
PHYSICAL REVIEW C VOLUME 32, NUMBER 1 JULY 1985

Time-dependent Hartree-Fock calculations of He+' C, ' C+' C(0+),
and He+ Ne molecular formations

A. S. Umar
Wright Nuclear Structure Laboratory, Department ofPhysics, Yale University, New Haven, Connecticut 06511

and Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831

M. R. Strayer
Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831

R. Y. Cusson
Department ofPhysics, Duke University, Durham, North Carolina 27706

P.-G. Reinhard*
Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831

D. A. Bromley
Wright Nuclear Structure Laboratory, Department of Physics, Yale University, New Haven, Connecticut 06511

(Received 17 December 1984)

Time-dependent Hartree-Fock calculations for head-on collisions of He+' C, ' C+' C(0+), and
"He+ Ne have been performed at bombarding energies near the Coulomb barrier. The results are
interpreted in terms of their classical quasiperiodic and chaotic behavior. The position of the time-

dependent Hartree-Fock collective path with respect to the multidimensional energy surface of the
compound nuclear system is shown. Dynamical collective degrees of freedom are identified and
classical frequencies associated with each degree of freedom are calculated. For Mg we calculate
molecular frequencies of about 0.8 and 1.0 MeV and a characteristic moment of inertia of 15
MeV

I. INTRODUCTION

In recent years considerable progress has been made in
the study of large amplitude collective phenomena. The
time-dependent Hartree-Fock (TDHF) theory' consti-
tutes a well-defined starting point for the study of such
motion, The usual TDHF approximation yields a classi-
cal or semiclassical description of the collective motion.
Theories attempting to achieve some form of a quantized
TDHF theory include adiabatic time-dependent Hartree-
Fock theory (ATDHF), ' the generator coordinate
method (GCM), ' the time-dependent GCM, ' and the
functional integral theories which formulate the bound
state of a many-body system and collective energies in
terms of periodic TDHF solutions. ' The ATDHF
and GCM theories require a restriction to one or more
collective coordinates. Although the functional integral
methods are free of any such conceptual difficulties, nu-
merical solutions of the resulting equations are presently
not possible.

In the present work, we study quasiperiodic TDHF
solutions using the TDHF formalism. ' The long-time
motion of the collective nuclear coordinates are analyzed
in terms of their classical quasiperiodic and chaotic
behavior. Chaos ' concerns the long-time behavior of
nonintegrable mechanical systems and addresses questions
as to the nature of energy dissipation and equilibration of
energy. These ideas were first used, within the context of
nuclear physics, by Fermi, Pasta, and Ulam. In

present-day nuclear physics, the long-time classical
behavior arises through various limits of the nuclear
many-body state, as in the TDHF studies of heavy-ion re-
actions, the nuclear partition function, fission life-
times, ' and S-matrix elements. Similarly, the hydro-
dynamic models of heavy-ion reactions exhibit dissipative
fluid flow behavior, where the details of the momentum
transfer and particle multiplicities may be evidence for the
formation of attractor regions in the reaction phase
space. On the other hand, in the small amplitude limit,
quasiperiodic TDHF solutions yield unquantized vibra-
tional frequencies, with the classical interpretation of be-
ing the most probable random phase approximation
(RPA) frequencies. In this context, TDHF calculations of
isoscalar and isovector, monopole and quadrupole, giant
resonances have been found to be in good agreement with
both RPA and GCM results.

We obtain quasiperiodic TDHF solutions by initiating
head-on collisions with bombarding energies near the
Coulomb barrier. The initial energy and the separation of
the centers of the ions are parameters labeling the initial
state. The initial energy is varied until a quasiperiodic
solution is found. From these solutions, the important
collective degrees of freedom are identified and the associ-
ated classical frequencies are calculated. We also calcu-
late a multidimensional energy surface along the TDHF
path using the density constrained Hartree-Fock (DCHF)
method.

In the next section we briefly describe the TDHF for-
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malism used in our study. Section III examines the quasi-
periodic TDHF results for systems He+ ' C,
' C+' C(0+), and He+ Ne. In Sec. IV we examine the
long-time behavior from the point of view of chaos. The
paper is concluded with a summary of the results. Some
of these results have been previously published.

II. FORMALISM

In this section we give a brief description of the TDHF
formalism and discuss some of the numerical methods
utilized in these calculations. A more detailed description
of the TDHF theory is available in the literature. ' The
TDHF equations can be obtained from the variation of
the many-body action S, '

S=f dr(, y(r)
~
ia, —H

~
@(r)) . (1)

In this expression the many-body Hamiltonian H is given
by,

(2)

where T is the one-body kinetic energy operator and the
potential terms represent two- and three-body interac-
tions. The A-nucleon wave function %(t) is chosen to be

- of determinantal form, constructed from the time-
dependent single-particle states g~(t),

P~(r, t) =5(H ) l5mx(r, r),

~~(r, t) = —5(H ) l5$&(r, r) .
(6)

The TDHF equation (4) and its complex conjugate are
solved on a three-dimensional space-time lattice with ini-
tial wave functions of the form,

lim P~(r, t )—+v 2 cos(kx r ext )X~(r k. ~l—mt P~),— —
t—+ —oo

(7)
lim mx(r, t)~v 2sin( kyar

—ext)X~(r k~lmt —P~), —

where X~ is the solution of the static Hartree-Fock equa-
tions,

The variation of Eq. (1) is an independent variation with
respect to the single-particle states fx and gg and yields
the equations of motion,

if'(r, t)=, =h(r, t)Pg(r, t)5(H)
(4)

5/x(r, i)

and a similar equation for g~(r, t). The classical nature of
these equations can be put into a better perspective via the
definition of classical field coordinates p~(r, t), and conju-
gate momenta sr~(r, t),

A=(%+4~)l&2

~~=(A —4~) l&2 i

The result is then the Hamilton's equations,

hX~(r) =exXq(r), A, = 1, . . . , A (8)

and k~ and Px are parameters of the initial boost.
In this work we solve Eq. (4) employing axial symmetry

in cylindrical polar coordinates. The ions are initially
separated by a distance R, and their initial relative kinetic
energy is denoted by E. During the time evolution, we ex-
amine both the isoscalar (I =0) and isovector (I = 1) den-
sities,

p, (r)= g 5(r-r, )a,(X),
A, =1

q=p, n .

In our static and dynamic calculations we have used the
finite-range Bonche-Koonin-Negele (BKN) force without
any spin-orbit interaction. The numerical solution of Eq.
(8) was performed, in coordinate space, using the gradient
iteration method. ' This method is similar to the imagi-
nary time method, and is discussed in Appendix A. The
density constrained Hartree-Fock method is essential for
the calculation of the energy surface along the TDHF
path. The details of this method are given in Appendix B.

%'e also calculate the classical electromagnetic radiation
from the quasiperiodic charge distributions. The classical
treatment of the radiation field results in a continuous
spectrum, which is related to the time dependence of the
moments of the proton density. We write the total action
for the system as,

S =S~+SEM+SI . (10)

In this expression S& is the nuclear action given by Eq.
(1), SEM is the classical action for the free electromagnetic
field, and SI represents the action for the coupling of nu-
clear and electromagnetic parts. In Gaussian units,

SEM ——— fd x F~„F"',
16m

Sl ———— d x ApJ",1 4

C

with

d4x =dt d'r .
In Eq. (11) the electromagnetic tensor F& is defined as in
Ref. 34, Az is a four-vector having its time component as
the scalar potential P and space component as the vector
potential A,

6qq, q = proton
I

( —1) 5qz, q= neutron.

In terms of these quantities the density can be written as,

p„(r,t)+p„(r,t) I =0
p~(r, t) —p„(r,t) I =1.

The densities p„andp„,in terms of the field coordinates
and momenta, are
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A~=(P, A) .

Similarly, the current four-vector is defined as,

Ji'=(cpp, Jp),

where J~(r, t) is the nuclear current,

J~(r, t) = g 1m[pi(r, t)V1iji(r, t)] . (12)

1 BBVx E(r, &) = ——
c Bt

V.B=O .

With the definition of the Fourier transform,

+~ dM
pp(r, t) = exp( i cot)pp(r—,co)

2'7T

and a similar expression for J~(r, t), these equations for
each frequency component become,

V B(r,co)=0,

VXE(r, co) =ico/cB(r, co),
(14)

V E(r, co) =4irpp(r, co),

VXB(r,co)+ . E(r,co)= Jp(r, co) .
I CO 4n

The asymptotic solution of Eqs. (14) can be obtained as,
ikr

B(r,co)= g ( i) +'a( L, M, —co)L 'Il~(8, $),

The variation of this action with respect to the single-
particle states yields the equations of motion (4) plus a
term coming from the variation of Si, which we neglect.
The variation of S in Eq. (10) with respect to fields A&,
which, together with gauge invariance and current conser-
vation, yields the four Maxwell equations in the presence
of sources.

V x B(r, r ) =— + J,(r, r),1 ()E 4~
c Bt c

V E(r, t) =4~p~(r, t),

allows us to calculate the y yield as a function of the ener-

gy~ as,

g (2L+1)
~

a(L, fico)
i

8% A co

111. QUASIPERIODIC SOLUTIONS

The TDHF equations (4) were used to study the long-
time behavior of the He+' C reaction. . The initial ' C
nucleus was obtained as a spherical approximation to the
ground state using the filling approximation. The initial
separation and the c.m. kinetic energy were 15 fm and 7.5
MeV, respectively. After the initial contact -about 40
fm/c, the system relaxes into a configuration, undergoing
quasiperiodic motion. In Fig. 1 we show the evolution of
the density at various times. In a schematic interpretation
the density shows an alpha particle and a ' C nucleus
which are exchanging about the center of mass of the ' 0
system. Figures 2 and 3 show the time and frequency
dependence of the isoscalar quadrupole and octupole mo-
ments and the isovector dipole moment. The definitions
of the moments are as follows:

MLi(i)= fd « I'IM(r)pi(r r)
(17)+ 00

MLI(co) = dt exp( i cot)M&I(—t) .

We observe oscillations for times longer than the typical
nuclear reaction times, with a relatively pure 4-MeV fre-
quency in the isoscalar octupole mode, and 8- and 15-
MeV frequencies in the isoscalar quadrupole mode. The
isovector dipole mode has 4- and 9-MeV frequencies. The
4-MeV frequency may be due to the coupling of the iso-
scalar octupole and isovector dipole channels. A similar
collision study was carried out for the ' C+' C(0+) sys-
tem. The ions were initially 12 fm apart with a c.m. ki-
netic energy of 7.5 MeV. The ' C(0+) initial configura-
tion is obtained as a shape isomer with an apparent alpha
cluster structure, as shown in Fig. 4. This state is a solu-
tion of the unconstrained Hartree-Fock equations and its
choice follows from the supposition that it may represent

E(r,co) =B(r,co) xe, ,

where
1/2

4~ I. +1
i (2L +1)!! L

I. +2

(15)

0E

-5

t =507 fm/c

t+ 30

It+ 90

t+ t20

X f dt exp(icot) f d r r I'L~p~(r, t) .
t+ 60 t+ f50

The expression for the total radiated energy, integrated
over a spherical surface at an asymptotic distance,

8'„,= fdcodQ d 8'

=fdcodQ E*(r,co)XB(r,co) e,r
8m

I I I I I

-t0 -5 0 5 . t0 -10 -5 0 5
z (fm)

FIG. 1. Density contours (I =0) in the collision plane for the
"0 system, starting from the initial He+'"C configuration.
The times are considerably after the initial contact and exhibit

the quasiperiodicity of the system. The density contours 1, 3, 5,
and 6 are, respectively, 0 028, 0 084, 0.14, and 0.168
nucleons//fm'.
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FIG. 4. Density contours (I =0) in the collision plane for the Mg system, starting from an initial ' C+' C(0+) configuration.
Different times exhibit the quasiperiodicity of the system. The outer dark contour corresponds to 9)& 10, the adjacent grey contour
to 3&(10 ', the adjacent white contour to 8& 10, the adjacent grey contour to 3& 10, the adjacent white area to 7.2)&10, and
the central dark region to 1.S & 10 ' nucleons/fm'.

methods of Ref. 41. They study a variety of requantiza-
tion schemes for the classical trajectories of a three-level
SU(3) model. For this model, exact quantum-
mechanical, as well as closed-form TDHF solutions, can
be obtained. Upon classifying the motion to be one of the
following three types: (a) periodic, (b) quasiperiodic, and
(c) stochastic, they conclude that it is not possible to re-
quantize stochastic motions, whereas the various requanti-
zation methods for the quasiperiodic motion all give
reasonable results.

In order to interpret our results from the point of view
of these conclusions, we plot the Poincare projects for the
motion of Mg in Fig. 11. The velocity of the moments
i)/ILt(t) in Fig. 11 were obtained from the knowledge of
MLt(t) by using a first-order finite-difference expression.
We see that both the isoscalar quadrupole and octupole
modes seem to be filling most of the available phase
space. The corresponding autocorrelation functions (Fig.
12),

+~ dcoCrt(t)= f exp(+idiot) I~Lt(~)
I

277

are small for all of the relevant modes suggesting that the
motion is closer to being stochastic rather than periodic.
These conclusions can be summarized as follows. The ini-
tial TDHF trajectory quickly relaxes into a region about
the shape isomeric minimum and undergoes a complex,
nonlinear quasiperiodic motion. To improve the degree of
periodicity, the system must oscillate in the close neigh-
borhood of the isomer. In practice, this can be achieved
by localizing the TDHF trajectory via a DCHF minimiza-
tion to the close neighborhood of this minimum. To test
this idea, we start the evolution of the ' C+' C(0+) sys-
tem from the same initial conditions and follow the evolu-
tion until the system reaches a point in the vicinity of this
minimum (in this case, about 700 fm/c). We then "cool"
the system by keeping the density (or shape) fixed and
minimizing the energy. The following evolution starts
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FI~. 5. Density contours (I =].) in the collision plane for the Mg system, starting from an initial ' C+ ' C(0 ) configuration
e isovector densities change more rapidly in time, and they correspond to high multipole structures. The darkest contour corre-

sponds to 8.8~ 10, the grey contour always circled by the darkest contour to 3 &(10 ', the isolated grey contours to —6& 10, the
white regions to —4.4~ 10,and the grey contours encircled by the white region to —1.0& 10 e /fm'.

from this state. The time and frequency dependence of
the isoscalar moments are shown in Fig. 13 and 14,
respectively. The time dependence of the isoscalar mo-
ments are more periodic than the previous calculations;
furthermore, the dominant low frequency of the motion
now appears in all of these moments, which must be the
case for exact periodicity. This trend also continues for
odd isovector moments shown in Fig. 15 and 16. The
even multipoles no not have the correct low-frequency
behavior and they appear chaotic. Unlike Fig. 12, the au-
tocorrelation functions (Fig. 17) for the isoscalar and
odd-parity isovector modes show strong correlations in
time.

The spectrum for the classical electromagnetic radia-
tion, generated by the oscillating proton density of the
cooled system, can be calculated from Eq. (16). The mag-
nitude of the spectra fall rapidly with increasing values of
L. Figure 18 shows this spectra for the dipole, quadru-
pole, and the octupole modes.

V. CONCLUSIONS

%'e have studied the collective motion of the ' O and
Mg systems using the TDHF formalism. The reaction-

like entrance channels were chosen to be appropriate for
the study of nuclear molecules. We have tried to classify
the TDHF collective paths in terms of their chaotic and
quasiperiodic behavior. Even though the trajectory is
focused into the reaction phase space of the isomer, the
motion along the path appears stochastic and may be re-
flecting formation of a strange attractor near the shape
isomeric minima. The motion approaches the chaotic re-
gion, although the TDHF path is found to be in the vicin-
ity of the shape isomeric minimum. For "Mg, we have
employed the DCHF method to cool the motion, and this
resulted in quasiperiodic motion which was approximately
harmonic. These results are important from the point of
view that the quasiperiodic motion represents a known
classical 1imit of quantum mechanic, whereas the sto-
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chastic motion does not. ' Although the memory of the
initial alpha clustering seems to persist throughout the
time evolution of these systems, it would not be appropri-
ate to associate the molecular phenomena to a pure
entrance-channel alpha-particle description.

Our calculations suggest the existence of highly collec-
tive structures of a giant resonance nature having com-
pound nuclear properties at excitation energies of 13 MeV
in ' O and 36 MeV in Mg. The characteristic low-lying
vibrational frequencies in the isomer are approximately
0.8 MeV for odd-L and 1.0 MeV for even-L, with a mo-
ment of inertia of 15 MeV '. The isomer structure is 36
MeV above the ground state in Mg and 13 MeV above
the ground state in ' O. The general features of the ener-

gy surface also agree with the Nilsson-Strutinsky calcula-
tions of Ref. 37.
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APPENDIX A
In this appendix we will outline the gradient iteration

method ' for solving the static Hartree-Fock equations

(8). Unlike Ref. 31, here we choose to discuss the topic
within the framework of the imaginary time-step
method. We start with the TDHF single-particle equa-
tions

iA
~
P~(t) & =h(t)

~
gx(t) & A, =1,2, . . . , 3 .

In terms of the discretized time,

(A 1)

tk ——kit,
the solution of Eq. (Al) at time step @+1can be obtained
from step k by,

~

g~+' & =exp( i IRb, th ")
~ gx &, — (A2)

where h is the single-particle Hamiltonian of the kth
iteration step. The imaginary time-step method consists
of the transformation At ~—i At,

I

&~+'& =exp' —e(h "—~x) j I &x&,

(A4)

where e=htlA, and we have taken out a trivial phase
from

~ P~ &. For all practical purposes, the gradient itera-
tion step corresponds to the first-order expansion of the
exponential operator,

I

&x+'& =&[
I
&~& —~(h "—~~)

I &~&) .
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ground state C, and the shape isomeric Hartree-Pock12

solution of ' C(0+). The ordinate of Fig. 19 shows the
fractional change in the Hartree-Fock energy,

Ek+1 EkgEk (A7)

as a function of the iteration number k. The Hartree-
Fock iteration sequence is fully self-consistent, and the
structure in the curve for Ne results from a reordering
of the single-particle states due to three separate shell
crossings. This exponential convergence of the energy is a
characteristic of the method and persists throughout the
periodic table.

APPENDIX B
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FIG. 13. Time dependence of the isoscalar quadrupole, octu-

pole, and hexadecapole moments for the cooled modes of the

Mg system.

In Appendix A we have discussed the gradient iteration
step for solving the static Hartree-Pock equations. Here,
we will incorporate the constrained Hartree-Fock calcula-
tions into the gradient iteration step. %'e will first illus-

trate the derivation for a general constraining field, and

afterwards, we will write the equations for the density
constraint. We start with an imaginary time iteration step
of Eq. (A4),

! gz+' ) = 0&[!Xq) —e(h "—eq)! Xq) ] .

It is possible to rewrite Eq. (Bl) via the use of the projec-
tion operator,
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(82)

as,

(83)

)0.0

8.3
I=o

Tne aim of this appendix is to devise an iteration scheme
such that the expectation value of an arbitrary operator Q
does not change from one iteration to the next.

o 6.7
X

cu 50

g &x",+'!Q!x', +'&= y&x,"!Q!x,'& . (84)
1.7

Furthermore, we wish this expectation value to be equal
to a fixed number Qo. To achieve this, we use the method
of Lagrange multipliers,

)0.0

8.3
I =0

! &:+'&=&!:!&:&—e~".(~ "+~Q)!&."&~ (85)
o 6.7

5.0
where A, is to be determined from Eq. (84). The applica-
tion of the Czram-Schmidt orthogonalization procedure
yields, to order e,

O

I

~:+'
& =(l —~.)

I
&."&

A, —1

+ g(&&~
I

~ x l&p&+&&~ I ~p I&p&) l&r &

(86)
where we have defined,

0 I I

0 0.6 &.2 ).8
TIME x IO {f~/c)

FIG. 17. The autocorrelation function CI I(t) in units
MeV(fm sec) as a function of time for the isoscalar quadrupole
and octupole moments for the cooled modes of Mg.
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iteration step. To do this, we perform an intermediate
step,
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0
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/I k Pqe( h "+A——Q ) . (87)
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FIG. 18. The y spectrum, dN~/dE (MeV '), as a function of
the y energy, E (MeV), for the cooled modes of the Mg sys-
tem.

I

&k"'"'&=&I
I
&k& —~(h '+~"Q —~k)

I &k&]

and calculate the difference,

ggk+11/2) y (gk+(1/21
I g I

yk+(1/2))

We then correct A, to reduce this difference,

k+( &/2)
gk+1 gk+( Q

2~& &&k
I
Q'1~k&+do

(811)

(813)

where

(x
I Q(h "+AQ)

I
x )

(x Ig'Ix)
(88)

From Eq. (86) we calculate the left-hand side of Eq. (84)
to obtain,

where we have replaced the exchange term by the constant
do. In terms of these intermediate states, the (k+1)th
step is given by,

I

&k+') = &[
I

&'+""'&

e(/k+1 gk+Qgk)g
I

yk+(1/2) ) ] (814)

where

(815)

The difference between the expectation value of Q in each
iteration step will be of order e. . To further correct for
this error, we add a term which is solely driven by this
difference,

p"(r) = g I
Xq(r)

I

' (816)

The extension of this method to the density constraints
is a trivial one. In this case, we would like to constrain a
continuous density,

(x IQ Ix)
(810)

This is then the most optimal value of A, to be used at
each iteration step. As we see, the calculation of the ex-
change terms is rather costly. Instead, it is possible to
formulate an iterative scheme for determining k at each A, Q~ f d r A.(r)p(r) . (818)

to be equal to po(r). The operator Q becomes the density
operator p(r) defined as,

(X2"„Ip(r) IXg) =
I
Xk(r)

I

'

and the product A.Q becomes an integral,
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Note that in coordinate space p(r) is a delta function, and

f d r A,(r)p(r)=A, (r) . (B19)
~
~k+1& @I

~

~k+()/2)
&

From these equations the iterative scheme for A,"(r) can be
written as e[—Xk+'(r) X—k(r)+SXk(r)]

~

Xk+"")
& I

(B23)k +(1/2)
A, +'(r)=A, (r)+C()

2'"(r)+do
(B20) where

p"(r) —po(r)
5A, (r)=c()

2Epo(r)+do
where

Using these wave functions, the (k+1)th iteration be-
comes

k+()/2)(r) k+((/2)(
) ( )

is obtained from the half-time iteration step,

I

&k+""'&=&[
I &k &

—«h "+~k«) —e)„)
l
&k & ] (B22)

In practical calculations the parameter e of Eq. (Bl) has
been replaced by the damping operator of Eq. (A6), and
the constants co and do were chosen to be 0.9 and
7 X 10, respectively.
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