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The exact treatment of fermion systems by Monte Carlo methods has proved to be difficult. We
present a new method based on the concept of a “mirror potential,” which is a many-body potential
that forces the Monte Carlo iteration to have a stable antisymmetric component. The potential may
be determined from the wave function and, within the framework of Green’s function Monte Carlo,
from the random walk whose density converges to the wave function. In certain limits, the method
reduces to the fixed node approximation and to transient estimation, so that it subsumes both of
them. As a further consequence it offers an approximation analogous to fixed node for treating sys-
tems with noncentral forces. The method may prove to be a general one for treating random walk-
ers with nonpositive or complex weights. In support of that we exhibit a successful calculation of a
one-dimensional excited state. In this paper we explore the alternative in which the mirror potential
is obtained from trial wave functions. This yields an approximation scheme that proves to be accu-
rate in the experiments described here. We present results for a model problem in which four neu-
trons interact by a spin-independent potential, and compare the results with those of the fixed node
method, and the method of transient estimation.

NOVEMBER 1985

I. MANY-FERMION SYSTEMS

Green’s function Monte Carlo (GFMC) has been suc-
cessfully applied to solve the Schrodinger equation for a
wide variety of boson systems. Successful application to
fermion problems has proven to be elusive, however. In
this paper we describe a new method for GFMC calcula-
tions of fermion systems. We will first review the princi-
pal methods used, the “fixed node approximation,” and
the method of transient estimation. The former is applic-
able only to systems that interact by central potentials and
is, in general, of unknown a priori accuracy. The method
of transient estimation, while essentially exact, requires
exponentially increasing computing time to decrease the
confidence limits as the Monte Carlo iteration is contin-
ued. The difficulty is that the iteration in question con-
verges to the symmetric—rather than antisymmetric—
ground state and in so doing suffers from an exponentially
decreasing signal-to-noise ratio for fixed computing time.

It is natural to ask whether the convergence to the sym-
metric ground state can be inhibited. One simple possibil-
ity that is the basis of our proposed new method is to add
to the Hamiltonian of the system an external many-body
potential that forces the ground state to be a linear com-
bination of symmetric and antisymmetric components, of
which the latter is the correct many-fermion ground state.
We term this additional potential a “mirror potential” be-
cause it acts differently on the positive and negative ran-
dom walkers, constraining them to stay predominantly in
separate parts of coordinate space, namely those where the
fermion ground state is respectively positive and negative.

The required potential is obtained from the ground
state wave function; we show below how it may be ob-
tained in principal from the random walk that solves the
Schrodinger equation.

We show also that in suitable limits, the method
reduces to the fixed node approximation and to transient
estimation. Thus it provides a coherent theoretical frame-
work for discussing and understanding both. Further-
more, and we believe that this will prove to be important,
it offers a method for treating quantum systems with non-
central forces by an approximation analogous to the fixed
node. It may prove still more generally to be a method
for treating walkers with complex weights.

This paper is devoted to the general introduction to the
ideas of the mirror potential and to the exploration in
model problems. We stress the use of approximate mirror
potentials. That is, instead of computing the mirror po-
tential from the exact and unknown ground state, we use
trial functions of the kind used in both the fixed-node ap-
proximation and in transient estimation. We find that its
accuracy is comparable to the fixed node and that it may
yield lower energy.

Green’s function Monte Carlo produces the solution of
the Schrodinger equation as a set of points in configura-
tion space distributed with a probability density ¢, which
converges toward ¢g, the ground state wave function of
the system. The GFMC method,! in essence, consists of
choosing a set of points and iterating the equation

¥, ((R)=(E+V,) [ GR,RW,(RYER' .  (1.1)

G(R,R’) is not known analytically, but may be saﬁlpled,
for example, from the equation

G(R,R")=G,(R,R")+ [ G(R,R"[UR")—V(R")]
X G,(R",R")dR"
+ [, G(R,R")[~VG,(R",R")-4)dS , (1)

where G, is the solution for the Green’s function within a
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domain D for a constant potential U, and is known
analytically.? This requires an ancillary walk whose ex-
pected density develops the Green’s function.

This method is difficult to apply to fermion systems,
because the wave function must be antisymmetric with
respect to the interchange of the coordinates of any two
identical particles. Superficially, the convergence of Eq.
(1.1) to the lowest state not orthogonal to W, guarantees
that an antisymmetric W, will generate a sequence con-
verging to the lowest antisymmetric state, the fermion
ground state. This is entirely true, but beside the point,
since a ¥, that can be sampled as a density function is
necessarily positive and has nonzero overlap with the Bose
ground state.

The difficulty discussed in the last paragraph is, again
superficially, easily remedied. We must use positive den-
sities and therefore write the wave function W(R) as the
difference of two densities ¢(R):

YAR)=¢T(R)—¢;(R), (1.3)

where each ¢ is itself positive and can be thought of as
derived from a density of random walkers. Then Eq. (1.1)
becomes :

Wi (R)=(Eg+Vo) [ G(R,R[$F(R)—47(RNIAR’
(1.4)

which may correctly be derived from the pair of re-
currences

¢5 +1(R)=(Eo+Vo) [ G(R,R"$E(R")dR’ (1.5)

for the densities alone. Equation (1.5) describes indepen-
dent random walks that separately give densities for the
positive or negative parts of the fermion ground state.

There is, of course, no unique way of decomposing an
antisymmetric function into a difference of two positive
functions. An acceptable choice is

o3 *(R)=max[ +¢#(R),0]
=143 (R)+5 | $(R)| . (1.6)

In the second form, it is manifestly a sum of an an-
tisymmetric and a symmetric function. When we consid-
er the nature of the convergence as in Eq. (1.1), we keep
the leading symmetric and antisymmetric terms: .

Ego+ Vo

A

Y4(R), (1.7)
o+Vo

$5(R)—>cso¥so(R) +

where for clarity we denote the (boson) ground state as
Wso. The ratio that appears in the second term is less
than one, so the contribution of the fermion state de-
creases geometrically.

A. The method of transient estimates

Although the coefficient of the interesting (i.e., an-
tisymmetric) part of Eq. (1.7) decays, it is possible to pro-
ject it out. By multiplying by any antisymmetric func-
tion, \I”T‘(R), and integrating, we annul the leading term:

Ego+ Vo

n

A A A
——— | (VT |¥g) .
Ed+v, | ° Tl %o

J YAR$F (RYAR —

(1.8)

If W4 is a suitable fermion trial function, then H¢# is an-
tisymmetric and well behaved, so that

n

Eso+Vy
HY4(R)1¢7 (RYAR — | ————— | c&(HY$ | ¥
[ tHYARS iy | cO iV
(1.9)
and
[ HY{¢dR (Wi | HYY) _ g 110
[ wigtdRr (wi|wgdy 0 '

In a Monte Carlo calculation in which a population of
random walkers represents the density (here ¢ ), the in-
tegrals that appear in the last equations are estimated by
sums of the function W% and HW4 evaluated at the posi-
tions of the walkers. The Monte Carlo estimator for Eq.
(1.10) is thus

% [HY£(R)]g =R,

S [Y7(R)]r=r,
k

——>E64 . (1.11)

The method seems then to be straightforward and
natural for Monte Carlo treatment. Unfortunately a
deeper look reveals the flaw: If we examine the variance
of Monte Carlo estimates of the integrals which appear in
Egs. (1.8) and (1.9), we observe that they have the form

variance [ W4 dR « [ (V74 dR—[ [ W4 dR].
(1.12)

But the square of the antisymmetric function W% is
symmetric; therefore in the variance the symmetric lead-
ing team is not projected out. The result is that as the sig-
nal from Eq. (1.8) becomes small, the noise remains
asymptotically constant. The signal to noise ratio de-
creases. If one attempts to overcome this by letting the
population grow, the time grows geometrically in execu-
tion time. It cannot be predicted in advance whether the
relaxation to the ground state will be seen before the
Monte Carlo error grows too large. Nevertheless, useful
results have been obtained by this method. Ceperley and
Alder® presented data for the electron gas in which their
energies appear to have stabilized. These results have
proved consistent with subsequent approximate many-
body calculations. .

Schmidt* pointed out that if W% in Egs. (1.8)—(1.11) is
set equal to W, then each quotient that appears in Eq.
(1.10) is an upper bound to E{, the fermion ground state.
Using this idea, he and his collaborators obtained a series
of upper bounds for a 38 particle system of unpolarized
3He. It was not clear whether they had converged, but the
last values were combined to yield an upper bound of
E# < —2.20+0.05K. More recently,’ calculations of a 54
particle system converged to yield a ground state energy
of Ef < —2.25+0.04K.
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B. The fixed node approximation

The exact fermion wave function W (R) changes sign
on application of an odd permutation among indistin-
guishable particles (here assumed to have the same spin).
It is also continuous, and consequently it vanishes on
some surface. That is, for an N body system W§=0 on
manifolds of 3N —1 dimensions. In general these mani-
folds cannot be predicted solely on the basis of symmetry
principles; they are the outcome of the solution of the
problem. This is unfortunate, for were they known in ad-
vance, the Schrédinger equation could be solved by the
Green’s function methods discussed before, using Wi =0
as a boundary condition. In the absence of such an exact
condition, one can use the boundary condition that the
wave function vanish on the nodal surface of some ap-
proximation W#(R) to the ground state function. This
was first used by Anderson.® It is now known (cf. Ref. 7)
that the energy obtained lies above the exact ground state,
below that obtained from the variational method using
w4 as trial function, and is second order in the differ-
ence \IJ‘;—-\I’(,‘. Ceperley® obtained an energy of
—2.06+0.05K/atom for unpolarized 3He in this way.
The method has also been applied to few-electron’ and
many-electron®!° systems. Results obtained have general-
ly been useful, especially those for the equation of state of
condensed hydrogen found by Ceperley. !0

C. Mirror potential methods

As noted previously, there is no unique way of decom-
posing the antisymmetric wave function into a difference
of two positive functions. The methods described previ-
ously represent the two extremes for the choice of this
decomposition. In the transient estimation method, the
#* and ¢~ populations converge to identical symmetric
distributions, while for the fixed node method ¢+ and ¢~
have no overlap. The mirror potential method is a gen-
eralization of these techniques, encompassing them as spe-
cial cases.

By writing the coupled equations for ¥+ and ¥~

{H(R)+C(R)¥~(R)}¥T(R)=E¥*(R),
{H(R)+C(R)W¥*T(R)}¥~(R)=E¥~(R),

it is possible to create distinct stable populations for ¥+
and W~ and retain the property that the difference
W=W* __ W~ satisfies the original Schrédinger equation.
Interpreting CW~ as a repulsive “mirror” potential for
¥+ (and C¥™ as a repulsive potential for ¥~), we may
solve for ¥+ and W~ and subtract to obtain ¥. As long
as we  choose C(R) to be a symmetric function,
WY+(PR)=W¥~(R) for any odd permutation P, and the re-
sulting wave function will be antisymmetric.

By adjusting the strength of C(R), ¥* and ¥~ may be
constrained to be large in distinct and well-separated re-
gions, namely those in which W+ —W~ is, respectively,
positive and negative. This is necessary in order to reduce
the statistical error associated with the calculation. On
the other hand, C(R) must not be too large. Imagine a
procedure in which an approximate solution is introduced
for ¥~(R) in Eq. (1.13), and the equations for ¥+ and

(1.13)
(1.14)
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W iterated. Very large values of C(R) will inhibit the
motion of the nodal surface (where ¥+ =W"), precisely as
in the fixed node method.

We have tested the mirror potential method in two sim-
ple problems; obtaining solutions for the lowest antisym-
metric states of the one-dimensional infinite square well
and the three-dimensional harmonic oscillator. In these
calculations our knowledge of the wave functions ¥* and
¥, and consequently of the mirror potential, is limited to
distributions of points {Ry}. Thus, in order to evaluate
the mirror potential, one may use the fact that the wave
function is a solution of Eq. (1.1), and therefore

¥=(R)= 3 G(R,R)=3 3 G,(R,R;), (115
k k 1

where the first sum extends over all of the points in the
W~ distribution, and the sum over / indicates a sum over
all points in the random walk which determines the full G
from G, [Eq. (1.2)]. It is not obvious that this type of
walk will produce the correct solution, since the potential
is determined stochastically at each point of the walk.
However, by expanding Eq. (1.2) in powers of G,(R,R’),
it is apparent that the solution remains exact as long as
succeeding evaluations of the mirror potential are in-
dependent. In general, G(R,R’) is relatively short ranged,
and thus many configurations may be required for suc-
cessful calculations in many-dimensional systems.

We have used this method of deriving a repulsive “mir-
ror” potential for calculating states of the one-
dimensional square well and the three-dimensional har-
monic oscillator. The wave functions ¥+ and ¥~ for the
one-dimensional infinite square well are plotted in Fig. 1.
The solutions for Y=W+ _W~ are stable over a wide
range of constant values for ¢, and are independent of the
initial distribution of configurations.

In addition to calculating antisymmetric ground states,
the mirror potential method may be used to calculate the
excited states of a system. As an example, we have calcu-
lated the first symmetric excited state of the one-
dimensional infinite square well. In this calculation, the
initial set of ¢+ walkers are concentrated in the center of
the well, and a set of ¢~ walkers is concentrated near the
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FIG. 1. The solutions of the mirror potential equation in a
one-dimensional square well for two different constant values of
C (arbitrary units).
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FIG. 2. The solution of the coupled mirror equations for the
lowest symmetric excited state of a one-dimensional square well.

edges. The wave functions W+ and ¥~ are indicated in
Fig. 2. We wish to simply iterate Eq. (1.1) in order to ob-
tain these solutions for the excited state. Two additional
prescriptions are necessary, however, in order to obtain
the exact solution for this state. First, unlike the antisym-
metric ground state problem, the relative normalization of
the ¢ and ¢~ populations is not known beforehand. The
ratio can easily be determined, however, since for the
correct value, the ratio remains constant as the Green’s
function equation is iterated.

Also, the solution of the equation must be symmetrized
after each iteraction. This is easily accomplished, for ex-
ample, by randomly choosing each configuration as either
itself or its mirror image. If this is not done, fluctuations
in the two populations will eventually allow them to decay
into the antisymmetric ground state.

The mirror potential method, as presented, makes exact
calculations of fermion systems possible for few-body sys-
tems. It may be difficult to handle many-body problems
in this manner, however, since it may be difficult to ob-
tain a density of points sufficient to determine the mirror
potential. Later, in this paper, we present approximations
to the mirror potential method. First, we briefly discuss
the use of nonlocal mirror potentials to overcome this
problem, that is, to extend the effective range of the ker-
nel in Eq. (1.15).

D. Generalizations of mirror potentials

It is possible to generalize further the concept of mirror
potentials in several ways. We describe two such generali-
zations here, with the expectation that more complete
descriptions will follow upon further studies.

The major difficulty associated with the exact mirror
potential method is the short range nature of the Green’s
function which is used to evaluate the mirror potential
[Eq. (1.15)]. In order to overcome this difficulty, it is use-
ful to consider the possibility of using a mirror potential
which is nonlocal in nature. That is, we may replace the
earlier equations [(1.13) and (1.14)] for ¥* and ¥~ by

HY*(R)+ [ s(R,R",R")¥~(R")¥*(R")dR'dR"

=E¥*(R) (1.16)

and '
HY~(R)+ fs(R,R',R")\I’*(R’)\P‘(R")dR’dR"

=EVY~(R). (1.17)

The difference W+ —W~ again satisfies the Schrédinger
equation, and by requiring s(R,R’,R")=s(R,R",R’') we
ensure that W+ (R)=W¥~(PR) for any odd permutation P.
The motivation for introducing a nonlocal interaction is
to allow for a more effective sampling of the mirror po-
tential, since the kernel s(R,R’,R") spreads the repulsive
effect of the points in ¥~ over a larger region.

A nonlocal interaction can be introduced into the
GFMC method by writing an equation analogous to Eq.
(1.2). With the inclusion of a nonlocal interaction, anoth-
er element is introduced into the random walk. The po-
tential is no longer simply an absorbing term in the dif-
fusion equation, but can itself introduce steps in the walk.

An important consideration when treating nonlocal in-
teractions is that the Green’s function G(R’,R) may no
longer be positive definite. The sign of the Green’s func-
tion may change at long distance if, for example, the non-
local interaction is repulsive and has a long range.
Nevertheless, such a system may be treated successfully as
long as the Green’s function is predominantly positive.
We have successfully treated several simple test problems
with this method, but further work is required in order to
test its practicality for more difficult problems.

Another important generalization of the mirror poten-
tial is useful to treat systems involving spin-dependent in-
teractions. In such a system, the potential ¥ may be di-
vided into spin-independent and spin-dependent parts, V°
and V?, respectively. The Green’s function equation [Eq.
(1.1)] may then be rewritten as :

Y 1 1(R)= [ G(R,RE—VR)]¥(R)dR’ . (1.18)

The spin-dependent part of the interaction will introduce
transitions between different spin components of the wave
function and may also introduce changes in sign. Even
for systems which are predominantly symmetric in spatial
coordinates, such as s-shell nuclei, this can lead to the
same difficulties as in the fermion problem. That is, there
will be large cancellations between walkers of opposite
signs.

A mirror potential term may be introduced into the
Schrodinger equation in order to overcome this difficulty.
The mirror potential for ¥+ may take the form

(a|V(R)|b)=C,(R)¥; (RS, » (1.19)

where a and b label the spin states. This interaction re-
tains the property that W+ —W~ solves the original
Schrdodinger equation.

II. APPROXIMATE METHODS

By replacing the exact wave function ¥* with a trial
function W¥ in the expression for the mirror potential, we
can solve the equation for W* using standard GFMC
techniques. The wave function obtained in this manner is
an accurate approximation to the exact wave function.

The exact solution for W* can be chosen to be of the



form W5+W¥4 where S and A indicate symmetric and an-
tisymmetric components, respectively. Inserting this ex-
pression into the W* equation and solving for C(R) yields
the following expression for the mirror potential:

[E—H]¥S(R)
WSR)+VYAR) ’

where we have used the fact that [E —H] acting on the
exact antisymmetric state yields zero. In order to approx-
imate the mirror spotentlal we may replace ¥° and W4 by
trial functions V7 and ‘IIT, and the unknown eigenvalue E
by a constant E*.

Once this ?proximation is made, the analytic forms
for 5 and W4 yield an easily calculable mirror potential,
and the resulting Schrédinger equation can be solved to
obtain a wave function ¥* and two estimators for the en-
ergy, the eigenvalue E, of the equation, and the mixed es-
timator E,,, defined as

[ wiHY+*dR
[ viw+dr

C(R)¥~(R)= (2.1

E,= (2.2
In order to obtain an accurate approximation to the exact
wave function and energy, E* should be adjusted until the
eigenvalue E,=E*. When  this condition is satisfied,
E, =E*=E,. Actually, E,, varies only in second order
in the differences between E, and E*, so it is numerically
most accurate.

The trial function W% should be taken to be an accurate
variational wave function. The choice of W% is not tightly
constramed but it should satisfy two general conditions.
First, \I’T+\I/ should be positive everywhere, as this is
required for a finite mirror potential. Second,
(E*—H)W¥5 should be predominantly positive, in order
that the mirror potential be repulsive.

We have found that a satisfactory choice for W5 is

F=[(k AW+ (kBWE)2)1/2 (2.3)

where WE. is a symmetric state of low energy and k4 and
k® are constants. The parameters k4 and k® may be
chosen to adjust the strength of the antisymmetric com-
ponent of W}. With this choice WF is positive definite,
and the mirror potential will be predominantly repulsive.

Examining the consequences of this approximation, it is
apparent that any choice of ¥} with the correct antisym-
metric component will give the exact wave function and
energy. Furthermore, we will show that if E* is adjusted
so that E =Epg, the error in E, is second order in the er-
ror in W4, and that E is less than the variational energy
Ey obtained with \IIT

f\ll

2.4)
f (20
To prove this, compare the two Hamiltonians:

[E*—H](¥5)

H=H+—————, (2.5)
: WS+ v
E* —H)(¥Y5+¥%)

Hy—H+ 1 s] it (2.6)

Y+ Ve
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H is the mirror potential Hamiltonian and H, is a Ham-
iltonian that has as its solution the trial wave function W
and an eigenvalue E*. Setting E*=E) and calculating
the expectation value of H; with the eigenfunction of H,
yields an energy of Ey. Since the solution of H; must
have an energy less than or equal to this expectation
value, the point at which E* =E, must lie at or below the
variational energy Ey .

It is also possible to show that the energy at which
E,=E* is an upper bound to the exact energy in first or-
der perturbation theory in the dlfference H,—H,, or
equivalently, in the difference between W% and the exact
W4, If we compare H; and H, and take E* to be the ex-
act fermion energy Ey, then to first order the eigenvalue
of H 1 is

(Ey—Ep) [ W#'dR)
[ w# +w5")dR

E=E;+ 2.7

which is greater than the exact fermion energy. There-
fore, the point at which E*=E lies between the exact en-
ergy Ef and the variational energy Ey.

Our numerical experiments with simple systems con-
firm these properties. It should be noted, though, that for
very poor choices of W5 (those that give rise to strong at-
tractive regions for the mirror potential) it may not be
possible to find a value of E* such that E,=E*. In gen-
eral, we find that the approximate mirror potential gives
quite good results, even for relatively poor choices of an-
tisymmetric trial functions.

Once again, this method can be easily extended to excit-
ed states. The trial function used to generate the mirror
potential may have any type of nodal structure, and the
difference of the two populations will have this same
structure. As in the exact method, the mirror potential
should be adjusted to ensure that the ¥+ and ¥~ popula-
tions grow at the same rate.

III. FOUR-NEUTRON CALCULATIONS

In order to test the approximate mirror potential
method, we have studied a system of four neutrons in-
teracting through a central potential. The potential is the
Mafliet-Tjon!! MTV central potential, multiplied by a
constant strength factor of 1.3 that ensures that the sys-
tem is bound.

Fixed node and transient estimation calculations have
been performed as well, in order to provide a basis of
comparison. In each of these calculations, a trial wave
function is a necessary starting point.

We used a trial function of the form

V= [T fe(ry) ]<D , (3.1
i<j
where f} is a pair correlation function having one of two
forms depending upon whether the two neutron spins are
parallel or antiparallel. The function ¢ gives the correct
angular momentum for the state of interest; for the L =0
state it is simply r;,°ry4 (where the pairs 1,2 and 3,4 have
parallel spins).
The correlation functions are made to satisfy two-body
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Schrodinger equations with parametrized potential terms
Alr):

272
:—?nl+u(r)+mr) f(r®; =0, (3.2)

with ®;;=1 for opposite spins (s wave) and r; Y7 (r;) for
parallel spins. The long-range parts of the correlations
were chosen to have the correct properties as the system
separates into two “deuterons.” Thus, A(r) for the s-wave
correlations is taken to be

Mr)=a/[1+exp((r—r)/u)]+E, . 33
The parametrization of A(r) for parallel spins is
Mr)=a'/[1+exp((r—r,)/p)]

# | 3

- 1—2——— (1+e‘(’/”)2) . (3.4)
’

Y 2
344
, Y

The variational parameters are E,, ¥, r;, 4, and c; a and
a’ are adjusted so that 7f(r)®; =0 at r=0.

This form of trial function proved superior to several
others that were investigated. Even so, better functions
could undoubtedly be obtained. This is not necessarily an
advantage when attempting to compare various GFMC
methods, however, since all methods are exact given an
exact trial function.

For the L =0 state of the four-neutron system, we ob-
tain a variational energy of —8.75+0.1 MeV. Thus, the
system is very loosely bound, since with this same interac-
tion, the ground state of two neutrons has an energy of
—3.0 MeV. We have also calculated the L=1 and 2
states variationally. The L =2 state energy is —6.54+0.1
MeV, while the L =1 state was not bound with this varia-
tional wave function.

The GFMC studies of this system were performed for
the L =0 ground state only. This four-neutron system is
very loosely bound and has a relatively simple nodal struc-
ture, so it is plausible that a fixed node calculation should
give an accurate answer. That is, the exact position of the
nodes should have relatively little effect upon the energy.
Our fixed node calculations yield an energy of
—9.36+0.02 MeV, a 0.6 MeV increase in binding over
the variational result.
from each of the calculations is given in Table I.

Several sets of transient estimation studies have also
been performed for the four-neutron system. However,
these calculations are very difficult, since the alpha parti-
cle is very strongly bound by this interaction, with a bind-

A summary of results obtained
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__g .
= i oo
2 95 ”%HHHT y%lfL
~ [
L Hfi’
-10
-10.5
0 20 40 60 80

FIG. 3. The energy of transient estimation calculations
versus iteration beginning with the fixed node solution. The
values at each generation are not statistically independent.

ing energy of greater than 65 MeV. Consequently, tran-
sient estimation calculations are quickly dominated by
noise, because of the rapid decay into the symmetric
ground state.

In order to ensure that a true upper bound to the energy
is obtained, a transient estimation iteration must begin
with the same antisymmetric function used to project out
the antisymmetric part of the density of walkers. Howev-
er, the bound that we. obtain from this calculation,
—9.23+0.07 MeV, is not as low as the fixed node result.
This is a result of the fact that the statistical error associ-
ated with the calculation increased rapidly as the Green’s
function equation was iterated, and it was not feasible to
iterate the solution with enough accuracy to demonstrate
convergence.

We have also performed transient estimation calcula-
tions starting from the solution of the fixed node problem.
The energy obtained with this method is —9.50+0.07,
and although it cannot be proved to be an upper bound to
the energy, this result is probably the best available indica-
tion of the correct total energy. The calculated energy as
a function of the number of iterations is given in Fig. 3,
and the increase in noise is readily apparent. There is a
definite increase in binding obtained by the transient es-
timation technique, but this increase is only 0.15+0.07
MeV, another indication that the fixed node result is quite .
accurate.

Finally, the binding energy of this system has been cal-
culated with the approximate mirror potential technique.
The results are summarized in Table I, and the input mir-
ror potential parameters for the various calculations are
given in Table II. The initial calculations were performed
as described above. For this calculation (listed as 4A in

TABLE I. Results.

No. Type (H) (V) E,

1 variational —8.75+0.10 —83.4£1.0

2 fixed node —9.36+0.02 —81.7+0.3

3 transient estimation —9.50+0.07 —80.5+0.7

4A mirror potential —9.43+0.05 —83.3+0.8 —9.07+0.01
4B mirror potential —9.37+£0.04 —81.3+0.6 —9.18+0.02
4C mirror potential —9.28+0.02 —82.2+0.4 —9.26+0.05
4D mirror potential —9.31+0.03 —81.4+0.4 —9.06+0.10
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TABLE II. Mirror potential parameters.

No. E? B* k4 k2
4A —-9.0 ' 2.0 2.0
4B —-9.0 —65.0 1.0 250.0*
4C —9.5 —65.0 1.0 250.0%
4D —9.0 —65.0 1.5 500.0%

2Py is a product of s-wave correlations, kp in arbitrary units.

the table), the wave function W2 was taken as the simple
product of pair correlations without the antisymmetrizing
function ®. This calculation yielded an estimate for the
energy of —9.43+0.05 MeV, an encouraging result.

We also attempted to use a wave function Y2 much
closer to the symmetric ground state wave function of the
system, in order to measure the sensitivity of the method
to the choice of symmetric wave function. The product of
opposite spin (s-wave) Jastrow correlations is a reasonable
approximation for the alpha particle ground state, and we
used it for the second set of calculations. However, this
wave function has a much smaller radius than that of the
antisymmetric state, and the mirror potential will become
infinite for k4=1 at large distances, unless the antisym-
metric trial wave function is exact in that region. There-
fore, the quantities H¥*/¥4 and HVE/¥? in the HY
term of the expression for the mirror potential,

H[ (kAW 4 (kP@P)2)12

35
[(kA\I/A)2+(kB\I/B)2]1/2 ( )
_ H\PA (kA\PA)Z
- ‘I’A (kA\I,A)2+(kB\I/B)2
B B\yBy2
4 HY (k°W7) ,

\PB (kA\I’A)2+(kB\I/B)2 +
are replaced by the constants B* and E*, respectively.
The remaining terms, involving V¥4-VW2, are calculated
as before. With this approximation, the mirror potential
is well behaved even in regions where W2 is very small.

All of these calculations gave similar, although not
identical, results. The results are fairly insensitive to
choices of E* or the constants k4 and k2.

IV. SUMMARY

The mirror potential method provides a coherent
framework for studying various methods of treating fer-
mion systems. The initial results of our calculations are
encouraging, and several specific areas merit further in-
vestigation.

In particular, calculations with approximate mirror po-
tentials appear very promising. The approximate scheme
presented here provides accuracy comparable to the fixed
node method in this problem. This is a favorable result,
since this is a loosely bound system and the fixed node re-
sult is quite good. It would be useful to employ the vari-
ous fermion GFMC schemes for several systems, in order

. to determine how strongly our results are dependent on

the fact that this is a very loosely bound system.

Of even greater interest is the possibility of developing
corrections to this approximate method. These correc-
tions will appear as changes in the mirror potential due to
the difference between the trial wave function and the
solution of the approximate mirror potential equation,
and would allow one to obtain much greater accuracy in’
the solution of the Schrédinger equation.

Finally, the possibility of applying GFMC to systems
with nonlocal and spin-dependent interactions is very in-
triguing. Green’s function Monte Carlo could be applied
in many areas of physics where calculations have been im-
practical. Such calculations would be very valuable in
areas such as nuclear systems with realistic interactions.
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