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Application of the Kishimoto-Tamura boson expansion theory to a single-j shell model
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The boson expansion theory of Kishimoto and Tamura is applied to a single-j shell model. It is
shown that this theory is quite accurate, giving results that agree very closely with those of the exact
fermion calculations. The fast convergence of the boson expansion is also demonstrated. A critical
discussion is then made of an earlier paper by Arima, in which he stated that the Kishimoto-
Tamura theory gives rise to very poor numerical results. The source of the trouble encountered by
Arima is unmasked.

I. INTRODUCTION

The boson expansion theory (BET) of Kishimoto and
Tamura (KT), which our group at the University of Texas
has been working on for over a decade, was initiated in
two papers, i.e., Refs. 1 and 2, which we henceforth refer
to as KT1 and KT2, respectively. Based on the formal-
ism developed in these two papers, particularly in KT2,
extensive realistic calculations were performed, fitting ex-
perimental data quite well for a number of collective
even-even nuclei.

More recently, we renewed our investigation of formal
aspects of BET. We felt it desirable to put our earlier for-
malism on a firmer basis. The results of our efforts were
presented in Refs. 4 and 5, in which we gave a detailed
formal analysis of the KT1 and KT2 expansions, uncover-
ing the true nature of these theories.

In Ref. 5 it was shown, in particular, that the KT1 and
KT2 expansions are, in fact, quite different, in that they
are defined in different physical spaces. The expansion of
KT1 is exact, non-Hermitian, and defined in an overcom-
plete (and thus unnormalizable) boson subspace. (It is,
perhaps, not redundant to point out that the last feature is
not something introduced by the bosonization procedure,
but is carried over from the underlying fermion descrip-
tion. ) The expansion of KT2, on the other hand, is per-
turbative, Hermitian, and defined in a truncated, but nor-
malizable boson subspace. (In the KT2 fermion system,
and hence in the KT2 boson expansion, the sole quadru-
pole component is retained. )

Because of the way it was derived, the KT1 expansion
cannot be truncated (i.e., none of the possible modes can
be suppressed) without introducing an unacceptably large
amount of error (as we shall see in Sec. III). In practice,
the (exact) KTl formalism is inconvenient to use, because
the physical boson states become prohibitively complicat-
ed to handle as the number of phonons increases. In order
to rpake realistic calculations possible, one has to intro-
duce a truncation of the modes, and thus the KT1 expan-
sion must be given up. In fact, in all our numerical appli-
cations this formalism was never used, in spite of the fact
that we did, unfortunately, mention, in constructing the
bosonized Hamiltonian, the possibility of a truncation in
the KT1 paper. Instead the KT2 theory was used.

As we shall also see later in this paper, the KT2 expan-
sion is not an "approximate" form, nor a "truncated" ver-
sion of the KT1 expansion, and cannot be obtained from
the latter, but must be rederived independently. In Ref. 2
the reason for giving up the KTl expansion was, perhaps,
not stated clearly, but the coefficients of the new expan-
sion were given explicitly, along with the explanation of
the procedure used to derive them.

Since the algebra used in KT1 and KT2, as well as in
Ref. 5, was very involved, it is possible that the basic
mathematical and physical aspects of the BET work of
KT still remain obscure to the reader. Therefore, in the
present paper we intend to revisit the KT work on BET
and reanalyze some of its formal aspects mentioned above
in the context of a simple single-j shell model (1j-SM). In
doing this, we rederive ab novo the KT expansions ap-
propriate for this model. This will give us the possibility
to discuss, on a practical and simple example, the points
mentioned above concerning the nature of the KT1 and
KT2 expansions. We then present some numerical results
obtained by using the KT formalism, and demonstrate
that this BET reproduces rather accurately the original
fermion results. We also show the good convergence of
the expansion. (Let us note here that, because of the sim-
plicity of the model and of the restricted model space
chosen, the calculations remain feasible even when the
KT1 expansion is used. )

A few years back, Arima published a paper, in which
he presented some numerical results obtained by applying
the KT formalism expansion to a 1j-SM (the same we use
in the present paper). He claimed that the 8(E2) values
for the transitions from two- to one-phonon states calcu-
lated in the KT way were far too small compared with the
exact results. He thus has cast a serious doubt on our
whole work on BET.

It is one of the purposes of this paper to unmask the
source of the trouble encountered by Arima and explain
the contradiction between our "good" results and Arima's
"poor" results. As we shall see, the reason for such con-
tradiction lies in the fact that two totally different expan-
sions were used. We shall show that Arima's results can
be reproduced if a "truncated" version of the KT1 expan-
sion is used. As we mentioned above, and will discuss in
detail later, the truncation of the KT1 expansion is bound
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to introduce a large amount of. error in all the-calcula-
tions. It is because the thus obtained boson images of the
fermion operators violate badly the original fermion coin-
mutation relations. On the other hand, our good results
were obtained by using the KT 2 expansion, which was
constructed as to satisfy (approximately) the original fer-
mion commutators.

Arima seems to have disregarded completely the KT2
paper, and used an expansion which was, in fact, never
used by us for realistic calculations. Therefore, one
should not take Arima's results as evidence against the va-
lidity of our BET works. ' We may also note here that
a recent paper by Kishimoto and Tamura (hereafter re-
ferred to as KT3), gave a full forinal justification of the
KT2 formalism. It was shown that KT2 is nothing but
an approximate version of a rigorous and rather general
KT3 theory. We thus believe that the mathematical
soundness of KT2 and thus the correctness of all our nu-
merical works has been established beyond any doubt.
(We may also note that, although the KT1 expansion has
to be given up, it does not mean that the whole KT1 paper
becomes useless. In fact, the formalism given in Sec. IV
and thereafter in KT1 remains valid and useful, if the ex-
pansion coefficients, called X„ there, are replaced by the
corresponding coefficients obtained in the KT2, or better
in the KT3 way. )

In Sec. II we give a brief account of the KT formalism
and apply it to the 1j-SM. In Sec. III we discuss Arima's
work. In Sec. IV we calculate the 8(E2) values for the
transition from three- to two-phonon states, demonstrat-
ing the fast convergence of our BET. In Sec. V we dis-
cuss the accuracy of the Bardeen-Cooper-Schrieffer (BCS)
approximation, which was used in practical applications
of our BET. Concluding remarks are given in Sec. VI.

II. ACCURACY OF THE KT BOSON EXPANSION

In this section we discuss the accuracy of the BET of
KT. In doing this, we take up the lj-SM with j=—", (the
same model as in Ref. 6). The use of this simple model
allows us to make the whole presentation simple and
transparent. For convenience, in our presentation, we
shall separate the problem of the accuracy of the KT ex-
pansion itself from that of the BCS approximation.
Henceforth, through Sec. IV we will be concerned with
the accuracy and convergence speed of the expansion,
while the discussion of the error introduced by the BCS
approximation will be postponed until Sec. V. Thus, up
to Sec. V, the terminology "exact fermion results" should
be understood within the framework of the quasiparticle
description.

A. The fermion problem

We first formulate the fermion problem, having in
mind the evaluation of the 8(E2) values for the transi-
tions from two- to one-quadrupole phonon states. Since
the particle-hole mode description and the BCS theory is
consistently used in the KT formalism, we first perform
the Bogoliubov transformation

a,t =ud,t +u( —)J d,.

(where u gu =1), from the particle (az. ) to the quasi-
particle (dJ~) representation. It is easy to see that the
shell model quadrupole operator Pz&, (as defined also in
Ref. 6) is then given (neglecting the noncontributing
terms) as

Pzp ——2V Quv8z~

1=18z~= ~- [dJdJ ]z~ ~v2

(2.1a)

(2.1b)

In (2.1), Q=j+ —,
' is the pair degeneracy of the lj-SM,

and the bracket denotes the standard angular momentum
coupling. As said above, in the following we shall discuss
only the BET itself, and shall, therefore, ignore the BCS
factor (i.e., the 2~Q uu factor) in (2.1a), and use the 8z&
operator of (2.1b) as the quadrupole operator.

Using the quasiparticle pair creation operator B2„de-
fined above, we can construct the one- and two-
quadrupole phonon states as

lj';2~&=8,'„ lo&, (2.2a)

[82821LM I
o& .

2NL
(2.2b)

Here
l
0& is the quasiparticle vacuum, and the norm XI

is calculated as

NI. = [1—YI. (22;22)]' (2.3)

In (2.3), YI (22;22) is a special case of the coefficient
Yr (ab;cd) defined by

j j a
YI(ab;cd)=2a bed j j b (2.4)

c d L,

where a = (2a + 1)'~, and the curly bracket quantity is a
9j symbol.

By using (2.1)—(2.4), the reduced matrix elements of the
operator 82& between the one- and two- quadrupole pho-
non states can be easily evaluated as

&j"'~118zllj"2& =~&L&L~.

Note that the explicit form of XI was given in (2.3).

(2.5)

B. Bosonization of the fermion problem

In the framework of the KT formalism, the boson im-
age of the pair operator 8,„is written as

In (2.6), A, & and A,& are ideal boson creation and annihi-
lation operators, with angular momentum a and projec-
tion p; also Ad„-——( —) "Ad &. Note that in the present
1j-SM, all the angular momenta a, b, c, . . ., appearing in
(2.5) are even integers. Note also that, in general, the ex-
pansion (8,„)zi involves an infinite series with the nth

(8,~ )zi
——A,~+ g g gL (bc;da) [[AI,A, ]I Ad ],~ . —

bed L a

(2.6)
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tenn being written (schematically) as (A t)"A" '. Howev-
er, within the context of the present and the next section,
in which we consider only one- and two-boson states, the
two-term expansion in (2.6) makes the theory exact.

The expansion coefficients gL in (2.6) are determined by
requiring that the boson images of the various fermion
pair operators satisfy the same commutation relations as
do the original fermion pair operators. Imposing this
condition, we easily find that the equation to be satisfied
by gL, is given as

2gr (bc;da)+ g gl (bc;ef)gl. (ef;da)+ YI (bc;da) =0,
ef

(2.7)

where Yl are defined in (2.4). [Note that (2.7) is nothing
but a special case of Eq. (3.5c) of KT1. See, however,
Ref. 8.]

From now on we shall refer to (2.7) as the coefficient
equation (for gI.) It is obvious that to satisfy this equa-
tion is the same as to let the boson expansion satisfy (to
the third order) the original fermion commutation rela-
tions.

As done in KT1, we solve Eq. (2.7) by first making for
gL the ansatz

gr, (bc;ad) =2rbbc. d, +2sYI (bc;da),
1

~bc;da T(~ah~cd +~cc5bd )

(2.8a)

(2.8b)

%'e also note that the Ys satisfy the following complete-
ness relation:

y YL, (bc;ef) YL, (ef;da) =2&bc dc —.Yl.(bc;da),
ef

(2.9)

which can be easily proved. [Equation (2.9) is nothing but
a special case of Eq. (3.12) of KT1.] Inserting (2.8) into
(2.7), and making use of (2.9), we obtain the following set
of equations for the parameters r and s:

r+r +2s =0
4s —4s +8rs+1=0.

(2.10a)

(2.10b)

As done in KTl, the set of roots of (2.10) that we shall
use for the boson expansion (2.6) is

r= (1—v3) ands=—1 1

2 3 2 3
(2.11)

[Note, however, that any set of solutions of (2.10) gives
rise to a perfectly legitimate boson expansion. See also
Refs. 4 and 5.] This, together with (2;8), allows us to
rewrite (2.7) as

I.
(&cp)KTi=~c„+ gg —„ 1

. ~bc;dc YI.(bc;«) [[~b~, ]L,~d],„
1

. 1

3 '' 3
(2.12)

This is the KT1 boson expansion for Bzz, up to the
third-order term.

Since the original fermion commutation relations [i.e.,
the coefficient equations (2.7)] are satisfied exactly by the
KT1 boson expansions, (2.12) allows one to reproduce the
fermion result given in (2.5) exactly; see Eq. (2.23a),
below.

However, the KT1 expansion is not very convenient to
use in practice, because, for one thing, the bosonized
states are not given as simple ideal boson states; see Eq.
(2.20b) below. Actually, the physics underlying realistic
problems of the nuclear collective motions indicates that
we do not need to use such a sophisticated theory as KT1.
In most cases of practical interest, the quadrupole collec-
tive component plays a dominant role, and the truncation
to this single component does make sense. In fact, our
successful realistic calculations were performed using the
KT2 formalism, in which such a truncation was made.
We now turn to the derivation of the KT2-type expansion
for the Ij-SM.

W'e want to stress the fact that the truncation is done in
the fermion stage of the formulation, and, consequently,
that the bosonization procedure must be carried out com-
p/etely anew. In practice, however, we can still use Eqs.
(2.6)—(2.8) just as they stand, if we set all the angular mo-
menta a, b, . . ., f in these equations equal to 2. Equa-
tions (2.7) and (2.8) are thus replaced by

2', (22;22)+gL (22;22)+ Yl (22;22) =0,
gl (22;22) =2r +2s Yl (22;22) .

(2.13)

(2.14)

If (2.14) is inserted into (2.13), the latter will contain
terms linear and quadratic in YL. The KT2 approxima-
tion (apart from the truncation discussed above) is to
suppress the YL term, on the grounds that it is of a higher
order. [Note that Yl cannot be linearized, as done in
(2.9), because the completeness relation does not hold any
more. This is what, formally, discriminates KT2 from
KT1.] Once the YL term is suppressed, it is easy to see
that (2.13), with the ansatz (2.14), is reduced to the follow-
ing two equations for r and s:

r+r =0, (2.15a)

4s +8rs +1=0 (2.15b)

which replace Eqs. (2.10a) and (2.10b). One set of solu-
tions of (2.15) is given by

r=0ands= —
4 (2.16)

)

which is nothing but the choice made in KT2 [as explicit-
ly given in Eq. (7.9) of Ref. 2]. With this particular
choice, one has the relation that gL (22;22)
= —

z YL, (22;22), and (2.6) can be rewritten as
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(B2p )xrz ——A pp
——,g YL, (22;22) [[A22 p ]L,A~]2„.t

L

(2.18a)
~
I;2p) =(B2„)g i

0),

~ [(B2)a(B2)a]LM I
o»

2NL

where
~

0) is the boson vacuum, and (Bz„)~ represents the
boson expansions, (Bz& )xr& or (Bq&)~~2, given by (2.12) or
(2.17), depending on whether the KT1 or the KT2 formal-
jsm &s used.

By inserting (B2&)Kr~ and (Bzz)KT2 for (Bz„)a in
(2.18), it is straightforward to obtain the boson norm Nl
in the KT1 and KT2 frameworks. They are given, respec-
tively, as

(2.18b)

(NL, )xr) ——[1—YL (22;22)]'

(Nl. )Krg ——[1——, YL, (22;22)] .

(2.19a)

(2.19b)

Note that in obtaining (2.19a) the completeness relation
(2.9) was used.

By substituting the (B2 )x~~ and (B2 )K~2 in (2.18)
once again, it is trivial to see that the one-boson state in
(2.18a) is given as a simple ideal boson state A2&

~

0) for
both KT1 and KT2. In order to construct the two-boson
states we may carry out a "step-by-step" operation. For
the KT2 case we find that

[~2~2]LM IO»
1

2
(2.20a)

i.e., that the two-boson state is again an ideal boson state
(and this feature persists for all the states with higher
numbers of bosons as well).

Using (B2& )xr~, on the other hand, we find that

g [~22;ab YL, (22 ab)]
1 1

2NL 3 ~b

~b ]LM I
o» (2.20b)

(2.17)

This is the KT2 expansion for B2&, up to the third-
order term. By comparing the form of (2.12) and (2.17), it
is obvious that, as we remarked above, the KT2 expansion
cannot be obtained from the KT1 expansion by simply
suppressing the summation over the angular momenta in
the latter.

Having derived the KT1 and KT2 formalisms for the
1j-SM, we are now ready to test their numerical accuracy.
To do this, we first construct the one- and two-quadrupole
boson states as

(2;L
i ~(Bz)g

~

~1;2)=~2LNL . (2.21)

The boson matrix element given in (2.21) is to be com-
pared with the original fermion matrix element in (2.5).
As a direct measure of the accuracy of the KT expan-
sions, we therefore define the ratio

(2;L
~
~(B$)g

~

~1;2)
(2.22)

Using the fermion norm in (2.3) and the boson norms in
(2.19), we finally have the following two ratios, one for
the KT1 and the other for the KT2 boson expansions:

(Rl. )~g) ——1 (for all L),
[1——,YL, (22;22)]

[1—YL (22;22) ] '~

(2.23a)

(2.23b)

In Table I, numerical values of the squares of the ratios
(RL )K~~ and (RL )zz2 are given in the first and second
columns, respectively, for L=O, 2, and 4. The fact that
(RL )Kr& ——1 means that the KT1 is an exact BET in the
context of the present paper, as it should be from its
derivation. [For convenience, we list, in the fourth
column of Table I, also the values of YI (22;22).]

Although the commutation relations, or, equivalently,
the coefficient equations (2.13), are satisfied only approxi-
mately by the KT2 boson expansion [being violated by a
quantity of the order 0( YL, )], the ratios (Rl. )„zz given in
Table I are quite close to 1. This means that the KT2 for-
malism is actually very accurate, in sharp contrast to
what was claimed in Arima's work. For comparison, the
results obtained by Arima are also given in the third
column of Table I and are denoted by (RL )&„,. They are
clearly much smaller (by a factor of more than 3) than the
correct ratios (Rl )Kr2. In the next s'ection we shall point
out and discuss the source of the trouble encountered by

One will easily recognize that the B(E2) matrix ele-
ment (j;LM

~ Bzz ~

j;2p') we have calculated in subsec-
tion A, and are trying to copy here in the boson way, is
nothing but an element of a large norm matrix, the ele-
ments of which can be written as
(0~ [B,Bb]LM[B,Bd]IM ~0). This matrix is singular, in
general, ' ' and this is another way of looking at the diffi-
culty of using the BET of KT1 in practice. In the present
section, however, we do not consider the whole norm ma-
trix, but only a few elements of it. This is why the use of
the KT1 expansion does not cause any trouble here.

We can now turn to the calculation of the reduced ma-
. trix elements of Bq& that interest us here. In terms of NL,
it is easy to show that

which is clearly not a simple ideal boson state, but rather
a quite complicated superposition of such states. This is
why the use of the KT1 expansion is not convenient for
realistic many-boson calculations. In the present simple
lj-SM case, however, states such as (2.20b) are tractable
and calculations involving these states can still be carried
out without much trouble. Actually, (2.19a) was obtained
by using (2.20b).

(RL)

1.060
1.004
1.004

2
( RL }Arima

0.20
0.29
0.29

FL (22;22}

0.3908
0.1227
0.1199

TABLE I. Ratios of the boson and fermion 8 (E2) values for
the two- to one-phonon transitions.
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gL (22;22) = —1+[1—YL (22;22)]' (2.24)

which is nothing but the KT3 result and is exact, within
the truncated space. (For a detailed discussion of the non-
perturbative solution of the coefficient equations within
the framework of the commutator method see also Ref.
5.)

If (2.24) is used in (2.6) (with a =b =c =d=2), the bo-
son 8 (E2)'s reproduce the exact fermion 8 (E2)'s.

III. ASSESSMENT OF ARIMA'S APPLICATION
OF THE KT FORMALISM

In his application of the KT formalism, Arima started
by writing down the boson expansion (Bz„)~ as

(Bz~)g ——Az„+ g g +bc(L)d;2][(AyA, )r, Ag]z

In (3.1) b, c, and d again represent all the angular mo-
menta of the nucleon pairs permitted by the lj-SM. Ari-
ma did not give the explicit form of the expansion coeffi-
cients g in (3.1), but he did state that these coefficients
should bc determined so that the boson expansion series
satisfies the original fermion commutation relations. For
the untruncated case, we may thus safely assume that he
took g as

/[ bc (L)d;2] = gL (bc;d 2), —L

2
(3.2)

where gL was defined in (2.8). The use of (2.11) then
gives

/[bc (L)d;2]=-L
2

(3.3)

With the coefficient g of (3.3), the expansion (3.1) is
nothing but the KT1 expansion (2.12) with a =2. As we
showed in Sec. II, this expansion reproduces the exact fer-
mion result, and is thus correct.

For his calculations in the truncated case, Arima ap-
pears to haUe assumed that the truncated expansion can be
obtained from (3.1) [with the coefficients g' still being
given by (3.3)], by simply dropping the summation over b,
c, and d. [Again, he did not give explicitly the coeffi-
cients g for the truncated expansion, but kept using the

Arima in his use of the KT formalism, which led him to
the incorrect and gravely misleading results given in Table
I.

As an aside, we may make here an additional remark.
As we stated above, we suppressed the Yi term, in solving
(2.13) [together with (2.14)]. We did this, because we
wanted to. follow faithfully what had been done in our
previous work. ' Actually, however, this perturbati Ue

procedure of solving the coefficient equations was not
really necessary. As seen, (2.13) is a very simple quadratic
equation in gL(22;22), and thus can be solved directly
without making the ansatz of (2.14). In fact, we obtain
gL (22;22) as

same notation as in (3.1) with b =c=d =2.]
By using the thus obtained expansion, Arima proceeded

to calculate the 8(E2) values. It is easy to see that the
reduced matrix element of (Bq„)~ is now obtained as
v 2/V 3[1—YL (22;22)]L, which results in

(Ri )~„,= —,
' [1—Yl (22;22)] . (3.4)

GI ———,
' [2—I'L (22;22) —YL(22;22)] . (3.5)

In order for the commutation relations to be satisfied,
Gl. must vanish (at least approximately). The actual nu-
merical values are Go ——0.4855, G z ——0.6207, and
Gq ——0.6219, and represent the amount of error intro-

2

duced in (NL) by using the erroneously truncated BET.
Since the ratios of the B(E2)'s calculated in Sec. II are
actually simply given as (NL ) /(Nl ), it is a reasonable
guess that the above large values of GI are directly re-
sponsible for the too small (Nl ), and hence of the too
small (RL, )A„~,. We can easily confirm that the following
relation is satisfied exactly

2
GL«I, )~nma= 1 — F,

(NL, )'

where Nl is the exact fermion norm given in (2.3). Note
that GL/(Nl ) =—', , as seen from (3.5) and (2.3). Hence
(3.6) makes (RL )~„,=—,

' . This is in fact very close to the
values given in the third column of Table I.

In concluding this section, let us say that in Ref. 1 we
did make a truncation of the modes in constructing the
Hamiltonian. (See Sec. IV and its sequel in KT1. See also
the remark we made about KT1 towards the end of the
Introduction of the present paper. ) However, when per-
forming numerical calculations, based on it, we soon
discovered that the error was far too large to make any

(3.6)

It is now trivial to confirm that (3.4) reproduces exactly
Arima's numerical results given in the third column of
Table I. (Note that, as in the KT2 case, the boson space is
spanned by ideal boson states, which can be easily checked
by performing the step-by-step operation with Arima's
truncated expansion. )

In the previous section we went through a detailed
derivation of the KT1 (exact) and KT2 (truncated) boson
expansions using consistently the principle that the com-
mutation relations must be preserved. We also stressed
there, in particular, that KT2 expansion cannot be derived
from the KT1 expansion, by simply suppressing the sum-
mation over the angular momenta. The key point is that,
the use of the completeness relation (2.9) is permitted in
deriving the KT1 expansion, but is not permitted in ob-
taining the KT2 expansion.

As described above, Arima obtained his truncated ver-
sion of the boson expansion from the untruncated KT1
expansion, thus making an imphcit (and illegitimate) use
of the completeness relation (2.9). (See also the conclud-
ing remarks to this section. ) Thus the expansion used by
Arima is most likely to violate the original commutation
relations. To check this, let us insert Arima's gl [Eq.
(3.3) with b =c =d =2] into the coefficient equation
(2.13). Denoting the left-hand side of (2.13) by GL, we
find that
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physical sense. This was, basically, the reason that led us
to search for a different approach, the result of which was
the KT2 expansion. We find it very unfortunate that Ari-
ma disregarded the work of KT2, and failed to detect the
above trouble in his work of Ref. 6, especially in view of
the large negative influence that his paper has had on the
nuclear community with regard to our work in BET.

IV. FIFTH-ORDER CALCULATIONS
WITH THE KT2 EXPANSION

In Sec. II, we showed that the KT expansion is quite
accurate, by considering one- and two-phonon states. In
the present section we intend to go one step further and
take the three-phonon states into consideration. This will
allow us to estimate the accuracy further, as well as the
convergence rate of the expansion. Furthermore, this will
give us the opportunity to discuss a specific problem per-
taining to the truncation of the fermion space to a single
quadrupole phonon, a problem that does not show up if
only one- and two-phonon states are considered.

Let us first present the fermion formulation. The
orthonormal three-phonon states can be written as

3'IM& = z g &i [[&z&z]r&z ]1M I
0& ~

6N3 (I)
(4.1)

—,
'
Q C; C; N3(i, i';I) (4.2)

with

N3 (i,i 'I) =[1—3 Y;(22;22) j5;;

+2i i ' g W(2ii'2;AI) Y;(22;2A, ) Y1 (22;2A.).

(4.3)

In (4.3) the notation 8' stands for the Racah coefficient,
and the quantity Y was defined in Sec. II. The summa-
tion over A, , also in (4.3b), has its origin in the commuta-
tion relation [Ct,Bt], where Ct is the scattering operator,
and it can, in principle, take on all the values permitted by
the 1j-SM, i.e., A, =j+j. We shall refer to the case in
which the summation over A, is retained as the exact (or,
untruncated) fermion calculation, and to the case in which
this summation is limited to, as the truncated fermion cal-
culations.

where C; denotes the coefficient of fractional parentage
(CFP), and N3 (I) is the total norm given by

N3 (I)= [1—( Y3 )I ]'
1/2

The reason for separating these two cases is that, as
stressed in Secs. II and III, the truncation of the corn-
ponents has to be done before carrying out the bosoniza-
tion of the problem. Below we shall perform the boson
calculations by using the KT2 expansion, which was de-
rived after truncating the fermion system to a single quad-
rupole component (A, =2). The fermion calculations, on
the other hand, will be performed both for the exact and
the truncated cases. This will a11ow us to estimate
separately the amount of two kinds of errors, one due to
the truncation (i.e., the violation of the commutation rela-
tion) made in the fermion stage, and the other due to the
use of the KT2 approximation. The error in the final bo-
son results is, of course, a combination of these two types
of errors.

In terms of the partial norms, defined in (4.2b), the fer-
mion reduced matrix elements of the pair operator 82&
between the three- and two-phonon states are given as

'( J II I&z
I I

j'L & =I
6N (I)

&& 6 g C; N3(i, L;I)
2N2 (L)

(4.4)
(For clarity, we denote here by N2(L) the two-phonon
fermion norm, rather than by NL used in the previous two
sections. ) The same expression given in (4.4) is valid for
the fermion calculations in both the exact and truncated
cases, as long as the summation over A, is included or
suppressed consistently in the calculation of the partial,
and hence of the total norms.

For the boson calculations we shall use the perturbative
expansion of KT2 in which the terms up to the order of
F are retained consistently. This is needed, because in
the calculations involving three-boson states, the fifth-
order term in the expansion will also contribute. Here we
shall not go through the derivation of the Y terms in the
expansion. We shall only say that the expansion coeffi-
cients can be obtained in a manner totally analogous to
that described in Sec. II, starting from the coefficient
equations given in KT1 (but setting all angular momenta
equal to 2), and using the ansatz g=a+bY+cY, for
both the third- and fifth-order terms. One can also obtain
the same expansion, starting from the KT3 expansion or
the square-root representation of Ref. 5, and expanding
the norm factors, retaining terms up to Y . The boson ex-
pansion has thus the form

(+2p, )B ~ 2p + (~ 2@ )B + (+2/l )B (4.5)
where

(&2„)B ———g ~ [ —, YL(22;22)+ —,
' YL(22;22) YL(22;22)][[A2A2]LA ]2

(B2„)B' ————,
' g g YI(22;22) YL (22;22) W(2L1I2;2L2) 8'(2L2,'IL3)

I LIL2L3

(4.6a)

A A A A2
Q ~ L1L2L3I [[[A2A 2]L 321] [AL22A2] ]2' . (4.6b)



APPLICATION OF THE KISHIMOTO-TAMURA BOSON . ~ . 1751

Let us point out here that the second term in Eq. (4.6a)
was omitted in the previous sixth-order calculations (see
first paper of Ref. 3). For consistency this term should
have been retained throughout. However, as we shall see,
the F -type terms in the expansion introduce, in almost
every case, only a small correction to the third-order re-
sults (see also Ref. 5).

We calculate the reduced matrix elements of the pair
operator for the exact and truncated fermion cases, by us-
ing Eq. (4.4), and for the boson case by using (4.5). As
done in Sec. II, we then calculate the ratios of the boson
results to the fermion results. The squares of these ratios
are presented in Table II. In part A of the table the ratios
are given for the exact fermion calculations, and in part 8
for the truncated fermion calculations. In part C we give
similar ratios for the 8(E2) values between the truncated
fermion results and the exact fermion results. In the first
column of parts A and 8 we give the values obtained with
only the first-order term in the expansion (4.5). In the
second column the ratios are given for the boson results
that include the first-order term and the Y term in the
third-order term of the expansion. Finally, in the third
column the contributions coming from all the terms in the
expansion are included.

Let us first look at part 8 of Table II. We can see that
for all the transitions the convergence rate is quite fast
(i.e., that the difference between the second and third
columns is very small), and the accuracy is extremely
good (i.e., that the ratios are very close to 1) for all, except
for the cases of the (2~2) and (2~4) transitions. The
reason for these two exceptional cases can be traced back
to the fact that for I =2 the Y3 term in Eq. (4.2a) is rath-
er large, and thus higher powers of Y also will give a siz-
able contribution. Even so, the error in these two cases
does not exceed 14 percent. Overall, we may say that the
boson transcription of the fermion problem works quite
satisfactorily.

If we look now at part A of the same table, we see that
the convergence rate is as fast as in the truncated case.
The error in the final results is within 8 percent. We must
stress, however, that the results of part A should be inter-
preted carefully, because the termination of the expansion

at terms of order Y occasionally he/ps, instead of hurting
the results, thus giving a somewhat misleading impres-
sion. To have a better estimate of the error due to the
truncation of the fermion systems, we must look at part C
of Table II. There we can see that the violation of the
Pauli principle introduces errors of up to 16 percent. The
same amount of error would also be present in the results
of part A, had we performed the boson calculations by us-
ing the expansion obtained by solving the coefficient
equations exactly, instead of treating them perturbatively,
as we did in the present paper.

As we said in Secs. II and III, the truncation of the fer-
mion system is something that one has to do. Whether
the truncation introduces acceptable errors or not depends
on the concrete problem at hand. In our realistic calcula-
tions, where Y is of the order of 0.1, the error is within
the range of 10 percent. For the same reason, the amount
of error due to the bosonization is small, and therefore the
overall error is in the range of 15 percent.

V. ADEQUACY OF THE 8CS APPROXIMATION

So far we have examined only the accuracy of the KT
boson expansion, and found that it is indeed quite good
(Secs. II and IV). However, the KT formalism, in practi-
cal applications, uses the BCS approximation. We shall
now assess the accuracy of this approximation, by com-
paring its results with those obtained by using the
number-conserving quasiparticle (NCQP) approach, re-
cently developed by Li. '

In the NCQP approach, one constructs "effective
operators, "which can be used directly in the quasiparticle
space (of the BCS theory). Thus the simplicity of the
BCS calculations is maintained. Yet, the NCQP results
are much more accurate than are the BCS results. This is
achieved because the effective operators are constructed in
such a way as to incorporate the effect of the number pro-
jection for a given N-particle system, and to take into ac-
count the blocking effect. (In the 1j-SM case, the NCQP
approach gives exact results. )

TABLE II. Ratios of the 8(E2) values for the three- to two-phonon states transitions for the case
of: (A) boson and untruncated fermion calculations; (8) boson and truncated fermion calculations; (C)
truncated and untruncated fermion calculations.

2
2
2
3
3
4
4
6

0(1)

1.2213
1.5378
2.2144
2.2216
1.3762
1.3807
1.2724
1.2765
1.3097

Part A
+0( ~)

0.9399
1.0470
1.0577
1.0567
1.0621
1.0621
0.9838
0.9838
1.0145

0.9245
1.0046
0.9664
0.9595
1.0550
1.0504
0.9736
0.9735
1.0039

0(1)

1.3252
1.5349
2.6121
2.6312
1.3210
1.3259
1.3182
1.3231
1.3153

Part 8
+0( F)

1.0199
1.0450
1.2476
1.2516
1.0195
1.0200
1.0192
1.0197
1.0189

1.0032
1.0027
1.1400
1.1365
1.0127
1.0088
1.0086
1.0091
1.0082

Part C

0.9216
1.0019
0.8477
0.8443
1.0418
1.0413
0.9652
0.9648
0.9957
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For the purpose of the present paper, we need to obtain
explicitly the "effective operator" (P2& )~ that corre-
sponds to the shell model operator Pz&. It can be ob-

gP

tained readily from Eqs. (3.37) and (4.6) of Ref. 10, and it
is found to be

(Pz„)~ P f
——

2~AU�(N

—1,n 1)—V(N, n —2)Bz& )P, (5.1)

where

r~~ 71 =4
r~, n=6

1.389 1.055

1.500

0.952
1.037

10

0.911
0.907

12

0.900
0.875

TABLE III. Squares of the ratios of the BCS uv and number

projected uv amplitudes.

and

U(N, n) =
r 1/2
20—N —n

2(Q —n )

(5.2)

As a measure of the accuracy of the BCS approximation
in the calculations of the 8(E2) values, we thus find it
convenient to introduce the ratio

V(N, n)= N —n

2(Q —n )

1/2 Q v
l'~ =

[U(N —l, n 1)V(N—,n —2))2

and v=

In (5.1), N is the total number of (valence) nucleons, while
n =g dz~ dj~ is the quasiparticle number operator.

Further, P is a projection operator that eliminates any
spurious component from the quasiparticle states, and U
and V are the new number-conserving amplitudes as de-
fined by Eq. (5.2). Because of the presence of N and n in
the U and V factors, the number conservation as well as
the blocking effect are properly taken into account. [As
done in the previous sections, we have omitted in (5.1) all
the terms that do not contribute to the present 8 (E2) cal-
culations. ]

. Note that, in the present 1j-SM, n and P commute.
Thus, by comparing (5.1) with (2.1a), it is easy to see that
the use of the NCQP approach means to replace u, v, and
Bz, that appear in (2.1), by U(N —1,n 1), V(N, n —2), —
and PB2&P, respectively. (Below, we consider only the
BCS errors due to the number nonconservation and the
neglect of the blocking effect, and will disregard the
correction by the projection operator. The latter gives rise
to correction of the order of 1/Q .)

In the 1j-SM, the BCS amplitudes u and v are given as
1/2 ' 1/2

N
2Q 2Q

(2Q —N)N
4Q

(5.3)
(2Q —N —n+2) (N —n+2)

2(Q n+—1) 2(Q —n+2)
In Table III we give the numerical values of rz for

N =4—12, and for n =4 and 6. (The cases with n =4
and 6 are, respectively, for the transitions from two- to
one-phonon and the three- to two-phonon states, as con-
sidered in the previous sections. ) As seen, the BGS error
is at most 12 percent, except for the cases with N=n.
(Note that, for a given N-particle system, the BCS theory
is known to work poorly when n=N. ) This indicates
that, for most cases, the BCS approximation is quite ade-
quate.

For completeness, we give in Table IV the squares of
the ratios of the 8(E2)'s, obtained by using the BCS and
the KT2 type-BET, over those obtained by performing
number-projected (NCQP) fermion calculations, which
may thus be called the exact fermion B(E2)'s. (Note
that, for the transitions from three- to two-phonon states,
the untruncated fermion norms are taken. ) As seen, ex-
cept for the cases with n =N, the total error does not
exceed 20 percent. The best results are obtained for

8, in which the total error is within five percent. It is

TABLE IV. Ratios of the 8(E2) values of the BCS plus BET to the (number-conserving) exact fer-
mion results.

10

0

4
0
2
2
2
3
3
4

6

2
2
2

2
0
2
4
2
4
2
4
4

1.4723
1.3945
1.3945

1.1183
1.0592
1.0592
1.3867
1.5069
1.4496
1.4392
1.5825
1.5756
1.4604
1.4603
1.5058

1.0091
0.9558
0.9558
0.9587

. 1.0417
1.0021
0.9950
1.0940
1.0893
1.0096
1.0095
1.0410

0.9656
0.9146
0.9146
0.8385
0.9112
0.8765
0.8703
0.9569
0.9527
0.8830
0.8830
0.9105

0.9540
0.9036
0.9036
0.8089
0.8790
0.8456
0.8395
0.9231
0.9191
0.8519
0.8518
0.8784
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well known that the BCS theory works poorly when the
number of particles is small, while it does quite well
around the middle of the shell. Thus, the results of Table
IV do not come as a surprise. In our realistic calculations
the number of particles is usually large, so that we can be
confident that total error does not exceed 15 percent.

As a final remark, let us note that Li's method, ' used
above to obtain improved (exact for the lj-SM case) fer-
mion results, can be incorporated into the boson mapping
technique. In a forthcoming paper" it will be shown how
to carry out the bosonization of the "effective operators, "
which can then be used in the usual boson space. This
will cure most of the error due to the BCS approximation
in the boson calculations. Thus, in the 1j-SM case con-
sidered in the present paper, for the ratios of Table III we
will obtain rz ——1 for all n and N, and consequently, the
ratios for the B (E2) values in Table IV will coincide with
the ratios given in Tables I and II. This treatment will be
most important for those cases in which the particle num-.
ber N and/or the effective degeneracy 0 is small, such as
those given in the first and second columns of Tables III
and IV.

VI. CONCLUDING REMARKS

We have applied the boson expansion theory of Kishi-
moto and Tamura' to a 1-j shell model. In Sec. II we
derived the KT1 and KT2 expansions and used them to
calculate the B(E2) values for the transitions from the
two- to one-phonon states. There we also calculated the
corresponding fermion 8 (E2)'s exactly (in the BCS
framework; see the beginning of Sec. II), and compared
the results with the boson results (Table I). As seen, the
KT1 expansion is exact, and the (perturbative) expansion
of KT2 gives results very close to the fermion values. In
Sec. III we then rebutted the results presented in a paper
by Arima, in which he claims that very poor numerical

results were obtained when the KT formalism was used.
We showed that the source of the trouble encountered by
Arima lies in the fact that he used a "truncated" version
of KT1, which, by construction, is bound to badly violate
the fermion commutation relations. Such expansion was
never used in our practical applications. In Sec. IV we
calculated the 8(Z2)'s for the three- to two-phonon states
transitions, that required, in the KT2 expansion, also the
presence of the fifth-order term (Table II). The results
again confirmed that the accuracy and the speed of con-
vergence of the expansion are quite good. In Sec. IV we
also discussed a problem pertaining to the truncation of
the fermion space to a single component. As seen in part
C of Table II, this truncation is the principal source of er-
ror; the boson mapping introduces only a very small
amount of error.

In Sec. V we discussed the BCS approximation and es-
timated the BCS error by comparing the results with
those obtained by using the number conserving approach
of Li. ' The results are summarized in Table III. As
seen, the error is never very large, except for the case in
which the number of particles is small. The results of
Secs. II, IV, and V are then combined and are given in
Table IV. There are the results obtained by using the BCS
plus BET are compared with the exact (number-projected)
fermion results. As seen, the error does not exceed 20 per-
cent, except for cases with too small particle numbers.

Overall, we feel that the presentation made in this paper
confirmed the mathematical and physical soundness of
the BET of KT. Furthermore, we showed that the accu-
racy of the numerical results and the speed of convergence
of the expansion can be considered more than satisfactory
for practical purposes, if the theory is used correctly and
within the bounds of its applicability.
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