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Mixed-symmetry interpretation of some low-lying bands in deformed nuclei
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An alternative interpretation of the second excited K =0+ band in rare earth nuclei, as a mixed-
symmetry state in the neutron-proton interacting boson model, is compared with the conventional
interpretation as a two-quasiparticle band. It is shown that, on the basis of electromagnetic decay
probabilities and particle transfer amplitudes alone, it is difficult to discriminate between the two in-
terpretations. Only on the level of form factors and transition densities do major differences occur.

I. INTRODUCTION

In most medium heavy nuclei the low-lying collective
states are symmetric in the neutron and proton degrees of
freedom. This implies that neutrons and protons contri-
bute in a fixed ratio to all matrix elements of a given
operator. In order to extract information on the neutron
and proton contributions separately it is important to
measure also the properties of states that are of mixed
symmetry (sometimes also called antisymmetric) in the
neutron and proton degrees of freedom. The energy of
these states, for example, gives an indication of the differ-
ence of the interaction between like particles and the
neutron-proton interaction.

The occurrence of the mixed-symmetry modes has been
predicted in various geometrical models' and in the ver-
sion of the interacting boson model where neutron and
proton degrees of freedom are explicitly taken into ac-
count (IBA-2). In electron scattering experiments on
deformed nuclei indeed such mixed-symmetry states have
been observed, in particular, the bandhead of a K =1+
band at E„=3 MeV in various rare earth nuclei. This
had led to the conclusion, based on a particular choice of
the IBA-2 Hamiltonian, that in deformed nuclei all
mixed-symmetry states lie at an excitation energy of at
least 3 MeV. ' In this paper we show that with an alter-
native choice of the Hamiltonian, which is equally plausi-
ble as the conventional choice, it is possible to reproduce
all existing data. However, this alternative choice intro-
duces a low-lying mixed-symmetry E =0+ band near the
energy of the P and y bands. In energy, this state lies
close to an experimentally well-known' second excited
%~=0+ band (denoted by E~=03+ in the following)
which cannot be explained using the conventional choice
for the IBA-2 Hamiltonian. " This K =03+ band is as-
sumed to be based on a two-quasiparticle (2 qp) excitation.
In this paper we will investigate the possibility that this
observed band is instead the mixed-symmetry band. For

this reason we will present here a detailed comparison of
the properties of a 2 qp band with those of a X~=0+
mixed-symmetry band.

II. THE ISA-2 MODEL

In the IBA-2 model, ' the structure of the collective
states in even-even nuclei is calculated by considering a
system of interacting rieutron and proton s and d bosons.
The lowest lying states correspond predominantly to the
fully symmetric SU(6) representation [N], where N is the
total number of neutron and proton s and d bosons.
States belonging to the mixed-symmetry representations,
such as [N —1, 1] are also present in the spectrum. The
different neutron-proton symmetries can conveniently be
labeled by introducing an F-spin quantum number. ' Its
interpretation is analogous to that of isospin for fermions.
A boson is an object with F spin equal to —, and F, = ——,

for neutrons and F,=+—,
' for proton bosons. The states

with a maximal value of the F spin, Fo (N +N )/2,——
thus belong to the maximally symmetric representation,
[N], of SU(6). The less symmetric states with F=Fo 1—
belong to the [N —1, 1] representation. Most of the low-
lying states have F=Fo. The aim of the present paper is
to investigate the possibility of the occurrence of low-
lying states in deformed nuclei with F=F0—1. In spher-
ical nuclei the properties of the lowest lying mixed-
symmetry states have been investigated in Refs. 9, 13, and
14. In this latter case the states of principal interest are
2+ levels, while, as will be shown in the following, in de-
formed nuclei the levels of interest belong to a K =0+
rotational band.

The boson Hamiltonian used in most phenomenological
IBA-2 calculations can be written as '

H =ed(nd +nd )+tcQ'„' Q' '+M

where
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(2)

and

M =gz(sg —d~ )' '(s„d —d~ )' '

(dtpt )(k).(d d )(k)

k=1,3

An additional interaction between like bosons is often add-
ed. In this paper we wi11 consider only a like boson in-
teraction of the form

(3)

(2) . (2)
Vpp appQ——p Qp, p=v, n,

where Q' ' is defined in Eq. (2). This particular form is
chosen since for a~=a ~= —,'a the amount of F-spin
breaking is minimal. The Majorana force serves to raise
the excitation energy of the states that are not fully sym-
metric in the neutron and proton degrees of freedom
(those having F &Fo). This term has been added to the
Hamiltonian for purely phenom enological reasons.
Without it the density of low-lying levels would be far
greater than indicated by experiment. This Majorana
force contains three parameters, gi, gz, and gs. In most
phenomenological applications, -as for example given in
Refs. 8 and 14, for simplicity, these parameters have been
chosen equal, in which case the Majorana force pushes up
the mixed-symmetry states by an amount depending only
on their F-spin value, ' ' i.e., this force is a true Majora-
na force.

While for the e, a, and X&,~ parameters extensive micro-
scopic calculations exist, ' ' the microscopic origin of the
Majorana force is at best only partially understood. ' '
In particular, there is very little, or no, evidence that the
three parameters g&, g2, and g& should be chosen equal. '

On the basis of recent shell-model calculations for the
very neutron-deficient even-even Pd (Ref. 14) isotopes,
one finds that the parameters gi and gs can be chosen
equal. Also from the point of view of the microscopic
picture behind the IBA model, the term multiplying g'z is
of a completely different nature than the other two terms
in the Majorana force. This term namely changes the
number of neutron and proton d bosons (although the to-
tal number of d bosons is conserved by the Majorana
force). In terms of the usual microscopic picture of the
bosons in terms of particle pairs, the g2 term corresponds
to a matrix element in which the seniority in both the neu-
tron and proton sector of the space changes while the gi
and g's terms correspond to seniority-conserving matrix
elements.

For the above reasons we made a phenomenological in-
vestigation of the structure of the calculated spectra
choosing in the Majorana force b =pi ——g3 and gz ——0.0.
The extreme choice g2

——0 has been made in order to
present a case that is complementary to the traditional
choice a =g'i ——g3 ——gz. The difference between the two
choices for the Majorana force is most intriguing in the
SU(3) limit of the IBA model on which we will therefore
focus our attention.

In the deformed rare earth isotopes a probable candi-
date for the collective 1+ state has been observed near an
excitation energy of E„=3MeV. In the IBA model a 1+
state is necessarily of a mixed-symmetry character. '

3-
Os 2S OM I 0 2 0 I Os 2s oM 'M

g, =g, =g, =o.i5 l56Gd ,=0.3

0-

FIG. 1. A comparison between calculated bandhead energies
and those observed in ' Czd. In the calculation presented on the
left-hand side (calculation I) the Majorana force is parametrized
(see the text) by a =0.15 MeV while in the calculation on the
right-hand side (II) b =0.3 MeV is used.

This state can therefore be used to determine the strength
of the Majorana force.

As an example of a typical deformed rare earth nucleus
we will discuss in some more detail the nucleus ' Gd.
The parameters of the ISA-2 Hamiltonian have been
chosen as to reproduce the low-lying levels. ' The
strength of the Majorana force, as determined from the
position of the 1+ level near E„-=3MeV, can be taken as
a =gi ——gq ——gs

——0. 15 MeV (calculation I) or as
b =pi ——gs

——0.3 MeV and g'2 ——0 (calculation II). In Fig. 1

the calculated excitation energies of the bandheads using
these two different choices for the Majorana force are
compared with some known bandheads in the experimen-
tal spectrum' of ' Gd. Even though in both calculations
the strength of the Majorana force is chosen such that the
E =1+ band lies near E„=3 MeV, the spectrum of
mixed-symmetry states in the two calculations is totally
different. In calculation I the X = 1+ band is the lowest
mixed-symmetry band, while in calculation II the lowest
mixed-symmetry band lies near the position of the P and

y bands and all other mixed-symmetry states occur at the
position of the IC =1+ bandhead or higher. The lowest
mixed-symmetry E =0+ band in calculation II results in
energy very near an experimentally well-known E =03+
band. This experimental E =0+ band has hitherto been
interpreted as being based on a 2 qp configuration. ' In
the IBA framework, on the other hand, this band has been
explained through the introduction of s' and d' bosons. "
Since these primed bosons can be seen as corresponding to
the degrees of freedom related to cross-closed-shell excita-
tions, this interpretation is equivalent to that of a 2-qp ex-
citation. The present calculation suggests, however, that
it could also be interpreted as a mixed-symmetry state and
as such has escaped attention thus far. This would open
the possibility of studying in some detail the properties of
mixed-symmetry states, since the levels lie in a region of
the spectrum where the level density is relatively low.

It is interesting to note that the calculation shows that
the moment of inertia of the mixed-symmetry band is
larger than that of the ground state band, while that of
the calculated P band is smaller than that of the ground
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state band. Experimentally the moment of inertia of the
K =0&+ band is somewhat larger than that of the ground
state band. This even could be seen as an argument to in-
terpret the observed second K =0+ as the mixed-
symmetry band. This could be realized in the calculation
by choosing g'2 negative in the Majorana operator. In this
paper we will, hovtIever, not explore this possibility any
further. In the next section, calculated properties of this
mixed-symmetry K =0+ band are compared with those
expected for a 2 qp band.

III. ELECTROMAGNETIC PROPERTIES

In this section, we discuss E2, M 1, EO, and M3 matrix
elements between the E =03+ band and the ground state,
P, and y bands. The calculated values for the various
quantities will be compared with estimates following from
a 2 qp interpretation of this band.

A. E2

A 2 qp deformed state
~
(Qi, Qz) &, projected on a fixed

angular momentum IM,

can, using the spherical decomposition of a Nilsson orbi-
tal,

be written as

~
(Qi, Qz)I, M&= g Cq, n, CJ.

&1~J2

x(j iQi, j2Qz ~IM&
~ Jij~,IM&,

where now,
~j,jzIM & is a spherical two-quasiparticle

state. For I =2 a sum over all possible spherical single
particle. configurations results in a B(E2) value for the
deformed state which is almost equal to the B(E2) value
for a pure (j ) configuration, i.e., of the order of 1 single
particle unit (s.p.u.)=150 e fm" in the mass region of in-
terest. This value is of the order of magnitude of the ex-
perimental values (see Ref. 10, Table 5).

In a 2 qp picture one thus expects that the E2 transi-
tion strength from the K =03+ band to the other low-
lying bands will be of the order of 1 s.p.u. , '0' strongly
hindered compared to the collective 2~+~0~ transition in
the ground state band. The E2 transitions within the
K =03+ band are expected to be of the same order of
magnitude, although slightly smaller, as those within the
g.s. band.

In the ISA-2 model, E2 transitions are calculated using
the operator

(4)

where Q' ' and Q' ' are given by Eq. (2). In phenomeno-
1ogical calculations one usually assumes that the neutron
and proton boson effective charges are equal, e~=e„.

TABLE I. Calculated 8(E2) values for various transitions
involving members of the mixed-symmetry K"=0+ band for
two different choices for the boson effective charges. In calcula-
tion A, no quadrupole interaction between like particles has
been included, while in calculation 8 an almost (see the text) I'-
spin symmetric Hamiltonian has been used.

Transition

Ops~2(
oMs 2p
0MS~2y
2Ms~Ol+
2Ms ~Op
2Ms ~Ops

e„=e„/2

100.
0.36
0.8S
2.13
O.OOS

0.10
78.15

e =e
100.

0.86
1.11
3.38

0.12
O.OS

70.86

e„=e /2

100.
0.53
0.52
0.74
0.33
0.27

69.4

e =e„
100.

0.002
0.001
0.006
0.0004
0.0002

67.7

While in the study of purely symmetric states there is no
sensitivity in the calculation on the difference of the neu-
tron and proton effective. charges, this is no longer the
case when studying mixed-symmetry states. In fact, if
e,=e, all E2 transitions leading from symmetric to
mixed-symmetry states would vanish identically in the
case of an unbroken symmetry. Shell-model calculations
in this mass region indicate that the contribution to the
fermion charge, as a result of core polarization, is of the
order of 0.8e,z' giving e&

——1.8e, e„=0.8e. To obtain bo-
son effective charges one has to include also the effects of
radial integrals, which are larger for neutrons than for
protons. Renormalizations of the effective charge due to
model space truncations, specifically the omission of G
pairs from the model space, tend to make the neutron and
proton effective charge more equal. Some recent
phenomenological calculations' 'z in which special atten-
tion is paid to the difference in the boson effective charges
tend to favor a value of 1.5e„&e (2.0e„. For these
reasons we present in Table I some B(E2) values for the
mixed-symmetry states, calculated for two different
choices for the boson effective charges, e =2e„and
e~=e„. Even though the neutron and proton boson effec-
tive charges differ by a factor 2, the transitions from the
K~=03+ band to the other low-lying bands is only a frac-
tion of the 2i+~0i+ transition and of the order of a few
s.p.u. The transitions within the band are strong but
somewhat weaker than the transitions within the g.s.
band. In this sense the interpretations of the K =03+ band
as a mixed-symmetry or as a 2 qp band are indistinguish-
able.

Even for the case of equal boson effective charges the
transitions leading to the mixed-symmetry (MS) states do
not vanish. This is an indication that there is a consider-
able amount of F-spin breaking in the spectrum. The ori-
gin of this lies in the fact that in the Hamiltonian only a
quadrupole-quadrupole interaction between neutrons and
protons has been assumed. Since in ' Gd the number of
neutron and proton bosons (N =7, N„=5) is not equal,
this introduces a strong F-spin breaking term in the Harn-
iltonian. In the present case the interaction matrix ele-
ment between the pure 0&+ and OM+s is of the order of 200
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keV. In order to test the effects of symmetry breaking we
have done an additional calculation (calculation 8) in
which E-spin mixing is minimized, by adding to the
Hamiltonian (1) a quadrupole-quadrupole interaction be-
tween like particles with half the strength of the neutron-
proton interaction. A minor amount remains since
g~= —1.0 is not equal to X„=—1.1 [see Eq. (2)]. The
strength of the quadrupole interaction has been adjusted
in order to keep the positions of the P and y bands un-
changed. The strength of the Majorana force was in-
creased to b =0.55 MeV to keep the 1+ level at E„=3
MeV. The position of the OMs state is somewhat lower in
the spectrum, at E =1.3 MeV, near the y band. From
column B in Table I, it can be seen that, although now the
absolute magnitude of the b,F=1 transitions is strongly
dependent on the ratio of the neutron and proton effective
charges, the basic features have remained unchanged.

B. M1

One might expect a large difference in the prediction of
the M 1 strength for a 2 qp and a collective band. The
M 1 transitions are expected to be of the order of less than
0.1 of a single particle unit for a 2 qp ba'nd (Ref. 23, p.
748). On the other hand, for a purely collective band,
where neutrons and protons move in a coherent fashion,
one expects that all M1 transitions vanish, and the ob-
served small M1 transitions have to be explained via a
band-mixing calculation.

In the IBA-2 model, the M 1 transition operator is writ-
ten as

T '=v'30l4n[g (dQ )'"+g„(d„d„)"'],

where g and g„are the boson g factors. On the basis of
the collectivity of the bosons one can argue that the spin
contributions to g and g essentially cancel and that
therefore the g factors are equal to the orbital nucleon g
factors, g =1.0 pN and g,=0.0 pN. Analysis of magnet-
ic moments of low-lying states basically supports this
conclusion but deviations of the order of 0.3 pN could
occur.

Because of the similarity with the angular momentum
operator, the matrix elements of the M 1 operator between
two purely symmetric states vanish exactly and only due
to small admixtures of mixed-symmetry components,
nonzero M1 transition rates can be obtained. The M1
operator has relatively strong matrix elements connecting
symmetric and mixed-symmetry states. "' It was in fact
this feature that helped to identify the E =1+ band ob-
served in electron scattering as the mixed-symmetry band
predicted by the ISA model. In Table II we present a
number of calculated M 1 matrix elements between the
EC =03+ band and the ground state and y bands. As ex-
pected on the basis of the above arguments these transi-
tion rates are relatively large and of the same order of
magnitude as can be expected for a 2 qp band. This im-
plies that also M 1 transitions are precluded from distin-
guishing between a 2 qp and a mixed-symmetry interpre-
tation of the observed K =03+ band.

0+ 1+

2MS ~21
2MS~2p
2Ms~2y
0+ 1+

1.68
0.55
0.05
0.046
0.001
0.0
0.24

0.90
0.27
0.38
0.10
0.01
0.0004
0.07

In Table II also the M1 transition strength leading to
the lowest 1+ states has been given, for completeness. It
is seen that the 12+ state which lies at E„=3.8 MeV still
carries a considerable M1 strength. The present calcula-
tion thus also explains some of the experimentally ob-
served splitting of the collective M 1 strength.

If it would be possible to measure the difference be-
tween the spin and convection current contribution to
these M 1 transitions, one might be able to distinguish the
two interpretations. In the decay of the 2 qp band the
contribution of the spin part of the operator will be large.
For mixed-symmetry. states, the spin contribution is negli-
gible, since for the neutron and proton bosons separately it
is small. ' However, since there are no allowed M1
transitions from a K =0+ band to the ground state, this
will be hard to determine experimentally.

C. EO

Monopole decays of various 0+ states have been ob-
served experimentally. In general, the EO transition prob-
ability from a 2 qp state to the ground state is hindered as
compared to the decay of the P bandhead.

In the IBA-2 model the EO transition operator can be
put in the form

EO
eo, vndv+eo, nd~ .

The s-boson contribution has been eliminated, using boson
number conservation. The calculated EO transition prob-
abilities are given in Table III for two different choices of
the monopole effective charges. Depending on the choice,
for which there exists essentially no phenomenological in-
formation, the EO transition probability to the mixed-
symmetry state is a factor 2 to 100 smaller than that to
the P band.

TABLE III. Calculated B(EO) values in units of ep . The
difference between calculations A and column B is explained in
the text.

Transition

~0Ms
0p ~0MS

ep, ~=eo, v

0.49
0.19
0.096

eo, =0
0.40
0.002
0.43

ep ——ep

0.66
0.0003
0.0

ep„——0

0.22
0.14
0.0003

TABLE II. Some calculated B(M1) values in units of pN,
using g =1 pN and g„=0 in Eq. (5) for ~& 1 transitions in-
volving mixed-symmetry states. The difference between calcula-
tions 3 and 8 is explained in the text.

Transition
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TABLE IV. Calculated values for 8(M3t) strength, in units
of 0 for two different choices of the boson octupole moments,
leading to different 3+ levels, specified by their excitation ener-
gy. The difference between calculations A and 8 is explained in
the text.

1.4
2.2
2.5
2.9
3.1
3.2
3.5

0.86
0.49
1.32
1.21
0.86
3.20
0.00

Q„=O

3.13
0.10
0.11
0.31
0.31
0.75
0.00

1.4
2.3
2.3
3.0
3.1

3.4

0.14
1.13
0.08
0.06
3.13
0.00

Q„=O

1.71
0.22
0.10
0.01
1.07
0.00

D. M3

It has recently been suggested that 8(M3t) values
would give important additional information on the posi-
tion of mixed-symmetry states since in the boson M3
operator

TM3
8m

1/2

[Q (dQ )"'+Q„(dg„)' 'j

IV. NGNELECTRGMAGNETIC PROBES

In two-nucleon stripping one expects to be able to excite
a 2 qp band with a strong selectivity. For nuclei in this
mass region the excitation probability is of the order of
20% of that of the ground state. In two-nucleon pickup
the excitation of a 2 qp state is essentially forbidden.

If the bosons under consideration correspond to particle
pairs, i.e., the major shell is less than half filled, the opera-
tor for L =0 two-neutron pickup is given by

(0)T„=Avs~, (7a)

while L =0, two-neutron stripping is described by the
operator

T+ ——A~+ .{0) (7b)

the boson octupole moments A, Q„have opposite signs.
For this reason the octupole transitions would predom-
inantly excite mixed-symmetry states. The microscop-
ic calculations presented in Ref. 28 indicate that
Q„-——,

' Q . For this reason, in Table IV we present cal-
culations for two different choices of the boson octupole
moments. If the operator is purely antisymmetric, Q
= —Q~ predominantly the 3+ level of the mixed-
symmetry X = I+ band is excited, although in calcula-
tion A an appreciable amount of strength is concentrated
in the lower states due to the F-spin nonconserving terms
in the Hamiltonian. If in the M3 operator Q„=O is used,
the calculations predict that the 3&+ is by far the strongest
state in the spectrum. This result deviates significantly
from the results reported in Ref. 28 where the standard
choice for the Majorana force was used.

TABLE V. Amplitudes for I.=0 two-neutron transfer (in
arbitrary units). The difference between calculations A and 8 is
explained in the text.

0+
oj
0+s

(p,t)

1.82
0.15
0.15

(t,p)

1.54
0.61
0.79

(p,t)

1.93
0.06
0.16

(t,p)

1.68
0.97
0.41

V. CONCLUSIONS

In this paper we have suggested an alternative choice
for the Majorana force in the IBA-2 model. This choice
has the peculiar feature of producing in the SU(3) limit a
spectrum in which there appears a mixed-symmetry
K =0+ band at approximately the same energy as that of
the P and y bandheads. All other mixed-symmetry bands
appear at or above the energy of the K = 1+ band.

In the spectra of the deformed rare earth nuclei an ad-
ditional E =0+ band has been observed experimentally

For L =2 transfer the expressions are more complicated
and it is therefore impossible to make a priori predictions
of excitation probabilities since the IBA model operators
contain several adjustable parameters.

The calculated two-neutron transfer probabilities in
units of A„[Eq. (7)] are given in Table V. Although the
calculated transition strengths are nucleus dependent, it is
clear from Table V that the strength leading to the
mixed-symmetry state in IBA-2 obeys the same seiection
rules as would be expected for a 2 qp state. This implies
that also on the basis of two-nucleon transfer strength, it
is not possible to distinguish a 2 qp and a mixed-
symmetry interpretation of this band.

Since the L =0 two-nucleon transfer operators in IBA-
2 are parametrized with only a single coefficient (in con-

.trast to the E2 operator where there are two, e and X) it is
expected that all 0+ states are populated with the same
form factor. The mixed-symmetry 0+ state should thus
be excited with the same angular distribution (neglecting
Q-value effects) as the ground state. For a 2 qp state one
would in general expect a form factor which is different
from that of the ground state. The angular distributions
for two-nucleon stripping might thus give a clue to the
correct interpretation of this band.

Another interesting possibility to distinguish between
the 2 qp and the mixed-symmetry interpretation may lie
in measuring the neutron and proton component of the
transition matrix element separately. For a pure mixed-
symmetry state one expects the neutron and proton transi-
tion matrix elements to the ground state to be equal in
magnitude but opposite in phase. A 2 qp excitation on
the other hand has in most cases a character that is either
neutronlike or protonlike. A combination of an isoscalar
and an isovector probe (inelastic a scattering and E2
transitions or inelastic n+im scatter. ing ) could thus
distinguish between the two pictures. Core polarization
effects, which are predominantly isoscalar in character,
might obscure some of the effects.
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near the energy of the P and y bands. This band has been
interpreted as based on a 2 qp excitation. "' %'e propose
here an alternative explanation in terms of a mixed-
symmetry K =0+ band. Several experimental observ-
ables for such a mixed-symmetry band are calculated. A
qualitative comparison of these values with the predic-
tions for a typical 2 qp band shows that on the basis of
transition rates only, the two interpretations are indistin-
guishable. Only on the level of more detailed properties
such as transition densities and form factors, one might
expect to be able to differentiate between the two interpre-
tations. Also a detailed comparison of the excitation

probabilities for different probes may yield data on the
neutron and proton matrix elements separately, and as
such can also lead to a differentiation between the dif-
ferent pictures.
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