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The spurious state problem in generalized Dyson boson mapping is examined. For cases where the fer-
mion space is restricted to at most four-quasiparticle excitations, we show that Dyson boson images of
normal-ordered quasiparticle interactions have identically vanishing matrix elements in the unphysical bo-
son space. This "decoupling" feature explains the finding of previous authors that, in systems with at most
four quasiparticles, every spurious state appears at its unperturbed energy. However, we show that the
decoupling property does not generally hold in problems where there are excitations of more than four
quasiparticles. Claims about methods for the spurious state problem, even though verified in four-
quasiparticle calculations, may therefore be of limited validity.

Dyson-type methods' of mapping the fermion problem
into a boson space have begun to be used in studies of low-

lying collective states in nuclei with even numbers of
valence particles. The convenience of such methods is real-
ly a result of working in an enlarged space which includes
states that violate the Pauli principle. In the ideal case
where the calculations are done exactly, each of the result-
ing stationary states will be either "physical, " so that it cor-
responds to an exact fermion eigenstate, or "spurious, " so
that it has no fermion counterpart at all. Approximations of
good accuracy blur this distinction only slightly. Meaningful
comparison with experiment requires one to identify and
discard the spurious states. Ring and Schuck show that
their mode coupling theory (MCT) is equivalent to the gen-
eralized Dyson boson mapping. ' They suggest that every
spurious state reveals itself by its energy, which is a sum of
free-quasiparticle energies, and they verify that this "decou-
pling" property indeed holds in actual four-particle, four-
hole, and two-particle-two-hole test cases. Similarly, in a
study of four particles with a quadrupole-quadrupole Hamil-
tonian in a single j shell, Geyer and Lee found that for the
non-Hermitian choice of Dyson boson Hamiltonian (ob-
tained by Dyson mapping the normal-ordered fermion Ham-
iltonian), the spurious states are easily identified because
the corresponding eigenenergies are all zero.

Tests based on such cases seem intuitively quite convinc-
ing, because they do contain spurious states. However, to
be reliable such tests must allow the two-body interaction
the same ability to couple the spurious states to the physical
space that it has in larger problems. The cases mentioned
above turn out to be deficient in this regard.

These cases can be compactly treated together, as special
cases of a system of up to four (Hartree-Pock) quasiparti-
cles. We will show, in fact, that the "decoupling" property
of the spurious states noted by Ring and Schuck and by
Geyer and Lee holds for systems of at most four quasiparti-
cles and is limited to them.

Let n; and n; be anticommuting quasiparticle creation
and annihilation operators, which satisfy

(,c I AJ) =hei, n, (0)F=O (1)

where ~0) F is the quasiparticle vacuum. In the Dyson bo-
son mapping method, ideal boson creation and annihilation
operators b& and b& are introduced; these are antisymmetric

in their indices, so that

Every state in Lp is fully antisymmetric in its boson indices.
Let P be the orthogonal projection operator on Lp, and de-
fine Q = 1 —P so that PQ = 0. The operator Q projects on
the unphysical (i.e., spurious) space LrJ. The Dyson image
(e)D of a fermion operator 0 is given by'

(0")D = O'P

where 0 is a boson operator obtained by the replacement

ot'I cia Bij

0!g0!I big P

n; aJ g bkbJk
k

(5)

If one actually uses the mapping (4), the presence of the
projection operator P ensures that all spurious eigenstates
will be at zero energy. However, the practical convenience
of the Dyson boson representation depends on working in
the full boson space and replacing (4) by the simpler
transformation

0. ~ 0. (6)

defined by (5). Equation (5) also preserves the bifermion
commutation relations.

We now establish the decoupling property. For two quasi-
particles no spurious states occur, because

bJ ~0) = BJ ~0) C Lp for all i and j (7)

The four-quasiparticle problem is the simplest case in which
L~ is not a null space. Let us consider the quasiparticle
representation of a general fermion Hamiltonian with two-

b]g = —bp

[b,J, bkl ] = 5;k 5JI (i ( j,k ( I )

bgi0) =0

where ~0) is the boson vacuum. The physical boson space
Lp. is generated by repeated applications of Pauli-corrected
boson operators

B~& = b(J
—g b(kbJI bkl

kl
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body interaction5

H=Hp+ V

where

Hp= X E~C4; a;

4p i f 4 f 3]V = x ~ ('ijijkl&i oij iiik rnl + H c ) + (tjiJkli3ii ~j ikk~l + H c )
ijkI

],+ 4 (&ijklcii inj Piklnl) I (10)

Note that all the operators in H are normal ordered in the
quasiparticle operators. Now let us consider calculations re-
stricted to a space of up to four-quasiparticle excitations.
This means that the boson space is limited to states of at
most two bosons. Within this restricted space, we shall
show that

4p —i +g kl —~iy~kl (12)

The only nonvanishing matrix elements of V in the four-
quasiparticle space are of the type (2 boson~ V4p~O). Since
[0) is a physical state and Bij gives a physical state when
acting on any physical state, we have

QV4P 0

For the v" term,

22= i j ~k I = JHij ~lk

(13)

(14)

For any state @ within the restricted space of 0-, 1-, and
2-boson states,

bj@CLP (15)

since bjp is a linear combination of ~0) and a one-boson
state, both of which are physical states. Since 8»
transforms every physical state into a physical state, Eqs.
(14) and (15) imply that

QV22 0

QV=O

We prove (11) for operators of the types 3J4 and 2J22, similar
arguments apply to the remaining types of operators in (10).
By Eq. (5) we have

When this is expressed solely in terms of creation operators
b, it becomes evident that P is not fully antisymmetric; for
example, the interchange of m with i does not simply re-
verse the sign of ill. Consequently, lii has a nonvanishing
spurious component,

Qy=QB „bjy3~0, (19)

in contradiction with Eq. (11). Other counterexamples are
easy to construct.

In conclusion, we see that past findings on the spurious
state problem are explained by the "decoupling" result
(ll), which implies that the Dyson image of a normal-
ordered two-body interaction vanishes in the unphysical
space. The limitation of this result to systems of at most
four quasiparticles prevents useful generalization of those
findings. Moreover, caution seems advisable also in cases
where four-particle tests are used for other methods, such
as the boson-fermion hybrid theory of Wu and Feng.

Equations (13) and (16), together with similar relations for
the u" terms, establish the decoupling property (11). This
equation implies that the spurious states will be decoupled,
i.e., QVP =0, and have noninteracting energies, because
QVQ =0. The value of PVQ is immaterial. Each spurious
eigenvalue of H is an eigenvalue of Hp, given by a sum of
free quasiparticle energies E;. This conclusion, one must
remember, depends on the fact that H is written in normal-
ordered form. Thus we have explained the findings of Ring
and Schuck and Geyer and Lee.

To see that the decoupling property, Eq. (11), does not
hold generally for more than four fermions, it is sufficient
to consider one very specific example, say the following
three-boson state (corresponding to six fermions),

iti3 = (bij )'bkt IO) (17)

(This state is entirely spurious because antisymmetrization of
its indices annihilates it.) Now consider the action on @3 of
8 „b», a typical term of V, arid for simplicity suppose that i,
j, k, I, m, and n are all distinct. We have

Bm bijniti3 = 28 bmijnbki lO)

~mn X bmp b qbnqpb(j bkl I 0)
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