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The NN-mNN equations that describe, in a unified framework, pion production in nucleon-
nucleon scattering, and pion-deuteron and nucleon-nucleon elastic scattering, have been extended to
include the N(939) and A(1232) on an equal footing. This extension, motivated by the quark models
of hadrons, has the bare N and 6 as three quark states with the same spacial wave function, but dif-
ferent spin isospin states. The final equations, referred to as the BB-m.BB equations, are consistent
with the chiral bag models to the extent that the ~NN, DNA, and mb 6 coupling constants and form
factors are related, and can be taken from bag models. The resultant equations satisfy two- and
three-body unitarity, and are derived by exposing the lowest unitarity cuts in the n-body Green s
function. These equations retain important contributions missing from the NN-mNN equations.
For pion production and N-N scattering they include the contribution of backward pions in the
NN~NA transition potential, which may overcome the problem of small pp —+m.d cross section as
predicted by the NN-mNN equations. For m-d elastic scattering they include an additional
NA~Nh tensor force that can influence the tensor polarization.

I. INTRODUCTION

It is well established that the constituents of nuclei are
quarks and gluons whose dynamics are described by quan-
tum chromodynamics (QCD). One therefore expects that
a traditional description of nuclei in terms of nucleons,
pions, . . . , should break down at some level. However,
at the energies of intermediate energy nuclear physics, the
need for quark degrees of freedom has not been unequivo-
cally demonstrated as most failures of the traditional
description can also be attributed to bad approximations,
missing mechanisms, etc. Thus current research in this
area has tended to separate into two different approaches.
One has been the continual refinement of traditional
models, the other has been in building quark models of
nucleons. In this paper we attempt, in some sense, to
amalgamate these two approaches by incorporating quark
model ideas (originating from chiral bag models) into a
multiple scattering theory for the NN-m. NN system.

There has been a very strong interest in the NN-mNN
system during the last few years. At intermediate ener-
gies, the observation of unusual structures in the measure-
ment of N-N and tr dpolarizatio-n observables has
presented a challenge for theories that use conventional
degrees of freedom (nucleons and mesons). ' One of the
most sophisticated of such theories has been the so-called
unitary model, named after the essential role that uni-
tarity plays in the derivation of the equations. The funda-
mental input to the model is the (undressed) m.NN vertex
function fo. Interactions are then generated through mul-
tiple pion exchanges and, typically, processes contributing
to four- or more-body unitarity are either approximated
with potentials or neglected. One is then able to obtain a
simultaneous description of the processes

N+N~m+6,
m+d~m+d,

N+N~N+N,
the amplitudes being given in terms of solutions of linear,
coupled integral equations —we shall refer to them as the
NN-mNN equations. The input into these equations is the
m.NN vertex function fo, the m-N t matrix (with the
nucleon-pole term removed), and the N-N t matrix below
pion production threshold. An important feature of the
equations is the fact that they obey two- and three-body
unitarity and they effectively sum the whole multiple
scattering series. Despite the sophistication of this model,
a number of calculations "have indicated the inadequa-
cy of the present model in describing, simultaneously, all
the intermediate energy data that is now available for the
reactions of Eq. (1). Unfortunately we cannot yet con-
clude that quark degrees of freedom are needed as some,
possibly important, mechanisms are missing from the
model. One of these is the "backward going pion" contri-
bution to the NN —+Nb. one-pion exchange (OPE) poten-
tial, illustrated in Fig. 1. In the unitary model, the 6 is
interpreted as arising from a multiple scattering of pions
from a nucleon. Thus the diagram with the backward go-
ing pion [Fig. 1(b)] contributes to at least four-body uni-
tarity and is neglected in the theory in order to obtain
tractable equations. The neglect of this mechanism may
be responsible for the small pp —+m.d cross sections found
in the latest calculations. ' ' Similarly the OPE contri-
bution to the N-b, force, illustrated in Fig. 2, is missing
from the model. This mechanism is expected to make a
significant contribution to the tensor force and therefore
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(a) (b)
FIG. l. Contributions to the one-pion exchange NN~Nb

potential. The forward going pion contribution (a) is included in
the NN-mNN equations, while the backward going pion contri-
bution (b) is not.

to the tensor observables in md —+m.d. '

Although we may argue that the best conventional cal-
culation is not yet available, we cannot escape our convic-
tion that the correct underlying description should take
into account the quark degrees of freedom. It is with this
in mind that we have endeavored to include some features
of quark models while retaining the elegant multiple
scattering formalism of the unitary model. Specifically,
we appeal to the success of chiral bag models' ' in
describing a baryon (B) in terms of confined quark wave
functions interacting with an elementary pion field. One
such model, the cloudy bag model (CMB) (Ref. 15) has
had particular success at describing the static properties
of the nucleon as well as m-N scattering in the P33 chan-
nel. ' ' This model, discussed briefly in Sec. II, leads to
the nucleon and delta being treated on an equal footing.
This means that, before pionic renormalization, the nu-
cleon and delta have related masses, wave functions, and
m.BB' vertex functions (illustrated in Fig. 3), the only pa-
rameter being the bag radius. It is evident that m-N
scattering in the P33 channel has contributions from both
the delta-pole term [Fig. 4(a)] as well as multiple pion ex-
changes [Figs. 4(b) and (c)]. In fact it has been found'
that the pole term provides the major contribution in the
CBM. This is in stark contrast to what was assumed in
the NN-mNN equations, namely that all the contribution
comes from processes like that of Fig. 4(b). It is therefore
tempting to start with the vertices of Fig. 3 in deriving the
unitary model. By doing this, we can effectively describe
that part of the scattering of two chiral bags that is due to
pion exchange. At a later stage, it might be possible to in-
clude into the formalism the contribution of overlapping
bags. There is another benefit from following this pro-
cedure in addition to the fact that it is consistent with a
successful quark model. Since the nucleon and the "ele-
mentary" delta of Fig. 4(a) are included on an equal foot-
ing, we obtain contributions from all the BB~BBOPE
[and two-pion exchange (TPE) (Ref. 18)] potentials.
Thus, in the new formalism, both the backward going
pion contribution to NN~b, N, Fig. 1(b), and the N-b,
force of Fig. 2 are included for the case of an elementary

FIG. 3. The (bare) vertex functions fNN, fqN, fNq, and f~q
included in the cloudy bag model. %e take these as the starting
point in developing the BB-EBBequations.

delta. If we accept that the elementary delta dominates
the contribution to the P33 resonance, then our new equa-
tions, which we shall call the BB-EBB equations, ' will
provide a way of including most of the major processes
missing from the NN-mNN equations.

To derive the new equations, we use a diagrammatic
method to classify all possible diagrams (contributing to a
given process) according to their irreducibility. ' Similar
methods have been previously used to derive the NN-
rrNN equations. Having specified the asymptotic
states (Sec. III), the procedure initially involves the dress-
ing of baryon propagators (Sec. IV) in order that we may
work with diagrams having amputated legs. This is im-
portant as otherwise there would be disconnected dia-
grams contributing to off-shell processes, and in turn, this
could lead to a disconnected kernel for our integral equa-
tions.

To classify our diagrams according to their irreducibili-
ty requires that we expose the (n —1) particle unitarity
cut before the n-particle cut. This is achieved in Secs. V
and VI for the two- and three-body cuts, and results in ex-
pressions for the 2—+2 and 2—+3 amplitude. In a similar
way we derive the 3~3 amplitude in Sec. VII. We can
then write the two-body equation for B-B scattering and
show that the potential includes not only one-pion ex-
change but also the full crossed two-pion exchange. In
Sec. VIII we proceed to write a set of coupled linear in-
tegral equations, the BB-n.BB equations, for the ampli-
tudes corresponding to the reactions in Eq. (1). To get a
computationally viable set of equations, we show in Sec.
IX how the antisymmetry is included in the case where
the m-B and B-B subamplitudes are separable. Finally in
Sec. X we present our concluding remarks.

IE. THE LAGRANCirIAN

In this section we want to consider Lagrangians that
describe a system of nucleons and pions, and that are con-
sistent with the quark description of the nucleon. In par-
ticular, we will consider Lagrangians that arise from the
imposition of chiral invariance on the MIT bag model.
Invariably, these involve the introduction of a massless
pseudoscalar field often associated with the pion. This
pseudoscalar field, which guarantees the continuity of the
axial vector current at the bag surface, is coupled to the

(b) (c)

FICi. 2. The one-pion exchange contribution to the N-5
force. It is neglected in the NN-m. NN equations.

. FIG. 4. Contributions to m-N scattering in the P33 channel
from the delta-pole term (a) and multiple pion exchange (b) and
(c).
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H =Ho+H(,
where

~o ——/ mB 'aBas+ f d ken(k)bkbk
B

(3)

(4)

Hi ——g d kt uiiB (k)aBaB bk+uiiB (k)aBanbk] . (5)3

BB'

Here aB (aii) is the creation (annihilation) operator for
the baryon B (B=N,b, ), and I ii

' is the bare mass for this
baryon. In Eqs. (4) and (5) bk (bk) is the corresponding
creation (annihilation) operator for the pion with
co(k)=(k +m )' . The form factors usii (k) for mB~B
are then given in terms of the quark wave function in the
bag.

The above Hamiltonian is similar to that used by
Chew-Low for p-wave m-N scattering. One difference is
the fact that the B~n.B form factors are present natural-
ly in the Hamiltonian and are related to the internal quark
structure of the baryon and size of the bag. The second
and more important difference is the fact that the nucleon
and b. resonance in their bare form have identical spacial
wave functions, and differ only in their spin-isospin wave
function. As a result of this, their form factors are relat-
ed. The final mass and form factor of the physical N and
6 are determined by renormalization and dressing.

There are several problems with the above Hamiltonian
which one would like to overcome. First, the baryons are
treated in the static approximation which might be valid
for low energy pion scattering but not above the 5 reso-
nance. More seriously is the fact that one cannot study
nucleon-nucleon scattering in this approximation, not at 1

GeV. This problem may be overcome if one boosts the
bag and its content when projecting onto the baryon
space. This has been partly accomplished for the MIT
bag, and more recently for the soliton bag, in calculat-
ing the electromagnetic properties of baryons. The second
problem is the uncertainty in the choice of coupling be-
tween the pion and the quark. In particular do we have a
surface coupling' or a volume coupling? Since we need

quark field. The coupling, which is nonlinear in the pion
field, ' is not uniquely determined by the requirement of
chiral invariance. The pion field in these models may' or
may not' penetrate the region inside the bag, depending
on the particular model under consideration. Since our fi-
nal results do not depend on the detailed form of the La-
grangian, we will only specify its general structure to be

I =IMn+L~+L
where LM&T is the Lagrangian for the MIT bag, and I.
is the Lagrangian for the free pion, which at a later stage
might include the pion mass (the presence of the pion
mass will break the chiral invariance of the Lagrangian).
The interaction Lagrangian II is taken (at this stage) to
be nonlinear in the pion field.

We can generate the corresponding Hamiltonian and
then project onto the baryon space. This has been
achieved in the case of the cloudy bag model' ' to get a
static Hamiltonian for the m-N system of the form

to truncate our interaction (if we are to have a renormaliz-
able theory), the final form of the coupling might rely on
the success of the numerical results for the different
models. Finally, in projecting onto the baryon states, we
have neglected the possible formation of six-quark config-
urations. At a later stage such configurations might be
included by the addition of extra terms in the Hamiltoni-
an.

III. CHOICE OF ASYMPTOTIC STATES

To discuss the coupling between the BB and EBB chan-
nels, we need to specify the quark structure of our asymp-
totic states in these two channels. For the BB part of the
Hilbert space we take

I
B(l),B'(2) &

=
I
(qqq)B, (qqq)B'&, (6)

where B,B'=N or h. In defining the. above space we have
not included exotic states such as I(qqqqq)B, (qqq)B'&.
We have also neglected the effect of antisymmetry be-
tween the quarks in the two bags. This antisymmetry is
expected to be important when the bags overlap, or at
short distances between the two baryons. Here again the
domain of importance of this antisymmetry will depend
on the chiral bag model used. If we restrict our baryon
space to the N and 6, then the baryon states are

I
B(1),B'(2) & =

I
a &,

where a = 1, . . . , 4 refers to the sequential order NN, Nh,
b,N, and hb, . We now turn to the irBB part of our space.
Here again we can write our space in terms of basic quark
configurations such as

I
B(l),B'(2),m.(3)&= I(qqq)B, (qqq)B', m. &,

where the pion is taken as an elementary field, i.e., Gold-
stone boson. Alternatively one could take the irBB part of
the space as

I
B(1),B'(2),n(3) & =

I (qqq)B, (qqq)B', (qq)n. &, (9)

where the pion is taken as a qq pair. In this case the pion
can achieve a size and its propagator can get dressed. We
also can include the coupling to the BBm where m is any
other meson (e.g., co,p, ... ); however, we restrict our
baryon to N or 6 and the mesons to the m.. In this case
our basis states are

and L =1, . . . , 4 in correspondence with Eq. (7). In the
above basis all operators reduce to 4)&4 matrices coupling
the different channels in our BB and m.BB space. There
are three distinct operators defined in the above basis for
which we need to write equations. They are

(a) T" the amplitude for BB~BB,
(b) E" the amplitude for mBB~BB, and
(c) M" the amplitude for n.BB~m.BB.

Here the superscript (i) indicates the minimum number of
pions in every intermediate state. The above operators are
defined in the BB-EBBspace. Our final equations will re-
late these operators to those defined in the m-B or B-B
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subspace of the EBB space. The corresponding operators
in the subspace will be indicated by t",f",and m" and
they correspond to BB=+BB,mBB~B, and mB —+mB am
plitudes. These in turn should be defined in terms of the
interaction in the chiral bag model.

IV. PROPAGATOR DRESSING

Before we can proceed to a full derivation of our equa-
tions, we need to carry out the dressing for the baryon
propagators. For the present, we will not include any of
the dressing for the pion propagators. Such dressings will
involve the quark degrees of freedom, and these are not
explicitly included at this stage.

The method used to derive our equations is based on
the classification of all the diagrams contributing to a
given amplitude, according to their irreducibility. The

method was first developed on the basis of old fashioned
time ordered field theory by Zachariasen, and used by
Thomas to study the contribution of real absorption to
m-d elastic scattering. More recently Thomas and Rinat
used the method for N-N scattering above the threshold
for pion production, and Afnan and Blankleider to derive
the NN-mNN equations. A similar method based on co-
variant field theory has been developed by Taylor, ' and
used by Avishai and Mizutani to derive the NN-mNN
equations. Both methods give the same final equations
for the N¹rNN system.

In the present paper we will follow the procedure used
by Afnan and Blankleider, yet maintain consistency with
the basic tenet of the covariant formulation of Taylor. '

We consider the Green's function, in momentum space,
for the process with n initial momenta pi, . . . ,p„, and l
final momenta qi, . . . , qi. For the case of scalar parti-
cles, this is given by 9

, e,pi, p. )(2~)'&'(pi+ +p. —qi —e)
=fd x, d x„d yi . d yiexp i g qkyk i g pkx—k &0~ T(P(yi) P(yi)P(xi) P(x„))

~

0&,

where P(x) is the field at the space-time point x. This Green s function can be taken as the sum of all topologically dis-
tinct connected diagrams that contribute to that process. The baryon propagators used to write a given diagram are ini-
tially undressed. We will show explicitly how this dressing is achieved. The corresponding amplitudes are obtained by
employing Lehmann-Symanzik-Zimmermann (LSZ) (Ref. 29) reduction, i.e., taking the amplitude for a given reaction as
the residue of the corresponding Green's function at the physical masses of all initial and final particles. For the case of
scalar particles the S matrix is given by

&qi qi'out Ipi p. 'in&=(2~)'&'(pi+ ' ' ' +p. —qi —' ' ' qi)&qi — e I

T Ipi (12)

where the amplitude T is given in term of the Green's function
I

&qi qi I Tlpi p. &=(—iZ '")'+"g (qk ~ )G (ql,
k=1

2 2
~ qi rp i ~ )pn ) II (pk

k=1
(13)

Here Z is the wave function renormalization, arid results
from the fact that tI)(x) is the interacting field. Since our
initial and final baryons may be composite (e.g., the deute-
ron), we einploy the generalization of LSZ to composite
particles. "

To classify the diagrams that contribute to a given am-
plitude we need to introduce some basic definitions: (i) A
k cut is an arc that separates initial from final states in a
given diagram and cuts k particle lines with at least one
internal line. An internal k cut is one that cuts internal
hnes only. In Fig. 5 we show a two- and three-particle
cut. (ii) An amplitude is said to be r irreducible if all dia-
grams that contribute to the amplitude do not admit any
k cuts with k (r. (iii) The last cut lemma states that for
a given amplitude that is (r —1) irreducible there is a
unique way of getting an internal r cut closest to either
the initial or final state for all diagrams contributing to
the amplitude. These definitions have previously been
used by Taylor' for the three-body problem, ' and by Av-
ishai and Mizutani for the NN-mNN problem.

where a,b, c,d =N, h, . . . , are the bare particles. The cor-
responding amplitude is given by &f(cd)

~

T
~

i(ab) &. All
the connected diagrams that contribute to this amplitude
can be divided into two classes:

(i) Those for which we can draw a self-energy contribu-
tion on one external leg (e.g., baryon a). These are of the
general form

&f(cd)
~

T ~i(ab)&d,' 'X, ,

P

o /
~ /

/ o

/ ~

FICi. 5. Example of internal two- and three-particle cuts.

To examine how the baryon propagator dressing arises,
let us consider the B-B reaction

a+b~c+d,
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d b

FIG. 6. Diagram that contributes to the initial state propaga-

tor dressing.

where d, and X, are the undressed propagator [e.g. ,(o)

d' '=(p —mo) ' for fermions] and the self-energy of
baryon a. This contribution is represented by the diagram
in Fig. 6.

(ii) The rest of the diagrams not included in the first
class. These we denote by (f(cd)

~

T
~

i(ab)). We now

can write

(f(cd)
~

T ~i(ab)) = (f(cd)
~

T
~

i(ab) )d,' '2,

+(f(cd)
~

T ~i(ab)) .

This result can be rewritten as

(f(cd)
/

T [i(ab))d,' '= (f(cd)
/

T /i(ab))d, , (17)

where d, is the dressed propagator for the baryon a, and
is given by

R=Zgd~

where d, is the renormalized pr'opagator with unit resi-
due at the pole corresponding to the physical mass of
baryon a. Here Z, is the wave function renormalization
constant for the corresponding baryon. We now can re-

peat this procedure for all the external legs to get,

Z' Z' 'd d (f(cd)
~

T ~i(ab))d d Z,' Z'

=d,' 'dd '(f(cd)
~

T
~

i(ab ) )d,' 'db ', (19)

where the amplitude (f(cd )
~

T
~

i (ab) ) has included in it
a factor of Z'~ for each external leg in agreement with

Eq. (13). Although we have applied this dressing pro-
cedure to the initial and final baryons, it can be extended
to baryons in intermediate states. To show this, we take a
two-particle cut of the diagrams belonging to (f ~

T
~

i ) in

such a way that the final result is of the form,

(f ~

T
~

n(ab))d, ' 'db '(n(ab)
)
T

~

i ) .

Using the result of Eq. (17) to the left-hand part of this
expression will allow us to replace

~
n(ab))d, ' 'db '

by

~

n(ab)) d, db. In this way we have completely replaced
the undressed propagators by the dressed ones.

Although the amplitudes (
~

T
)
i ) and (f ~

T
~

i ) are
identical, up to factors of Z,', on the mass shell (assum-

ing zero mass shift in the renormalization), the latter has
the added advantage that it leads to integral equations
with a connected kernel. This is most clearly illustrated

by the fact that any two-body cut of a diagram belonging

to (f ~

T ~i ) leads to two connected diagrams. In the
next section we will use this feature in conjunction with

the last cut lemma to derive integral equations for

(f ~

T
~

i ). In deriving the above result we have assumed
a covariant structure for our diagrams (i.e., the d's are
Feynman propagators); however, the procedure is similar
to the nonrelativistic formulation. Although in the non-

relativistic case questions regarding the consistency of the
renormalization procedure can be raised, by working
with d, , the relativistic propagator with unit residue, this
problem is overcome. To obtain three-dimensional equa-
tions we could carry out the Blankenbecler-Sugar reduc-
tion on products of d, .

The above procedure of replacing d,' ' by d, in the BB
part of the Hilbert space can be extended to the EBB
space. The degree to which this dressing is included will

be determined by the level at which we truncate our final
equations. In our case, this truncation is imposed by
strict application of unitarity. In the ~BB Hilbert space
the dressing includes states with one more intermediate
pion than is the case in the BB Hilbert space. Thus, if we

need only two- and three-body unitarity, then the baryon
in the BB Hilbert space mill have dressing that contributes
to three-body unitarity; however, in the ~BB Hilbert space
the lowest baryon dressing contributes to four-body uni-

tarity and might therefore be neglected.
In the lowest order to the MIT bag model, the nucleon

and b have the same mass. The fact that the one-gluon

exchange is spin dependent explains some of the observed
mass splitting. However, for the b, to acquire a width for
the decay into ~-N one needs to carry out the dressing. In
this way b. production is more of a virtual process. From
this point on, all our baryon propagators are dressed and

have unit residue. These will be denoted by d, to simplify

the notation. Similarly, the amplitude (f
~

T
~

i ) will be

written as (f ~

T
~

i ) without the hats.

V. T%'0-BODY UNITARITY

To expose n-particle unitarity we need to use the last-
cut lemma on the (n —1) irreducible class of diagrams.
Thus the logical starting point is to take the lowest irredu-
cible amplitude for a given reaction. For B-B scattering
we commence with the class of one-particle irreducible di-

agrams. Since we have baryon number conservation, and
we will not include any antibaryons, we will label our ir-
reducible class of diagrams by the number of mesons in
intermediate states. We now can divide the diagrams that
contribute to BB—+BB into two classes.

(i) Those with at least one pion in every intermediate
state (i.e., two-particle irreducible). These we denote by
y(1)

(ii) Those diagrams not belonging to (i). These are
two-particle reducible, and can be written, using the last-
cut lemma, as

y( & )6 (o)y (0) y(0)6 (o)y( & )

Here G' is a 4&4 diagonal matrix of BB propagators,
i.e., the diagonal elements are of the form d, db
(a,b =N, b ). We observe in passing that G' ' is one-
particle irreducible, and has zero number of pions, which
is what the superscript indicates. Because our baryon
propagators are dressed, both T'" and T' ' have contribu-
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where Tl' ——(1
~

T"
~

m). In matrix form, the above
equations are

y(o) y (&)+y(&)G(o)g(0)

y (&)+ y (0)G(0)y(1)

By defining the 2&&2 matrices

dN(i) 0
d(l)=

dl, (i) (23)

we may write the 4&& 4 matrix G' ' as

6"'=d(I)(8)d(2), (24)

where is the direct product. The use of this direct
product allows us to relate the 4&&4 matrices of the BB-
EBB Hilbert space to the 2 && 2 matrices of the ~-8 Hilbert
space (see Appendix 8).

Below the threshold for pion production, T"' is a real
function that plays the role of a potential. Above the pion
production threshold, T") is no longer real and includes
information about inelasticity —particularly the
BB—+mBB channel. In addition to this source of inelasti-
city we have contribution to three-body unitarity through
O' '. This arises from the fact that our baryon propaga-
tors have been dressed. At medium energies (below the
two-pion production threshold) the contribution of 6' ' to
three-body unitarity is most important in this model as it
incorporates the dressing of the 5, and this is the Mandel-
stam mechanism for pion production, i.e., the isobar
model. At this stage we have completed the requirement
of dressing for the baryon propagator O' '. The only re-
striction is that this dressing be consistent with that for
m-8 scattering as discussed in Appendix A.

Returning to T'", we observe that in lowest order, T"'
is the one-pion exchange potential. Extending our meson
multiplet to SU(3) will allow us to include I(.'-meson ex-
change, and thus extend N-N scattering to the full baryon
octet. On the other hand, the inclusion of the vector
meson multiplet will extend the one-pion exchange to in-
clude the p and co exchange (i.e, T"' will be the one-boson
exchange potential). If we restrict T'" to one-pion ex-
change, then in Eq. (21) we have a Bethe-Salpeter equa-
tion in the ladder approximation. %'e note that the propa-
gators in this Bethe-Salpeter equation are dressed and this
dressing is important above the one-pion production
threshold since it includes the isobar model.

tion from connected diagrams only. We now can write a
set of coupled integral equations for B-B scattering of the
form,

Tl, m Tl, m + g Tl, n On Tn, m
(0) (1) (1) (0) (o)

Pl

(&) (0) (0) (&)= Tl, m + g Tl, n On Tn, m

N-N interaction and thus the deuteron in the m-d channel.
To achieve this we have to examine the three-body unitar-
ity structure of T'"

The diagrams that contribute to T'", which includes all
connected diagrams with at least one pion in every inter-
mediate state (i.e., two-particle irreducible), can be divided
into two classes:

(i) Those with at least two pions in every intermediate
state, i.e., three-particle irreducible diagrams. These we
denote by T' ' (it includes only connected diagrams).
Here we should point out that T( ' is nonzero only in a
theory with an interaction Lagrangian that is nonlinear in
the pion field. In such a theory one can get contributions
to T'2' from diagrams which we might want to approxi-
mate by p exchange (see Fig. 7), that is, if p exchange is
not included by extending the meson multiplet to include
the vector mesons.

(ii) Those diagrams not included in (i). These are
three-particle reducible, or have intermediate states with
at least one pion, and can be written as

(F(2)g () )F())t) (F())6(1)F(2)1') (2S)

Here the subscript e implies that only connected diagrams
are included. Ho~ever, the I"do include disconnected
contributions as illustrated in Fig. 8. The EBB propaga-
tor G'" is, in our basis, a 4&4 matrix that is diagonal
with elements

(L ~6'"~L)=d, (1)d (2)d (a,b=N, E) (26a)

or

6"'=[d( l)N)d(2)]d (26b)

=g' f"(j)d '(k)5jk,
jk

=QFd'( j),

(29a)

We now can write T'" as,

T(1) T(2)+(F(2)6(1)F(1)t)

T(2)+(F(1)g( l )F(2)t)

To obtain a set of coupled equations for the BB-n.BB
system, we need to examine the amplitude for EBB-+BB,
i.e., F"'. The amplitude F" included in Eq. (27) has a
connected and disconnected part and can be written as

(28)

with the disconnected contribution given by

F~'=f"(1)ed '(2)+d '(l)ef"(2)

VI. THREE-BODY UNITARITY

- To establish the coupling to the m-d channel we need to
examine T"' beyond the lowest order. In particular we
need to go beyond one-pion intermediate states to get the

FIG. 7. Example of a diagram, contributing to T ', that
arises from nonlinear terms in the interaction Lagrangian.
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FIG. 8. Example of disconnected diagrams that contribute to
y(1)

FIG. 9. Example of diagrams that contribute to I",' ' due to
the nonlinearity of the interaction Lagrangian in the pion field.

where 5Jk ——1 —6Jk and j,k run over the two baryons. The
prime on the sum indicates that we have to maintain the
order of the factors in the direct product. In Eq. (29) we
have the disconnected part of F" given in terms of more
basic irB~B form factors f". The structure of f'" is
given in Appendix A, viz. ,

f (i)=f (i)+f (l')g (i)m )(i) . (30)

Md" =g' m ("(i)d '(j)5(J + t( )(3)d~ ',
EJ

=g M"'(u),

(32a)

where m"'(i) gives the amplitude for the pion interacting
with baryon i. %'e observe that the second term on the
r.h.s. of Eq. (32a) does not contribute to the disconnected
part (Fd 'G"'Md ')d. At this stage we note that t'o'(3),
the B-B amplitude, is in lowest order just one-pion ex-
change. Furthermore, had we assumed the B-B amplitude
t' '(3), involved in the definition of Mz ', to be identical to
T' ', given in Eq. (22), we would have a bootstrap prob-
lem and the resultant equations would be nonlinear in
T' '. The justification for breaking this bootstrap situa-
tion is that the energy at which we need the B-B ampli-
tude t' '(3), in the EBB Hilbert space, is at least m less
than in T' ', i.e., t' '(3)=T' '[s' co(p)] w—ith
co(p)=(p +m )' . Thus, at medium energies we need
the B-B amplitude predominantly below the pion produc-
tion threshold. This we can describe by a real potential.

Turning to the connected part of the irBB~BB ampli-
tude, F,'", we can use our classification scheme for the di-
agrams in conjunction with the last-cut-lemma to obtain

F(1) F(2)+ (F(2)g (1)M(1))C C C

Here I", ' gets contributions from diagrams that arise as a
result of nonlinearity of the interaction Lagrangian in the
pion field This is c. lear from the fact that we need to go
from an intermediate state of two pions to zero pions.
Examples of such diagrams are illustrated in Fig. 9.
Combining this result with that of Eq. (31) we can write
the two-particle irreducible amplitude for mBB~BB as

F(&) y (2)+y (&)G(&)M(&) (34)

The three-particle irreducible amplitude I" ' consists of

Here m"' is that part of the rr Bam-plitude that is one-
particle irreducible. We now can write Fd" as (see Ap-
pendix B)

(31)

where Mz" is the disconnected part of the ~rBB~irBB
amplitude, and is given in terms of the more basic ir-B
and B-B amplitudes m "'(3) and t' '(i), respectively, i.e.,

two parts: (i) A disconnected part given by Eq. (29), and
related to the bare +BLAB form factor as given by the
chiral bag model. (ii) A connected part F,' ' which arises
from the nonlinearity of the interaction Lagrangian in the
pion field. In Eqs. (33) and (34), M"' is the irBB~irBB
amplitude, and also includes both the connected and
disconnected parts, i.e.,

(35)

We will show in the next section that this amplitude is in
fact the Faddeev amplitude for the ~BB system, if the
contribution of four-body unitarity is neglected.

VA'th the above result we can write the B-B potentialT'" in terms of the 3~3 amplitude M"' as

T(1) T(2)+(F(2)g(1)F(2)'t) +(F(2)g(1)M(1)g(1)F(2)t)

(36)

Here we note that the procedure of dressing all external
and internal baryon propagators, before applying the last-
cut-lemma to T'", was to guarantee the connectedness of
T(&)

VII. THE 3—+3 AMPLITUDE

To complete the definition of the B-B amplitude as
given in Eq. (36), we need to get an equation for the con-
nected part of M,'". Since all the diagrams that contri-
bute to M,'" are by definition connected, we can employ
the last-cut-lemma to write

M"'=M' '+M' 'G'"M'"+M' 'G'"M'"
C C C d C

+M G"'M' '+(M'"G'"M'")
C C d d c

M(2)+ (M(2)g (1)M(1)
)

=M'"+(M'"G'"M"'), . (37)

On the other hand the disconnected part of M"' is given
by

M("=M("+M("G")M")
M(2) +M(2)G( & )M( & ) (39)

This is basically the I.ippmann-Schwinger equation for

(38)

which results from taking the rr-B amplitude m (i) i =1,2'
and the B-B amplitude t' '(3) to satisfy the two-body
equations. Combining the results of Eqs. (37) and (38) we
get
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the three-body EBB system where the potential term M' '

is given by

M' '=M,' '+g'm' '(i)d '(j)Sj+t'"(3)d . (40)
IJ

The connected part M,' ' plays the role of a three-body
force and gets contributions from diagrams as those illus-
trated in Fig. 10. In Fig. 10(a) we have a diagram that
arises from the terms in the interaction Lagrangian that
are nonlinear in the pion field, while the diagram in Fig.
10(b) is present if the Lagrangian has terms linear in the
pion field (e.g., the cloudy bag model with a surface cou-
pling). The disconnected part of M' ' plays the role of
the m-B and B-B interaction in the subsystem. The part
involving the 2&2 m-B amplitude matrix m' ' gets contri-
butions from diagrams such as that shown in Fig. 11(a).
The part involving the 4&&4 amplitude matrix t"' in-
cludes one-pion exchange in lowest order as illustrated in
Fig. 1 1(b).

Since we will not be investigating the four-body unitari-
ty structure of our amplitudes, we can replace the three-
particle irreducible amplitudes M' ' by potentials. Furth-
ermore, to establish the connection with Faddeev-type
analysis, we will use spectator particle notation, i.e.,

4M"'= g V. ,

(a) (b)
FIG. 11. The disconnected part of M has contributions from

the m-8 (a) and B-B (b) interaction.

In this case Eq. (39) is just the equation for the three-body
problem where all operators are 4&4 matrices in our Hil-
bert space. We could continue our analysis with the in-
clusion of three-body forces; however, for practical calcu-
lations we will have to drop any contribution from V4. In
that case M"', as given in Eq. (39), can be written as

ap

=g [M„'"(a)S.,+M,"'(a)g")U."~g")M„'"(p)],
ap

(43)

where the Alt, Grassberger, and Sandhas (AGS) (Ref. 35)
amplitudes U p are 4&4 matrices and satisfy the equa-
tions

V~=0 for a=O
2

=g'm")(j )d '(i)Sj for a=i =1,2

y

(44a)

(44b)

=t" ( ))3d ~ for a=3

=M,' ' for a=4. (42)
I

Using the results of Eqs. (43) and (44) we can rewrite the
B-B potential in terms of the dressed mB~8 form factor
f"' or Fd". After some algebra we get

T'"=T'"++Fd'"(t)s,,g"'Fd'"(J)+g gF"'( )s g"'M"'g"5 F""(.)
EJ ap ij

+F(1)g(1)F(2)t+F(2)g(1)F(1)t+F(2)g(1)F(2)t+~ ~ F(l)( )S g(1)M(1)g(1)F(2)td C C d C c ~~ d ~ ia ap c
ap i

+~ ~ F(2)g(1)M(1)g(l)S F(1)t( )+F(2)g(1)M(1)g(1)F(2)t
C aP Pj d J c C

ap
(45)

where i,j =1,2 and a,p=1,2,3. Within the framework of the cloudy bag model' ' with a surface coupling, the only
nonzero contributions are from the second and third terms on the r.h.s. of Eq. (45), i.e., we have to take F,' ' and T' ' to
be zero. In this case Eq. (45) simplifies to

TcBM QFd (t)Sijg Fd (J)+g QF(f (&)S(~g M~pg SpjFg (J) . (46)
iJ ap ij

(a) (b)

FIG. 10. Examples of contributions to M,' ' from the non-
linear (a) and linear {b) terms in the pion field.

Here, the first term is the one-pion exchange potential
with the added feature that the EBB vertex is dressed, and
thus is energy and momentum dependent. This dressing
removes the need for any arbitrary subtractions or cutoffs
commonly used in one-boson exchange potentials. The
form factors f"' or Fd" are determined by the m.-B
scattering data and the intrinsic properties of the baryons.
In particular, the rms radius and the charge form factor
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of the proton may be used to constrain f"' off shell. The
second term on the r.h.s. of Eq. (46) includes the crossed
two-pion exchange mechanism as well as the multiple
scattering of the pion off the two baryons. To see how the
two-pion exchange comes in' let us consider the lowest
order contribution to the second term on the r.h.s. of Eq.
(46), namely,

y yF(&)( )g g(I}~(I)( )g(IIg F(1)t(.)
a ij

which is represented diagrammatically in Fig. 12. If we
recall that Md"(3) = t' '(3)d ' has for its lowest order the
one-pion'exchange amplitude, then in Fig. 12(a) for i+j
we have a crossed two-pion exchange contribution to N-N
scattering. These are normally represented by the time or-
dered diagrams as in Fig. 13. Here, the first diagram was
present in the original NN-mNN equations while the
additional three diagrams are the result of treating the N
and 5 on equal footing. The other time ordered crossed
two-pion exchange diagrams are included in Fig. 12(b),
and are the result of the fact that the n Bamplit-ude m"
(i=1,2), in lowest order, includes the crossed pion dia-
grams of Figs. 4(b) and (c).

The advantage of the above method of including the
two-pion exchange is that: (a) The b, has been properly
dressed (i.e., the equations satisfy three-body unitarity),
and thus the threshold for pion production in N-N
scattering via the b, is properly included. (b) The P33 am-
plitude is adjusted to fit the m.-N data, and thus the
threshold has the proper energy dependence. In this way
we have included the dominant mechanism for pion pro-
duction with the correct energy dependence. Finally, by
including the N and b on equal footing we have included
most of the one- and two-pion exchange diagrams includ-
ed in the Bonn potential.

Since we have already included the 6 as an explicit
channel, the contribution from Fig. 12(b) is due to the
smaller nNpartial .-waves, and the nonpole part of the
amplitudes in the P33 and P11 channels. Since these am-
plitudes are in general small, we do not expect a large con-
tribution from these diagrams. However, when the cou-
pling to the ~-d channel is included, these diagrams give
rise to multiple scattering of the pion by the two nucleons.
Furthermore, Fig. 12(a) gives the coupling of the N-N
channel to the m-d channel, which leads to true absorption
in m-d elastic scattering.

VIII. THE BB-IrBBEQUATIONS

So far we have concentrated on the 88 sector of the
problem. In particular we have examined the baryon-
baryon potential T'", and the coupling of the BB channel
to intermediate EBB states. In its present form, the po-

/
/

/

8$

(o) (b)
FIG. 12. The baryon-baryon (a) and pion-baryon (b) multiple

scattering diagrams that give rise to the full two-pion exchange
potential in our model.

FIG. 13. The contribution of the crossed two-pion exchange
to the N-N potential. These arise by replacing the N-N ampli-
tude in Fig. 12(a) by OPE.

tential T"' is written to explicitly illustrate the different
mechanisms that contribute to its overall strength. In this
way, we can compare the content of this potential with
other descriptions of N-N scattering above the pion pro-
duction threshold. From a computational point of
view, it is more advantageous to write a set of coupled
equations for all the physical 2~2 amplitudes. To
achieve this aim, we need to examine the other 2—+2
channels, i.e., 88~md and m-d elastic scattering.

Consider the class of all diagrams that are connected
and contribute to the process BB—+EBB. These can be di-
vided into two groups:

(i) Those that are two-particle irreducible, and thus
have at least one pion in every intermediate state. These
we denote by I,"'.

(ii) Those diagrams that are two-particle reducible.
These can be written using the last cut lemma as
y (1)f6 (0)T(0)

The total amplitude for pion production can now be writ-
ten as

F(0)t F(1)tg(0)T(0)+FBI)t(1+g(0)T(0&)c d C (47)

where F,'" is given in Eq. (33) in terms of the bare B~IrB
form factor.

For the present analysis, we will assume the interaction
Lagrangian is linear in the pion field, and that three-body
forces can be ignored. In this case, we ean rewrite F,"' in
terms of the dressed B~IrB form factor Fd" as

F(l) y F(I)(I)g(1)U(I&g(1)M(&&(P)
ip

(48)

To get the 2~2 amplitudes for the reactions

BB~Ir+(BB)

~8+ (IrB)

we need to take the left-hand residue of the above ampli-
tude at the (88) or (IrB) poles. In Appendix C we discuss
the bound state wave function for the 8-8 system and in
particular we show that

In writing Eq. (48), we have made use of Eqs. (43) and
(44) to iterate Eq. (33) and thus complete the dressing.
We now can write Eq. (47) as

+(0)f +(1)TG(p)+(0)
C

+g ~(II(P)g(1)U(I)g(1)F(1)t( )(1+g(0)T(0))
pi

(49)
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M'"(3l=t' '(3)d

—,d ' Iy(3)& Ix &
—(x 1(y(3) Id (50)

We now need to write a set of coupled equations for the
amplitudes T),B and TBB ——T' ' for the reactions

B+B~B+8
~m. +(BB)
—+8+(mB) . (53)

This is achieved by iterating Eq. (49) using the AGS equa-
tions [Eq. (44)] to obtain

T„=gn„Fd""()(1+G")r„)

where 1$(3)) is a column matrix of antisymmetric 8-8
form factors related to the bound state wave function

I f)d, I
x ) is the wave function for a free pion, and D is

a function that goes to zero as kinematical variables ap-
proach the on-shell values specifying the state

I p)q I
X ).

Using Eq. (50) in Eq. (49) and taking residues at the (88)
pole, we obtain an expression for the physical
BB~m+(88) amplitude X/B""'" of the form

x@"'""=(4(3)1(x.Id.-'G("r»10), (51)

where
I @) is a column vector specifying the initial 8-8

wave function. In practice the only such physical channel
will be NN~m. d for which

Ik(3)&=(
I
C'NN) o o

I +~i &)'

and

14& =(
I INN& 0 0 0)

Similar expressions give the BB~B+(m.B) amplitudes
X~)B~'""and X@~""'in terms of the operators T)„B where

T y U())G(1)F())t( )(1+G(0)r(o)) (52)

M' '=M'"+F'"~G'"F"'
C

+F,' ' G' 'Fd" +(Fd ' G' 'Fd"), . (56)

To get the 2~2 amplitude for n.1~@.d and
8(~8)~8(n.B), we have to take the right and left residue
of M' '. Since Fd" is just the m8+—8 form factor, it has
no (mB) pole. This means the only contribution to the
2—+2 amplitude is from the first two terms on the r.h.s. of
Eq. (56), and this gives

(57)

Using the AGS equations we can iterate this .equation and
eliminate U~p to get

T g ~( ) —)+y g F( )t(l)G(0)r

++5 rMd"(y)G("Trp . (S8a)

matrices that allow the coupling to the hb, channel, and
thus the inclusion of additional-physical processes that
will be discussed in the next section.

To complete our description of the 88-EBB system, we
need to write the equations for pion-deuteron scattering
and the coupling to the pion absorption channel. Here we
consider the class of all connected diagrams for
EBB—+EBB. These can be divided into two groups;

(i) Those that are two-particle irreducible, which we
have considered previously and denoted by M'".

(ii) The rest of the diagrams are two-particle reducible,
i.e., they have intermediate states of zero pions. These we
can write using the last-cut-lemma as

(F())tG(o)F(o) ) (F(0)tG(o)F() ))

Here we should note that F' '=F,' '+Fd ', and Fd ' ——Fd"
since the two-particle reducible part of Fd ', given in Fig.
14, has already been included in the dressing of the baryon
propagators. We now can write the amplitude for
m.BB—+EBB as

++6grMd '(y)G'"TrB .
y

(54a)

To close the set of coupled equations, we have to make
use of the BBpotential as given in Eq. (46), in conjunction
with Eqs. (22) and (52), to get

TBB=I opE(l+G"' BB)

+g F,'"(i)S,,G")M,"'(X)G")r„.
lA,

(54b)

The one-Pion-exchange Potential VopE is given in terms
of the dressed 8~m B form factor Fd(" by the relation

~opE=QFd"(i)5;, G"'F„"' (j) .

TBp ~opEG TBp+ g Fd (i +ip

+QFd (i)5; G"'Md (&)G'"T p .
ia

(58b)

In Eqs. (S4) and (58) we have a set of equations that

To obtain the equation for TBp and close this set of cou-
pled equations, we need to carry out the above procedure
on the amplitude for m.88~88, i.e., F,' '. In this case we
obtain

In Eq. (54) we have a set of coupled integral equations for
the amplitudes that describe the reactions in Eq. (53). The
input to these equations is the B~m.B form factor and the
m-B and B-B subsystem amplitudes. In structure these
equations are similar to those derived for the NN-mNN
system with the exception that Tq~ and T~z are 4/4

FIG. 14. Diagrams excluded from Fd ' because they are in-
cluded in the dressing of the baryon propagator.



2016 I. R. AFNAN AND B. BI.ANKI. EIDER 32

describe the BB-EBB system for the case where the in-
teraction Lagrangian is linear in the pion field and where
we have neglected three-body forces.

IX. ANTISYMMETRY OF
THE BB-m BB EQUATIONS

Before we proceed to the antisymmetry of the full set of
coupled equations, let us consider baryon-baryon scatter-
ing in the BB part of the Hilbert space. In particular, we
want to concentrate on the question of the N-6 channel.
In the NN-mNN (Refs. 2—7) equations the 6 was con-
sidered a m.-N resonance and it was required that the nu-
cleon in the 6 be antisymmetrized with respect to the
spectator nucleon. This antisymmetry will still be re-
quired in the EBB part of the Hilbert space. Our discus-
sion will lead us to the problem of undercounting in the
NN-mNN problem. In particular, we find that the NN-
m.NN equations include only one of the time ordered dia-
grams for NN~Nb, and Nb, ~Nb, via one-pion exchange
(OPE). This undercounting is the result of treating the 6
as a pure a-N resonance, and restricting the Hilbert space
to one-pion intermediate states only.

Let us consi. der the problem of 8-B scattering in the
OPE approximation, i.e.,

TBB VOPE(1+G TBB) ~ (59)

where we have neglected the coupling to the EBB chan-
nels in Eq. (54b). Here VopE is given by Eq. (55). To an-
tisymmetrize the above equations we need to take the ma-
trix elements of the equations with respect to antisym-
metric states (AS). For the N-N and b,-b, , these states are
given by

I pNN& = [ I INN(o i o2'p) &
—

I INN(~2 0 i' —p) &]
AS

(6Qa)

[ I @as(s~ s2 p) & 14a~(s st' —p) &]
AS

(6Qb)

where p is the relative momentum, while o. and s are the
spin isospin coordinates of the nucleon and b„respective-
ly. The matrix element of the OPE operator [Eq. (55)] for
NN~NN between the antisymmetric states gives

2

(+NN
I VNN, NN I +NN& . g (+NN I fN, N(~)~'jdvrf N, NV) I +NN&

A@AS=~ NN, NN . (61)

As expected this is the difference of the two Feynman diagrams in Fig. 15(a). Note that each Feynman diagram is the
sum of two different time ordered diagrams as illustrated in Fig. 15(b).

In a similar manner we can define the antisymmetrized amplitudes for NN~NN and NN~b 6 as

TNN, NN ( +NN
I TNN, NN I +NN &

AS AS AS

Thd, NN (+hA I Thh, NN I +NN&
AS AS AS

(62)

To obtain the equations for the antisymmetric amplitudes we take matrix elements of Eq. (59) between N-N antisym-
metric states. This gives

TNN NN
——VNN NN(1+ —,GNNTNN NN)+ (%NN I VNN, NEGNETNg, NN I pNN&

AS AS (0) AS AS (0) AS

+ (q NN I VNN, hNGhNThN, NN I
q NN&+ VNN, hh 2 Ghd hh, NN ~

AS (0) AS AS I (0) . AS

where the factor of —,
' in the NN and hb propagator is a result of using the completeness relation

g f d p I

qi (si,sz,'p)& —,
' (4' (s&,sz,'p)

I
=1 (a=N, b, ),

$)$2

(63)

(64)

where s, , s2 are the spins of the two baryons, and p the
relative momentum. In Eq. (63) VNN ~~ is given by

(65)

AS
NN, NN

0, p

p p ~j&p

(y / p/11

g / p/

We observe here that this coupling (i.e., NN —+hb, ) was
not present in the NN-mNN equations, and only arises as
a result of treating the N and b. on equal footing.

To simplify the second and third terms on the r.h.s. of
Eq. (63), we introduce the complete set of N-b. intermedi-
ate states, i.e.,

g f d p I fxdrrp s —p)&(PN&(harp;s —p) I
=1 . (66)

(a)

(b)

FKJ. 15. Diagrammatic representation of the antisym-
metrized OPE potential.
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It is. then simple to show that

~ +NN I VNN, hN I It hN(~ p ITp) )

= —&q'NN
I VNN, Nh I VNdap~~ P) &

and satisfies the equations

XB,8=ZB B(1+GAs B,B)(0)

(67) with

with

and

+ VNN NhGNh TN
AS (0} AS

AS & (0) AS+ ~NN, b,hTGE&TM, NN

VNN, N4 ~ +NN I VNN, N&+ VNN, 4N I +N& &

AS AS AS

(68)

TNII, NN (+N4
I TN4, NN+ TAN, NN I +NN) &

AS AS AS

where the antisymmetric N-6 state is given by

(69b)

AS
l I PNdap ~ —p) &

—
I P~N(~ —p;ap) & I,

(70)

and we have made use of the fact that T. . . BB I QB.B) =0
for 8&8. This is identical to the antisymmetric N-b,
state used in the NN-mNN equations where the b was a
m-N resonance. This in turn implies that the antisym-
metry of the N-b, channel in the B-B space is the same as
the (Bm )~N channel in the n.BB space.

Here we observe that VNNN~ has contributions from
both time order diagrams in Fig. 1, while in the NN-~NN
equations we had the contribution from Fig. 1(a) only. A
similar problem of undercounting was present in the
bound state Inodel of the NN-IrNN equations ' where
VNN NN obtained contributions only from the first dia-
gram of Fig. 15(b). This undercounting could lead to dif-
ficulties in the description of N-N scattering in the NN-
mNN equations. It also reduces the distortion in the N-N
channel for pp~m. d, since that distortion is generated
self-consistently.

The above procedure of obtaining the integral equations
for the antisymmetrized amplitudes can be carried out
for the other channels in the 8-8 Hilbert space. This an-
tisymmetry reduces Eq. (59) from being a set of 4X4
equations to a set of 3X3 equations, and results from the
antisymmetry of the N and b, . We can achieve this an-
tisymmetry at the matrix level by introducing the 3)&4
matrix

1 0

L = 0 1 0 (71)

0 0

and the 4X4 diagonal matrix of asymptotic wave func-
tions

I g) with elements
I +NN) I WNh) 144N) and

1%'gII). Then the matrix of antisymmetrized amplitudes
is given by

&B,B=L &0 I TBB I
4&1- (72)

because of the antisymmetry of the N-N states. We now
can write Eq. (63) as

AS AS (0) AS
TNN, NN VNN, NN( + 2 GNNTNN, NN)

ZB,B ~ ~P I VOPE I 0&&

and GAs a diagonal 3&3 matrix with elements given by

(G„",')BB = —,'dBdB for 8=8'

(74)

=dBdB~ for 8+8 (75)

I f(BB'),.&
=G'"

I hd»~& =G"'d '
I hd»~& (76)

where the 8-8 form factor hd is introduced in Appendix
C and X is the wave function of a free pion. We note
that the above wave function is assumed to be antisym-
metric under the interchange of the two baryons and, as
discussed in Appendix C, needs to be further multiplied
by a column matrix F in order to yield the properly nor-
malized bound state wave function.

(ii) The part where the ~-8 subsystem is interacting.
Here the matrix of asymptotic wave functions is

I
AB~~„B'):d(1)d~

I
hII(1))

I
x(2)) if 8 is baryon 1

=G"'l
I
hz(1) &d '(2) IX(2))]

=
I
x(1))d(2)d

I hII(2)) if 8 is baryon 2

=G"'[d '(1)
I
X(1))

I hII (2) )], (77)

where
I
hII(i) ) and

I
X(j)) are 2X2 diagonal matrices of

Ir-8 form factors and spectator baryon wave functions,
respectively. In writing the above form for the asymptot-
ic state it is essential that 6"' have the correct clustering
behavior, otherwise our asymptotic states will not be of
the form of a product of two cluster wave functions. In
Eqs. (76) and (77) we have used the subscripts d and R to
label B-B and m.-B states, respectively.

We next have to write Md"(a) in terms of the above
form factors. From Eq. (32) we have that

It is then simple to show that Eq. (68) is the (1,1) element
of the matrix Eq. (73), and ZB B is a generalization of
Eqs. (65) and (69a).

So far we have considered the 8-8 equations with no
coupling to the EBB channel. We now have to extend our
analysis to include this coupling by considering either
Eqs. (54) or (58), depending on the initial and final states.
As is the case with the standard three-body problem, " to
obtain a closed set of equations for the physical ampli-
tudes we need to assume separability of the two-body am-
plitudes in the EBB Hilbert space. This approximation
will also reduce the dimensionality of the integral equa-
tions. To carry out the antisymmetry as well, we need to
define antisymmetric asymptotic states in terms of the
form factors. For this purpose we divide our two-body
asymptotic wave functions in the IrBB Hilbert space into
two parts:

(i) The part where the 8-8 subsystem is interacting. It
is now convenient to define the 4X4 diagonal matrix of
asymptotic wave functions
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and

in"'(i)=
I
hR(i))~R(i)&hR(i)

I
(79a)

Md'"(a)=m~"(1)gd-'(2) for a=1
=d '(l)@m'"(2) for a=2
=t'0'(3)d ' for a=3,

where we recall that I (i) is the 2&&2 matrix of ampli-
tudes for the pion interacting with the ith baryon while
t' '(3) is the 4&&4 matrix of B-B amplitudes which
reduces to a 3)&3 matrix after antisymmetry. The as-
sumption of separability, at the partial wave level, allows
us to write these two-body amplitudes as

Here L is the 4&& 3 matrix that results from taking the ad-
joint of L after removing the ( —) sign from the second
row. The removal of the ( —) sign is a result of the fact
that

I
Hd(3) ) corresponds to the baryons being in a given

partial wave that satisfies the Pauli principle. In other
words the wave function or form factor changes sign
under the exchange of the coordinates of the two baryons,
and we need only take a linear combination of the Nb, and
b,N states to get the antisymmetry. These definitions are
consistent with those used by Avishai and Mizutani and
Blankleider for the NN-mNN equations. Using these
definitions in conjunction with Eq. (54) we get the final
equations for the antisymmetrized amplitudes for the re-
actions

(3)
I
hd(3) &rd(3)&hd(3)

I
(79b) B+B~B+B

Md"'(a) =
I
H„(u) &~„(a)&H„(a) I,

where n =R or d depending on the value of a.
(81)

Furthermore, we can write the baryon propagators in
terms of their spectral representation as

d-'(i) = Ix(i) &5-'(i) &x(n I
.

In writing Eq. (80) we have put the spectator baryon on a
mass shell. Combining the results of Eqs. (79) and (80) in
Eq. (78) we get

~B+(Bn)R
~~+ (BB)d,

XB,B ZB,B(1+GAsXB,B)(0)

+/z M (l)X +/z de (3)Xd
R d

(87)

(88a)

and

=5(1)rR(2) for a=2
=5 rd(3) for a=3 (82)

M„(u)=rR(1)5(2)=P[5(2)rR(1)]P for a=1 XR,B R, B( 1+GAsXB, B )
(0)

+g ZR, R'~R'( )XR',8++ZR, d~d ( )Xd, B i
R' d

(88b)

I H. (~) & =
I
hR(1) &~d-'(2) IXB(2)&

=P[d '(2)
I
xB(2) )

I
hR(1) ) ]P for a =1

=d '(1) lxB(1))
I
hR(2)) for a=2

=d ' lx„) lhd) for a=3 . (83)

In the above, P is a unitarity 4&4 matrix that inter-
changes the second and third row (column), and is intro-
duced to interchange the (Nir)b, and (b, ir)N states. With
the above definition of P we can write the antisymmetric
[(Bm.)RB] state as

I P("B~)RB) [G"'
I
HR(1) &

—PG"'
I HR(»)P] .

d 8(1+GARB,B)+/Zd, R~R( )XR 8,
R

(88c)

ZB d =Lt(g
I g Fd"(i)G'"

I
Hd(3) )L,

(89a)

ZR R —P(HR(1)
I

G——"'
I
HR(2) ), (89c)

ZR d
—— [(HR(1) I P(HR (2)'I ]G"'

I
Hd(3—) )L

1

(3)=L ~d(3)L is a 3 X 3 matrix for the (BB)~
p~opagato~ in the EBB space, while Z&,R, Z&,d, ZR R,
and ZR d are given by

We now can define the antisymmetric amplitudes for
the reactions BB~(Bm)RB and BB~(BB)der as,

=v 2(HR(2)
I

G"'
I
Hd(3))L, (89d)

j
[&H.(1)

I
G"'T»

2

—P(HR(2)
I
O'"TPB]

I
fP)L

where in the last equation we have made use of the rela-
tion

(85)
G'"

I
Hd(3) )

(90)

Xd» L (Hd(3)
I
G T38 I 0&L (86)

Similarly we define the antisymmetrized amplitudes for
the reactions ird~nd, nd~(Bm)RB, and nd~BB as
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Xd d =L, t&Hd(3)
~
G T336

~
Hd(3))L

X„,= '
t&H. (1)

~

G'"T»-P&H. (2)
I
G"'T»1

(91a)

XG'" ~H, (3))L,

X,„=L,'&y
~

T„G'"
~
Hd(3) )L .

(91b)

(91c)

We then make use of Eqs. (58) and (90) to write the in-
tegral equations for the antisymmetrized amplitudes for
the reactions

8+d~m+d
~B+(Bm)
—+8+B (92)

d, d +Zd, BGAP B,d +Q Zd, R '~R ( 1 )XR,d
R

(93a)

X. CONCLUSION

The final equations, although similar to the NN-mNN
equations in form, include a number of new features
that arise as a result of treating the N and b, on equal
footing, as dictated by chiral bag models. '4'

(i) In the N-N channel, we now have the full contribu-
tion from two-pion exchange by including all four dia-
grams in Fig. 13, while previously we included only the
first one. In particular we have b, b, intermediate states in
our N-N potential. The advantage of our method for in-
cluding two-pion exchange is that the 6 resonance is built
into the theory to be consistent with m.-N data. This
should give rise to the proper energy dependence in the
amplitude above the pion production threshold ensuring
that the resonancelike behavior from the N-5 threshold
is properly included.

(ii) For pion production, the inclusion of both diagrams
in Fig. 1 might be crucial for getting the correct differen-
tial cross section. In any event the exclusion of the dia-
gram in Fig. 1(b) should be considered a serious under-
counting problem that could affect the energy dependence
as well as the magnitude of the cross section.

(iii) Because of the coupling between the m-N and m.-A

+R,d ZR d +ZR, BGAPB,d
(0)

+gza, g ~a (1)&~ d+QZg de (3)Xg d,AS

R' d'

(93b)

+B,d B,d+ZB, BGAPB,d
(o)

+X B,R~R( )XR,d +g ZB,d'~d' (3)xd' d
R d'

(93c)

Finally we note that the physical (on-shell) amplitudes
are obtained by contracting the above X p amplitudes
(4X4 matrices) with column vectors as illustrated by Eq.
(51) in conjunction with Eq. (C15).

channels in the ~-B subsystem, our n.-N amplitude in-
cludes the contribution due to inelasticity. Since this cou-
pled channel approach gives a good description of the
m.-N data, we will be able to resolve some of the uncer-
tainty in the NN-~NN result due to inelasticity in the
m-N amplitude. ' %'e also can extend the calculations
to higher energies, since the input m.-N amplitude fits the
higher energy data.

(iv) Because we have included the mdiv, vertex on equal
footing with the nNN vertex, we get a contribution from
the diagram in Fig. 2. This N-6 potential has a tensor
component that could contribute to the m-d tensor polari-
zation, ' ' and might possibly explain some of the
discrepancy between theory and experiment for this ob-
servable.

On the more formal side, one of the main features of
the present formulation is that it attempts to bridge the
gap between the quark models of a hadron and the multi-
ple scattering formalism of nuclear theory. Here one can
get the EBB coupling constants and form factors from
quark models and use them to calculate A =2 observ-
ables. In principle this can be a zero parameter calcula-
tion to the extent that all off-shell behavior is predeter-
mined by the quark model. Furthermore, this procedure
predetermines the relative strength of the pole and non-
pole parts of the m-N amplitude in both the Pii and P33
partial waves, and thus overcomes one of the main prob-
lems with the NN-n. NN equations. The success of CBM
(Refs. 15 and 17) for nNscat. t-ering is evidence for the
possible success of such an approach.

The advantage of the present approach for deriving our
equations is its independence of the specific form of the
Lagrangian and in particular the coupling of the pion to
the baryon. Although in the final analysis we ignored the
contribution from three-body type forces and terms non-
linear in the pion field, the theory is very specific as to
how these terms should be included. This facilitates the
use of perturbation theory to include the contribution of
three-body forces, and terms nonlinear in the pion field.
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APPENDIX A

Since the m-8 amplitude will be used as input into the
BB-EBBequations, we need to maintain a consistency in
our formulation for the two systems. To that extent we
need to derive the m-8 equations using the same tech-
niques. Furthermore, we need to define the m-5 channel
within the framework of the chiral bag model. ' ' This is
particularly important as the 5 pole is in the complex en-
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~ (0) ~ (1)+f(1)td(0)f(0)

(1)+f(0)td(0)f (1) (Al)

We now examine the mB~B amplitude f' '. We can
divide the diagrams that contribute to f' ' into two
classes:

(i) Those that are one-particle irreducible, which we
denote by f'".

(ii) The diagrams not belonging to (i). They can be
written as

y(1)d (0)f(0)

where X") is the self-energy of the baryon.
We now can write

ergy plane, i.e., the 6 is a resonance.
In this case our basis states are

~

m.N) and
~

orb, ), and
our operators are basically 2&(2 matrices. The diagrams
that contribute to the m.-B amplitude can be divided into
two classes:

(i) Those which are one-particle irreducible and can be
denoted by m"'.

(ii) Those not belonging to (i). This class of diagrams
gives amplitudes which can be written, using the last-cut
lemma, as

f(1)td(0)f (0) f(0)td(0)f (I)

where d' ' is the undressed baryon propagator and is of
the form given in Eq. (23). In the above, we have used the
superscript in I and f to denote the minimum number of
pions in intermediate states. We now can write the m.-B
amplitude as

have the dressed baryon propagator it is guaranteed that
any cut through diagrams belonging to m'" leads to con-
nected diagrams. We now can write

f(1) f(2)+f(2) (1) (1) (Aj)

APPENDIX 8

f

Diagrammatically this equation can be illustrated as in
Fig. 16. The 6 in the intermediate state has to have its
full dressing, i.e., it is a physical b, . Here f' ' is the two-
particle irreducible m.B~B amplitude. If we do not want
to go beyond two-body unitarity, then we need not
proceed any further in exposing unitarity cuts, and we
take f' ' from the chiral bag model.

We now turn to m'" which is one-particle irreducible.
The diagrams contributing to m"' can be divided into
two classes:

(i) Those that are two-particle irreducible, which we
denote by m'

(ii) Those that are two-particle reducible. These can be
written, using the last-cut lemma, as

m (2) (&)m (&) I (&) (&)m (2)

Here again g'" is the dressed m-B propagator. We now
can write

m (&) m (2)+m (2) (&)m (&)

m (2)+m (&) (&)m (2)

which is the standard two-body equation. Using the re-
sult of Eqs. (Aj) and (A8) in Eq. (A6), we obtain the
structure of the ~-B amplitude in the N and 6 channels.

f(0) f(1)+y(1)d (0)f(0)

or

d(0)f (0) —df ( I)

where the dressed propagator is given by

In a similar manner we can show that

f(0)td (0) f(1)1'd

(A2)

(A3)

(A4)

(A5)

In this appendix we would like to demonstrate how we
obtain the operators in the BB-n.BB Hilbert space from
those in the ~-8 subspace. In the ~-8 space our basis
states are

~

rr-N) and
~

~-b, ). The corresponding opera-
tors are 2&2 matrices. In the BB-~BB space our states
are

~
N(l), N(2), m ),

~
N(1),h(2),m },

~

b, (1),N(2), m ), arid

~

b,(1), 5(2),1r), where 1 and 2 refer to the two baryons.
In this case the operators are 4&(4 matrices. To achieve
this transition we introduce a direct product" of two 2)& 2
Inatrices as

With this result we can write the amplitude for m.-B
scattering as

m'0'=m")+f("tdf"' . (A6)

We now have to determine the structure of f"', the am-
plitude for n.B~B which is one-particle irreducible. The
diagrams that contribute to f'" can be divided into two
classes:

(j) Those that are two-particle irreducible, which we
denote by f"'.

(ij) Those that are two-particle reducible. These can be
written, using the last-cut lemma, as

P

a b aE bE
c d cE dE (Bl)

where 2, B, C, and D are 2&2 matrices.
To illustrate the application of the direct product de-

fined above, we will present the derivation of Eq. (31).
We have for the disconnected part of the m.BB~BBam-

where E is a 2&2 matrix. Then it is easy to show that,

[A (1)8(1)](3)[C(2)D(2)]

=[A(l)(3 C(2)][B(l)@D(2)], (B2)

f(2) (1) (1)

where g is the 2&2 m-B propagator matrix that is diag-
onal with elements d, d (a=N, b. ). By taking g"' to

FIG. 16. Diagrammatic representation of the dressed m8 —+8
vertex as given in Eq. (A7).
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plitude [see Eq. (29)] that

=f~ i~(1)@d (2)+d (1)lglf ~(2)

=g'Fd"(i) .

f"'(i)=f' '(0+f' '(i)g'"(i)m"'(i) .

mpioying Eq (84) in Eq (83) we get
(83)

(84)

However, f"' is given in terms of the more basic n.B~B
form factor f ' ' by relation [see Eq. (A7)]

Fd (I)=Fd"( I)+f"'(Ilg"'( I lm'"(l ld '(2) .

But using Eq. (82) we obtain

(85)

f' '(1)g"'(1)m'"(1) d '(2)=[f' '(lloyd (2))[jg'"(1)m'"(1)]gjd(2)d '(2)J]

=[f' '(l)d '(2)][g"'(1)Sd(2)][m'"(lld '(2)]

=Fd '( l)G'"Md '(1), (86)

where

Mg"(1)=m ' "(1)ed '(2) . (87)

The input B-B amplitudes have been represented by the
4)&4 matrix t' '(3). It is equivalent to consider t' '(3) as
an operator in the Hilbert space A (BB) where

We now can write Eq. (85) as

F"'(1)=F~"(I)+F'"(1)G"'M' '(1) .

In a similar manner we can prove that

F'"(2)=F '(2)+F' '(2)G'"Md"(2) .

Combining the results of Eqs. (88) and (89) with that of
Eq. (83) gives us

(810)

A (88)=A NNtBA Nyet gNSA b,g . (Cl)

Each orthogonal subspace A 88 is spanned by the basis
states ( ~

p;oamaoa ma ) [ where p is the relative
momentum, o.a represents the spin-isospin quantum num-
bers for baryon 8, and ma are the corresponding z projec-
tions. The matrix interpretation of t' '(3) may then be
obtained through the definition

t d, ab =2 I
0'emcodmd ) (O'cmcCTdmd

l

(o)

which is Eq. (31).

APPENDIX C
&&t

I o,m, obmb & (o moobmb I
~ (C2)

An important feature of the BB-m.BB equations is that
they describe the nucleon and delta on the same footing.
It is therefore important for consistency to construct both
the input m-B and B-B interactions using a coupled chan-
nels scheme. For the m.-B system such a scheme was
described in Appendix A. In this appendix we shall con-
sider the description of the input interactions for the 8-8
system. Here we are especially interested in the construc-
tion of bound state wave functions —in particular we note
that our deuteron wave function has, in principle, Ab.
components.

The scattering equation that t' ' satisfies is essentially
given by Eq. (22) except that, as discussed after Eq. (32),t'" is approximated by a potential U, i.e.,

t(o) + G(o)t(o) (C3)

In a similar way we may write the bourid state wave equa-
tion in the Hilbert space A (88) as

~
1$(1,2))d =G' '(1,2)U(1,2)

~
y(1,2))d, (C4)

which again may be considered as a matrix equation
through the definitions

l
PBB'(I 2) &~ —= g l

oamaoa ma ) & oamaoa ma
I
y(1») &d . (C5)

m's

In the last two equations we have specified particle labeling by the argument (1,2). We could equally well have assigned
the labels (2,1). The antisymmetry of the wave function

~ paa (1,2) )d follows immediately from the realization that

&p o m obmb I
u(1»)

I
p'o m odma) =(p o m obmb

I
v(»1)

I
p'o m o'amd)

and that all particles are fermions. In particular we note that

& P oamaoa™B'
I EBB'&d & P oa™a'oama

I Pa'B&d

Using Eq. (C7) we may write the bound state equation as

(p;o, m obmb
~ y b)g = y ydp'Ggy (Ed) (p;o, mgobmb )

U
~

p';cT, mgcrdmg) (p;o, m, cTdmd
~ y,g)d

+~ad
lFlcm

(C6)

(C7)

(Cg)
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where the sum extends over NN, Nh, and Ah states only,
Gab =(GAs )ab is given by Eq. (75), and

I
PBB')"'=

I AB')d

E. At a bound state (or resonance) one of the eigenvalues
A~(E) —+1 as E +E—~ with t,''(E) having a pole. The cor-
responding eigenvector or form factor

I P~ ) is related to
the wave function by

=2
I 1bBn )g if 8&B' . (C9) (C12)

The antisymmetrized basis states in Eq. (C8) are defined
by

1
I p trs'maoB mB'& '= (

I p oB'mBcrB'mB')xAs

2

As implied by Eq. (C5), both It4) and I1b)q may be
viewed as column vectors, and as such we shall write
them as

I Pq) and
I f)q to distinguish them from square

matrices.
If u is separable then we may write

p, crBmB ozmB)) .

(Clo) or

Ued, ab =
I hca )~cd, ab & hab I

(C13)

In deriving the BB-EBB equations it is necessary to
take residues at bound state (or resonance) poles of two-
body amplitudes. Having described the bound state wave
function as above, the pole structure of the t matrix fol-
lows from writing the solution using Fredholm theory as

U= Ih)A(h
I

(C14)

where
I
h } is a 4)&4 diagonal matrix with elements

I ABB ). Using Eq. (C14) in Eq. (C12) gives

(C15)

(o) ~ I@a)&4n I

1 —A,„(E)
(Cl 1)

F=z(h Iy), . (C16)

where 1I.„(E) and
I P„) are the eigenvalues and eigenvec-

tors of the kernel of the integral equation (C3) at energy

Finally we note that
I hen ) is antisymmetric in the same

sense as the wave function in Eq. (C7).
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