
PHYSICAL REVIE% C VOLUME 32, NUMBER 5

Spectroscopic properties of highly excited states
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Numerical calculations based on the continuum shell model with a unified description of long-
lived and short-lived resonance states are performed for ' O. The results show that the spectroscop-
ic properties of the individual states depend on the degree of overlapping with other resonance
states.

It is believed, generally, that at high level density the
scattering amplitude can be written as a sum of contribu-
tions from many levels each given by a Breit-Wigner am-
plitude. ' It is usual to assume that all the widths of the
long-lived resonances are, in a certain energy region, about
the same and that the decay amplitudes have a random
distribution of amplitudes and phases. The analysis of the
data then effectively determines the mean level width, and
the real and imaginary parts of the scattering amplitude
have Gaussian distributions with mean zero.

Careful experimental investigations called into question
this simple picture. As early as 1963 Lee and Schiffer
found that the assumption of complete randomness,
which is basic to the statistical model, is invalid in the
strong cross section fluctuations observed in the excitation
functions Ni+p. Kanter et al. tested these results by
measuring the time evolution of compound elastic scatter-
ing by crystal blocking. They found average compound
nucleus widths which are substantially smaller than those
of the observed structures in the excitation functions.
Further, the mean compound nucleus lifetime is signifi-
cantly longer at the higher bombarding energy, contrary
to expectations of the purely statistical theory. Nonsta-
tistical effects have been found also in other experiments.
For example, recent careful attempts to find a Gaussian
distribution of decay amplitudes failed. That is interpret-
ed as evidence of a strong direct contribution to the exci-
tation of resonances. In Ref. 6 these experimental find-
ings are considered as arising from the error caused by the
finite number of analyzed resonances. But the deviations
from the complete randomness, observed, e.g., in Refs. 2
and 3, are explained by short-lived resonances which exist
simultaneously with the long-lived resonances. According
to this statement it is difficult to find, in a realistic nu-
cleus, a sufficiently large number of long-lived resonances
well separated from short-lived ones as it is claimed, on
principle, in Ref. 6. One of the results obtained from an
experimental investigation of heavy ion scattering is the
presence in the excitation functions of both narrow and
broad structures. This indicates that there is an interplay
of various interaction times, ranging from the lifetime of
the compound nucleus to the time associated with shape
resonances in the ion-ion potentials. This result sets the
task of finding a unified description of long-lived and
short-lived resonances. The basic assumptions of statisti-
cal description for long-lived resonances can then be
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A model allowing a unified description of long-lived

and short-lived resonances is the continuum shell model
(CSM) formulated in Refs. 8 and 9. In the present paper,
results of numerical calculations performed on the basis
of this model are given. The aim is to investigate the
spectroscopic properties of excited states and the behavior
of the cross section, both in dependence on the degree of
overlapping of the resonance states. The degree of over-
lapping has been varied by changing the distance between
the shell model states being an input for the coupled chan-
nels calculations. In such a procedure all the effect ob-
served can be traced back to the changes of the degree of
overlapping since all other parameters and the shell model
wave functions of the states are kept constant.

The calculations are performed for the reaction ' N+p
with excitation of 1 resonances. In a first step, the shell
model Hamiltonian

(Elt —Hgg )tbsp
——0SM

is diagonalized where H =QHQ, H =Ho+ V, and Q is
the projection operator onto the subspace of discrete shell
model states constructed from bound and quasibound sin-
gle particle states. These shell model states are called
quasibound states embedded in the continuum '

(QBSEC). They differ from the bound states embedded in
the continuum (BSEC) introduced by Mahaux and
Weidenmiiller' by the contribution of the single particle
resonances. The potential is of Woods-Saxon type with
standard parameters. " The configuration space is ls«z,
1p3/2 lp]/2, 1d5/2, 2s)/2. The basic wave functions are
of Ip-1h and 2p-2h nuclear structure corresponding to
1%co and 3fico excitations. Altogether, there are 76 states
of such a type with J =1 . The shell model wave func-
tions of the target nucleus ' N are the two —,

' and —,
'

states of lh structure. In a second step, the eigenfunc-
tions PR and eigenvalues

g

2

of the operator
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states, I' +Q =1] as well as the elastic and inelastic cross
sections ' N+p are calculated with 29 out of the 76 reso-
nance states in an energy region where the d3/p single par-
ticle resonance is not important. The eigenvalues of Hgg
definitely determine the energies EIt and widths I'z of the
resonance states as long as the QBSEC but not the BSEC
are used as basic states in diagonalizing H~~. In addi-
tion to the internal of configuration mixing contained in
the shell model calculations (1), the second term of the
operator (2) describes the external mixing of the resonance
states via the continuum. It includes coupled channel ef-
fects described by the solutions of
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in the I' subspace.
The dependence of the inelastic cross section and of the

widths on the degree of overlapping ( I ) /(D ) of the res-
onance states ((I )—mean width, (D)—mean distance)
is shown in Figs. 1 and 2. The overlapping has been
varied by reducing the differences between the energies
Ez~ of the shell model states [solutions of Eq. (1)] six
times by a factor 2. The wave functions Pz of the shell
model states thereby remain unchanged as well as the pa-
rameters of the Woods-Saxon potential and of the residual
interaction. Such a procedure to vary the degree of over-
lapping is justified because the eigenfunctions Pz and
eigenvalues

g
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2

of the operator (2) depend only weakly on energy. The
sum of the widths of all the 29 resonance states is equal to
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FIG. 2. The widths I & of the individual resonance states R

in dependence on the degree of overlapping (1 ) /(D ).
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FIG. 1. The inelastic cross section ' N(p, p') in dependence
on the degree of overlapping (1 ) /(D ).
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with source term. The two systems of equations (3) and
(4) are solved then in the subspace of scattering wave
functions. ' '" The input values E~ can be varied by

the sum of the widths of the isolated resonance states a.
has been checked numerically. Thus, (I ) remains un-
changed while (D) decreases altogether by a factor 64
from the lowest curves in Figs. 1 and 2 (every other is
shown) to the uppermost ones.

Some remarks are necessary here in order to clarify
how we reduce shell model state energy differences by fac-
tors of 2 without changing the Woods-Saxon potential pa-
rameters. In a first step, the shell model state energies
EP and wave functions Pz have been calculated by solv-
ing the standard shell model problem (1) without any cou-
pling to the continuum with a Woods-Saxon potential (in-
stead of a harmonic oscillator). The values Ez and Pz
as well as the matrix elements (Pg I Hgp I gg) are input
values for the coupled channels equations (3) without
source term and
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hand in solving the coupled channels equations (3) and (4)
while the wave functions Pit and matrix elements
(Pit ~ H&i

~
PE) remain those which follow from Eq. (1).

The energies Ez are shifted in our calculations altogeth-
er by no more than 5 MeV, which is still comparable with
the usual accuracy of standard shell model calculations.
The shell model diagonalization (1) has been performed
with a complete set of states within the chosen shell
model configuration subspace Q. The operator (2) acting
in the whole function space is diagonalized with the sub-
set of discrete shell model states (29 out of 76 states)
within an energy region around 33 MeV. Effects arising
from the diagonalization of (2) by neglecting states
beyond a limited energy region were investigated by us
earlier (e.g., see Ref. 12). They arise from the external
mixing of all the resonance states and are shown to play a
role only at the borderline. They are not important in the
case considered here due to the large number of resonance
states used in the diagonalization procedure.

The inelastic proton scattering cross section (Fig. 1)
shows at high level density intermediate-like structures al-
though no strongly absorbed channels were open original-
ly and all the resonance states are of comparable lifetime
at low level density. Further, the widths of a few reso-
nance states increase at the cost of the widths of the
remaining ones (Fig. 2). However, the 1p-lh contribu-
tions to the nuclear structure of these few resonance states
do not increase sufficiently in order to explain the large
widths by simple nuclear structure arguments. The six
basic states ( Ip3/z ) '2si/q, ( i@3/i ) ld5/g and
( lpi/z) '2si/z with isospin T=0 and 1 are present in the
wave functions of our 29 resonance states in most cases
with amplitudes less than 0.1. The largest components
are five out of 174 with values between 0.20 and 0.36 in
the case (I )/(D) =0.2 while there are altogether 11 of
such a type in the real parts of the wave function and four
in the imaginary parts in the case ( I ) /(D ) =6.4.

At high level density, the wave functions and partial
widths of the resonance states are complex. The conse-
quence is that only the whole of the resonance states has a
physical meaning. The cross section cannot be represent-
ed by a sum of contributions from many levels each of
which has nuclear structure properties which can be
described by a standard nuclear structure model as, e.g.,
the shell model, Eq. (1). The width of the individual reso-

nance states are changed due to the external mixing of the
states via the continuum. Intermediate-like structures in
the cross section may appear also if standard nuclear
structure calculations do not give any hint of a short-lived
state. It is impossible, in such a case, to find the counter-
part of the intermediate structure at low level density as,
e.g., in the parent nucleus for an isobaric analog reso-
nance.

Thus, the results obtained show that deviations from
the complete randomness appear. They are caused by the
fact that most excited states of a really existing nucleus
decay by particle emission. This gives rise to an external
mixing of the resonance states via the continuum which is
described by the second term in the Hamiltonian operator
(2). The interaction produces an unequal distribution of
the ensemble: short-lived resonances exist apart from
long-lived ones which all must be considered together as a
whole. Consequently, the number of long-lived reso-
nances used as data can hardly be sufficiently extended in
order to verify the statistical assumptions experimentally
for a really existing nucleus as it is claimed in Ref. 6.
This conclusion is in accordance with experience as stated
also in Ref. 6.

According to general mathematical properties, the sum
of the widths of all the resonance states considered in the
calculation (imaginary part of the sum of the eigenvalues
of H~~) is equal to the sum of the widths of the isolated
resonance states ((PSEC) used as basic states in the diag-
onalization of H&~ (imaginary part of the sum of the di-
agonal matrix elements). In an analogous manner, the
sums of the partial widths with and without external mix-
ing are the same. Due to these relations, the nonstatisti-
cal effects considered above are not important for values
averaged over some energy interval as is done, e.g., in the
Hauser-Feshbach theory. Difficulties may appear, howev-
er, in an attempt to simultaneously reproduce the mean
level widths observed and the averaged cross sections due
to the results shown in Fig. 2.

Summarizing, it can be stated that deviations from the
complete randomness appear in real nuclei at high level
density which can be described by the external mixing of
the resonance states via the continuum. They lead to
changes in the spectroscopic properties of the individual
resonances but may be neglected, to a good approxima-
tion, for values averaged over energy.
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