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Probability current conservation imposed on nucleon knockout amplitudes
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We construct nucleon knockout amplitudes which exactly satisfy probability current conservation.
The derivation is first produced for a nucleon bound to an inert core and is then generalized to the
case of realistic nuclei. Numerical tests are presented for a nucleon bound in a square well potential
for which exact results are compared with several approximated ones; the need of imposing proba-
bility current conservation is also numerically demonstrated.

I. INTRODUCTION

The amplitude for a nuclear reaction in general, and for
nucleon knockout in particular, is the matrix element of a
transition operator T taken between initial and final nu-
clear states. In the latter type of reactions it is not un-
common that different approximations are used for the
nuclear many-body Hamiltonian in initial and final chan-
nels. For example, in a nucleon knockout reaction, the fi-
nal state interaction (FSI) of the knocked-out nucleon and
the residual nucleus is either neglected (plane-wave ap-
proximation), or is approximated by a complex optical po-
tential. The latter need not necessarily generate the initial
state and, consequently, wave functions for a bound $0
and knocked-out nucleon g„are not orthogonal. An im-
mediate consequence may be inferred if the knock-out
mechanism is weak. The amplitude then appears propor-
tional to the inelastic target form factor Fo„(q) with q the
momentum transfer. The latter ought to go to zero for
momentum transfer q —+0, yet it will not if ($0,$„)&0.
For q&0 there is a more general constraint on Fo„(q),
namely the conservation of the probability current (PCC)
of which orthogonality is a particular case. ' Implemen-
tation of PCC is the topic of the present investigation.
For an electromagnetic knockout process one clearly deals
with the conservation of the em current or, equivalently,
gauge invariance.

In the present paper we consider nucleon knockout by a
weak scalar probe, for which the nuclear part of the am-
plitude is just the inelastic form factor. New expressions
for the knockout amplitudes which respect PCC are de-
rived. In Sec. II we do so for a nucleon bound to an inert
core. Apart from the exact expressions, we also focus on
the Born approximation (BA) applied to a weak interac-
tion, and on the eikonal approximation in the case of a
fast, ejected nucleon. Section III contains generalizations
to realistic nuclei.

In Sec. IV we present results of a numerical analysis for
a nucleon bound to a square well. It is shown that ap-
proximations constrained by PCC are not only desirable
on principal grounds, they are by and large closer to the
exact answer than their standard counterparts.

II. KNOCKOUT AMPLITUDES
IN A SINGLE-PARTICLE NUCLEAR MODEL

A. Exact expressions

In this subsection we derive exact formulae for transi-
tion amplitudes which have the desirable property of
satisfying PCC in any approximation.

%'e start with a simple nuclear model in which a nu-
cleon is bound to an inert core by a local, Hermitian po-
tential V~. Consider a weakly interacting scalar probe
without internal degrees of freedom, exciting the nucleon
from its ground state Po (energy eo(0) to a continuum
state f~(Ez ——p /2tn) with asymptotic momentum p (Fig.
1). With k, k the initial and final momenta of the projec-
tile, and q=k —k' the momentum transfer, one finds to
lowest order

c+Q p

FIG. 1. Knockout of a nucleon by an external probe. The el-
lipse symbolizes scattering of the nucleon by the residual nu-
cleus.
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=f„N(9)Fo, (q) (2.1)

The factors in (2.1) are, respectively, the elementary
projectile-nucleon amplitude f„N and the inelastic form
factor

p, (q=o}=(0,' 'l0o)=o.
Substituting Eqs. (2.7) and (2.8} into (2.5) one obtains+.2+9

2~' m

(2.9)

Fo p(q) = f droop
' (r)e'~'Po(r) . (2.2)

=~f, fp
' (Q+qVo(Q)

(2.10)
The latter reads in the momentum representation

Fo,p(q)= f, fp
' (Q+q)go(Q)

(2m)'
(2.3)

Consider now the operators for probability current and
density j(r), p(r). For Vt= Vthese satisfy

Pp
' (k)=(2~)'&(k —p)+

p
— g+l'g

Here

(2.11)

In momentum representation the scattering state Pp
reads

or
V.j(r}=i [p(r),H ]

(2.4)

t(p, k)=(k
I

t' '(Ep i'—)
I

p)*
= (p I

t+(Ep+iq)
I
k) (2.12)

q. jo,,(q}=~po, ,(q),
with

(2.5)

which expresses the conservation of probability current
density. Taking matrix elements of (2.4) between Po, Pp
one has

is the half-off shell matrix element of the transition opera-
tor which satisfies a standard Lippmann-Schwinger equa-
tion t =V+VGot. One now substitutes (2.11) into (2.1).
Corresponding to the two terms of P' ' in Eq. (2.11), the
inelastic form factor is decomposed into plane wave (PW)
and final state interaction (FSI) parts

~=Ep+ I col .

By definition one sees that

p, ,(q)= f «p'p ' (r)e"'po(r)

=f, fp
' (Q+q)ko(Q)

(2m )

is just the transition form factor (2.2). Likewise,

( )= f " y'-"(Q+ )' +qy(g)

(2.6)

(2.7)

F ( } y ( } f dQ 4 Q P~Q+q
(2 )' E, E&+,+ q—

(2.13)

Similarly, using Eq. (2.11) in (2.8} gives

2p —q
jo,,(q}=

2 Po(p —q}

2Q+q t(p Q+q}
(2n. )' 2m Ep E&+q+irt—

(2.14)

Notice that the special case q=0 in (2.7) expresses ortho-
gonality

Now, substituting Eqs. (2.13) and (2.14) into (2.5), the
PCC relation may be rewritten as

q (2p —q)
( } f dQ

~ ( } q (2Q+q) t(p, Q+q)
~ ( } f dQ

~ (~) t(p, Q+q)
2m (2m ) 2m Ep Eq+q+—i' (2m) Ep E&+q+ig—

(2.15)

~po, ,(q) —q jo,p(q}
Zo, ,(q) =

~po, (q)
(2.16)

It is easily seen that by making approximations for the
FSI part only, one might violate PCC. In order to express
quantitatively the degree of such a violation (see also Sec.
IV) one may use the dimensionless ratio

I

Results (2.17) show that the PW approximation does not
respect PCC. This is due to the substitution t~0 which
is applied to the FSI, but not simultaneously to the PW
part.

Proceeding with our derivation, we obtain from (2.15)
the following integral equation for Po

which ought to be zero if PCC is respected. However,
taking as an example t =0, which is usually called the
plane wave approximation (PW), we find using Eqs.
(2.13), (2.14), and (2.16),

0o(p —q}=—
~+~~-q —~~

co+Ed —Eq+
dQ

(2m. )

Ep q+ leol
&o,p(q)pw= Ep+

~
ep

(2.17) X Po(Q)
' . . (2 18)

Ep —Eq+q+ig
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Equation (2.18) is now substituted into the first term of
(2.13) resulting in

new expressions are preferable to the standard ones [Eqs.
(2.13) and (2.14)] when approximations are introduced.

F ( )
1 f dQ q (Q+q —p)

~ (g)
Ep q

—eo (2~)3 m B. Weak FSI interaction

t(p, Q+q)
Ep —Eg+q+ig

Also, substitution of Eq. (2.18) into (2.14) gives

(2.19)
We already saw from Eq. (2.17) that what is usually

called the plane wave approximation (PW) is inconsistent
with PCC. Consider the transition form factor (2.13) and
its PCC counterpart (2.19) in the PW approximation
t~0. Thus

()Jopq (2 )

q (Q+q —p»p —q Q+q —I
m(Ep q+ leol) 2m m

+

xy (g) "p'Q+q'
Ep —Eg+q+ ig

(2.20)

Note that Eqs. (2.19) and (2.20) are exact and equivalent
to, respectively, Eqs. (2.13) and (2.14). However, only the
former set satisfies PCC even if t (p, Q+ p) is approximat-
ed. This is a desirable property and we expect that these

I

~ Eq (2 13)~ko(
l p —q l

)
Fpw( )P q ~Eq. (2. 19)~0.

(2.21a)

(2.21b)
)

As has been remarked before that the difference between
(2.21a) and (2.21b) is due to the fact that in the former the
t~0 limit has not been applied to Po. Had one done so,
binding would not be possible, i.e., go~0, and one obtains
Eq. (2.21b). Thus there is no consistent PW approxima-
tion for the inelastic form factor (2.2).

One may, however, consider the Born approximation
t~ V. Equation (2.19) then becomes

F ( ) f P (Q)V(Q+q —p)= P (p —q)
v eo —&p—q (2ir) q+Q+p

( ). q+v —p (q+p+&Q)) n
(2.22)

where we have used the Schrodinger equation in momen-
tum representation

approximation the matrix element (Q+q l
G()t

l p) is
given by (Ref. 5) (U =plm)

0 ~ +P—q=&O —E — OP —q
(2~) p —q

(2.23)

t(p, Q+q)
Ep —Eg+q+i g

~I p ~q ~ Ir
~

z
~ ~

~
2

t
I I ~ I t

i(p q Q), z ( —i/v) f V(b, z')dz'
00 (2.26)

(Q) is some average of Q, determined by pronounced
maxima of Po(Q) and V(Q+q —p) in (2.22) and will be
specified later;

n—=(q —p+&Q))/'(
l q —p+&Q)

l
)

Notice that in view of the singularity in the energy
denominator of (2.19) care should be taken in the extrac-
tion of (Q). If in the integrand of (2.22) Po peaks strong-
ly at Q-0 (weak binding), then

Fo,",(q), , Po(p —q). (2.24)p (Q&-0 q2 —P2

The estimate above makes sense only if
l p l & l q l

. If,
however, pl lq, Eq. (2.24) becomes

Fezk
( )

ep —Ep f draco(r)e'(P q)' —V(r)

( —ilv) f V(b, z')dz'—oo

where r =(b,z), and the z axis is taken to be parallel to p.
Substituting Eq. (2.26) into Eq. (2.19) we find

Fo p(q) = dr Po(r)e'P1

eo —Ep
q.V ( i/v) f ' —V(b, z')dz'

m
(2.27)

In particular if pl lq one may eliminate the derivative in
the integrand of Eq. (2.27). The result is

Fo,p(ql II )- Po(p —q)
P +9'

(2.25)

which is also defined for p =q.
In the alternative strong binding regime, the maxima of

Po(Q) and V(Q) are about equally pronounced, in which
case (Q) lies somewhere between 0 and p —q. In this
case we do not have a simPle exPression for Fo p.

C. Eikonal approximation

Consider next the case of a fast exiting nucleon to
which we may apply the eikonal approximation. In this

For comparison the standard eikonal approximation ob-
tained upon substitution of (2.26) into (2.13) is given by

f d ~ ( ) i(p q) z ( i/v) f V(b&z )dz
O, p

(2.29)

This concludes our discussion of the inelastic form fac-
tor (2.2) needed in the description of knockout of a nu-
cleon bound to an inert core. In the following section we
shall attempt to make generalizations to realistic nuclei.
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III. AMPLITUDES FOR NUCLEON KNOCKOUT
FROM A MANY-BODY NUCLEAR SYSTEM

"
I
q'j(q) I 4'o & =~&4p

"
I p(q) I ko & . (3.3)

Under the conditions stated in Sec. IIA, the amplitude
for removing a nucleon from a A-nucleon system is pro-
portional to the inelastic form factor.

A;(A —I)„
Fo p„(q) =Fo p

(3.1)

Here Po is the target ground state wave function and
" a scattering state of a nucleon (labeled "1")with

(A —1)

asymptotic momentum p and a residual nucleus with
A —1 nucleons in a state n.

For the A-body system one may define a single particle
density and current density operators by

A

P(r)= g 5(r—r,.),

Here

l =2

Gi(E)=(E H—~ i -ho—i+i') ' (3.6)

with h i the kinetic energy operator for nucleon 1. Next
we define a transition operator by

Ti ——V (i1+G Ti)i. (3.7)

co =Ep+ hp„, (3.4)

with b,on
——en" ' —eo, the nucleon separation energy. The

(A —I)„scattering state
I gp ") satisfies

'")= Ipse„"-')+G, v, I@',
" ""&. (3.s)

Here
A

A

j(r)= g IV 5(r—r )+5(r—r. )V. I .
2m) . J Jj=l

(3.2)
Equation (3.S) may then be rewritten as

"&=(I+GiTi) lp0. " '& . (3.8)

As in Sec. II, transition matrix elements of the opera-
tors above, will then for a Hermition H, satisfy

Substitution of Eq. (3.8) into (3.1) leads to the standard re-
sult

Fo,p„(q) =X„(p—q)+ g f,X„(Q)dQ t"(p q+Q)
n' (2~) ~ ~on' Eq+q+ir—l

In Eq. (3.9),

t..(p, q+Q) = &(q+Q)~q„".-'
I T, I

p~y„"-'&

and

X.(I)=&No IP0. ' '&.

(3.9)

(3.10)

(3.11)

Note that in Eq. (3.11) X„(p), the probability amplitude to find in the A particle ground state, a (A —1) particle core in
state n and a nucleon with relative momentum p, plays the role of wave function po in (2.13). Proceeding as in Sec. II
one can show that parallel to (2.18),

X„(p—q) = —Ap„—Ep q

dQ t„„(P,Q+q)f, l.~+&q —Eq+q j gX. (Q)
(2m. ) co —6o» —Eq+q + i 'g

(3.12)

When substituted into (3.11) there results a many-channel generalization of (2.19)

dQ q.(Q+q —p) + tn n p Q+q
Ep q+ ~on (2m ) m „, "

co bon Eg~q+i q— — (3.13)

Disregarding excitations n &n, one finds a quasi-one-particle result with t„„directly calculated from an optical potential
V pt which is in general complex.

Next come the generalizations of the approximations discussed in Secs. IIB and IIC. %e start with what is usually
called the PW approximation

PW
Fopn Xn(p , 'q) . (3..14)

The critical remarks made after Eq. (2.21) hold here as well.
There is no difficulty to generalize the BA respecting PCC. A weak elementary NN force leads of course to

T, —+Vi ——g". 2U,J and thus

Fp n-BA 2q n
X(p —q) .

(q+p+&Q)) n

Without further difficulty we write down the eikonal approximation which respects PCC for Fo p„,

(3.15)
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+o,pn =(Ep—q+~on ) J ' ' ' J dr~ draco(rz rz )P„' e'~ .q"
A A zl

X g [v~j(r, —rj)je ' ' g I v,j(b~ —bj,z', —zj)dz&
P 1=2 J=2

(3.16)

where r; = (b;,z;), and p ~ ~ q has been assumed.

IV. NUMERICAL RESULTS FOR A SQUARE WELL

In this section we present results for a nucleon bound in
the lowest S state of a square well. Bound and scattering
state wave functions can be easily obtained.

Two sets of potential parameters have been studied:

Strong binding: Vp ———40 MeV; ap =3 fm;

ep ———25.62 MeV,

Weak binding: Vo ———33 MeV; ao ——1.5 fm;

ep ———2. 16 MeV .

(4.1)

(4.2)
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FIG. 2. (a) Comparison of
~

F'" ~,
~

F ~, and
~

F
~

for the strong-binding parameter set (4.1);p= 500 MeV/c, p~ ~q. (b) Com-
parison of

)

F'" (, (
F""(S)(, and

I
F""(CC)(, with the same parameters as in Fig. 2(a). (c) Function R(q), which measures the ex-

tent of PCC violation in a given approximation, is plotted for PW and EIK(S}. Parameters are the same as in (a}.
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For these model parameters above and with fixed @=500
MeV, we calculated [O=cos '(p q)],

V)
I—

IO

F(q, 8)=
~
Fo ~(q) ~

(4.3)

and compare
(i) F'": exact result, Eq. (2.3) or (2.19);
(ii) F: plane wave approximation, Eq. (2.21a);
(iii) F: PCC conserving Born approximation, Eq.

(2.24);
(iv) E""(S): standard eikonal approximation, Eq.

(2.27);
(v) F""(CC}: PCC respecting eikonal approximation,

Eq. (2.29).
We first discuss results for parameters (4.1) leading to

strong binding. Figure 2(a) shows that, due to the strong
distorting potential, PW and BA are clearly not adequate.

It is seen from Fig. 2(b) that F""(CC) fits the overall
shape of F'" better than F"" does. Because of lack of
orthogonality F""(S) does not vanish at q=0, conse-
quently it is unreliable for small q. Both F""(S) and
F""(CC) are very close to F'" in the region of the quasi-
elastic peak q-p. In fact here E""(S)seems to do some-
what better than F""(CC). This can be attributed to the
fact that, in order to maintain PCC in a given approxima-
tion, one must also approximate Po accordingly [see Eq.
(2.18)]. This seems to have an adverse effect in the quasi-
elastic region where violation of PCC by F""is minimal.
[See Fig. 2(c).]

A comparison between Figs. 2(a) and (b) clearly shows
the superiority of the eikonal approximation over PW and
BA as expected. The same observation can also be made
for the angular distributions shown in Figs. 3(a) and (b).

As mentioned before, the function Ro ~(q) of Eq. (2.16)
measures the extent of PCC violation in a given approxi-
mation. This function is plotted for PW and EIK(S) in
Fig. 2(c), with q~~p, and p=500 MeV/e. We see that
PW, and to a lesser extent EIK(S), violate PCC badly
around q =0. However,

'
these violations are minimal

around the quasi-elastic peak (q -p).
Next we discuss the weak binding case for which BA is

expected to be adequate. That this is indeed borne out,
can clearly be seen in Fig. 4(a). F is not reliable for
small q, again due to lack of orthogonality. Figure 4(b)
shows that F""(CC) is much closer to F'" than is F""(S)
for small q, while the latter does better in the quasi-elastic
region. Figure 4(c) is qualitatively similar to Fig. 2(c), in-
dicating that PCC violations are larger when q is small,
and minimal near the quasi-elastic peak.

V. SUMMARY

%'e have studied above various versions of, and approx-
imations for nucleon removal amplitudes by imposing the
condition of probability current conservation (PCC). A
relation has been established between the transition matrix
element of the probability density (transition form factor)
and that of the current density. This relation is generally
violated when one invokes approximations in the calcula-
tion of final state interactions.
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FIG. 3. (a) Comparison of angular dependence of
~

E'"
~,

~

E ~, and
~
E ~, with parameter set (4.1), p=500 MeV/c,

and q=100 MeV/c. (b) Comparison of angular dependence of
(

E'" (, (
E'~(S) (, and

(

E" (CC) ), with parameters the same
as in (a).

We have derived above new, exact expressions, (2.19)
and (2.20), for amplitudes describing nucleon knockout by
a weak scalar probe. These have the merit of respecting
PCC, even if the final state interaction is not calculated
exactly. In particular, the orthogonality constraint is
manifestly satisfied in any approximation and appears as
a special case of PCC in the limit q~O. PCC has first
been implemented in a model with a nucleon bound to an
inert core and has subsequently been generalized to nu-
cleon knockout from a genuine nuclear target.

For the ease of a particle bound in a square well, nu-
merical calculations demonstrate the expectation that,
wherever current conservation is significantly violated,
PCC respecting approximations resemble exact answers
more than do their standard PCC violating analogs. This
is, for instance, the case for the FSI treated in the eikonal
approximation. Our results clearly show that for the
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FIG. 4. (a) Same as Fig. 2(a) for weak-binding parameter set (4.2). (b) Same as Fig. 2(b) for set (4.2). (c) Same as Fig. 2(c) for set
(4.2).

q-0 region, only PCC respecting approximations ap-
proach the exact results. However, it has been found that
PCC violations by PW and EIK(S) are minimal in the re-
gion of the quasi-elastic peak (p-q). There usage of our
new expressions does not improve the quality of the PCC
violating results. It is reasonable to expect that these con-
clusions will also hold in the case of nucleon knockout

from a realistic many-body target.
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