)dq "If (z coq—)Xf f (q",q';z) (4.34)
fII

which could also be obtained from A(4.58), A(4.53), and A(4.52).
If we use (4.11b), (4.12a), (4.29), (3.25), and (4.20), we find upon comparison with (3.46) that

Afy (pq;q', z)= g p(fqp ~ Up (z)Gp(z)
~ gf (z coq —)q')

P/a= 1

From (3.34) and (3.46), it follows that

Vff (qq';z) = g f Fg ' (p ";z —coq )dp "Af''f (p "q;q ',z)
fII

(4.35)

(4.36)

which can also be obtained from (4.33) and (4.35), with the help of (4.11b), (4.12a), (4.29), and (3.25b). Equation (4.36) is
the same as A(4.86). By combining (4.35), (4.31), (4.27), (4.29), (4.10), (4.11b), (4.30), (4.24}, (3.17), and (4.12a), we find

Ab (pq;q', z) =off (q, z —co~ )5(p, q')

+ g f Xff' (q, q";z co& )dq—"If (z —co& coq )Af"—f (q "p;q';z)+Rf (pq;q', z)
fII

where

(4.37)

Ryq(pq;q';z) = y p&fqp l
Tf(z)Gp(z) U$ {z}Gp(z}

I ef (z ~q )q'&
P/o. = 1

(4.38)

The quantity Rgf comes from the y =3 term in (4.27a). An alternative expression for it can be obtained by comparing
(4.27a) and (4.27b). Equation (4.37) agrees with A(4.91a). In A it was pointed out that a practical approximation scheme,
is obtained by neglecting Rff' in (4.37), for by so doing closed set of equations for the quantities of interest is obtained.
In A it was not clear what this approximation means. Here we see that according to (4.38), dropping Rff' in (4.37) is
equivalent to assuming that the effects of the three-particle potential V3'{z) are negligible. .

We now turn our attention to the production amplitudes and the associated vertex functions. According to (4.11b),
(4.12a}, (4.29), (4.21), (3.25b), and (3.37a), the production amplitudes are given by

2

Bfj"(pq;q';z)= g p(fqp
~

Up (z)G (z) ~gf(z co )q')—
P/a= 1

(4.39)

(4.40)

From (4.22) it follows that

By combining (4.26), (4.31), (4.28), and (4.32), we find the following relation between the g =a and g =as amplitudes,

Bf'f (pq;q', z) =Bf'f'(pq;q', z)+ g f Bf'f' (pq;q";z)dq'Tf (z coq )Xf' f (—q",q', z) .
fII

2

Utw (z)= g U~p (z) —Tf(z)Gp(z)U$ (z), cc=1,2 .
P=1

If we put this into (4.39) and use (4.10), (4.38), and (4.35), we obtain

Bf~ (pq;q', z) =A)~ (pq;q';z)+Any (qp;q', z) Rf& (pq;q';z) . —
If we combine A(4.37), (3.44), (4.37), and (4.42), we find

qp I yf'(p «z)) =If(z —co coq)Bff'—(pq«p «z)

which when put into (3.43) leads to the following expression for the production vertex function,

off {pq z) —y f Bff (pq p z)cip F f (p z)
fII

From A(4.59a), A(4.28), A(4.68), (3.20), (3.28), A(4.71a), A(4.52), A(4.53b), and A(4.53c), it follows that

off'(p;z) = $ f [5ff 5(p,p")+Xff-(p,p";z)I f-(z coJ«)]dp "Zf gf 'f (p—")Zf~

fIt

(4.41)

(4.42)

(4.43)

(4.45)
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If we put this and (3.25b) into (444), and use (4.40), we find that the production vertex function can also be obtained
from

off'(pq;z) = g f BII (pq;p ";z)I I (z co—-)dp "Z) ~ gI"I (p ")ZI"
fII

(4.46)

According to (4.44) and (3.25b), the production vertex
functions can be obtained from the one fermi-on, one
fermion one—mes-on irreducible production amplitudes,
the fermion propagators, and the dressed vertex functions,
while in (4.46) the one fermi-on irreducible production am-
plitudes, the fermion propagators, and the bare vertex
functions appear explicitly.

V. DISCUSSION

The main result of the analysis presented here is that
standard three-particle equations ' can be used to
describe pion-nucleon scattering when the underlying
model is one in which static fermions interact with pions
through the virtual processes (3.1). In fact, according to
(4.22) the standard equations ' can be used for the com-
plete three-particle amplitudes (g=0), the one-fermion ir-
reducible (OFI) amplitudes (g =a), and the OFI, one-
fermion, one-meson irreducible amplitudes (g =as). As
(4.24) and (3.17) show, the two-particle amplitudes that
appear in the kernels of the three-particle integral equa-
tions are the complete two-particle amplitudes when

g =O,a and their OFI parts when g =as. The g=O and

g =a forms of the three-particle equations (4.22) differ
only in the T matrices that arise from the three-particle
interactions Vf(z) [see (4.23)]. The interaction V3(z) is
the OFI part of V3(z), and V3 (z) = V3'(z).

The analysis shows that it is not necessary to solve
(4.22) for the complete three-particle amplitudes, as it is
possible to obtain everything of interest from the OFI am-
plitudes. For example, (3.39), (3.37a), (4.21), and (4.46)
show that it is possible to obtain the on-shell production
amplitudes from the g =a solutions of (4.27), the one-to-
two vertex functions, and the fermion propagators.
Furthermore, according to A, the one-to-two vertex func-

tions and the fermion propagators can be obtained from
the OFI two-particle amplitude, which in turn can be ob-
tained from the g=a solutions of (4.22) by means of
(4.32).

Of course, it should be kept in mind that the equations
are inherently nonlinear in that the solutions of the in-
tegral equations are needed to construct their kernels.
The usual way to deal with such nonlinearities is to solve
the equations by iteration. In A a case is made for a set of
linear integral equations whose solutions should give a
good first approximation. These linear equations are of
the type obtained with the isobar idea and produce
solutions which satisfy two-particle and three-particle uni-
tarity and have reasonable analytic structure.

In order for the system of equations to be closed it is
necessary to neglect the effects of the OFI part of the
three-particle interaction. It will be necessary to analyze
this interaction in some detail to see if its effects can be
included, at least in some approximate way. It may be
possible to calculate the three-particle potential by pertur-
bation theory starting from (4.3), which is its definition.
It should be emphasized that the effect of the OFR part
of the three-particle potential is taken into account in the
closed system of nonlinear equations.

As far as other future work is concerned, it will be
highly desirable to see if it is possible to develop three-
particle equations for the pion-nucleon system starting
from a covariant field theory. This is so for at least two
related reasons; the pions are relativistic over much of the
energy range of interest, and it is impossible to develop a
completely consistent theory in which relativistic pions
are mixed with nonstatic but nonrelativistic baryons. Pre-
liminary work indicates that the techniques developed
here and in A are adequate for this task.
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