PHYSICAL REVIEW C

VOLUME 32, NUMBER $§

NOVEMBER 1985

Relativistic treatment of spin observables in the excitation
of the 1* T=0 state in 12C

J. Piekarewicz
Department of Physics, University of Pennsylvania, Philadelphia, Pennsylvania 19104
(Received 29 July 1985)

In the present paper we extend earlier work on spin-dominated transitions using a plane wave for-
malism to a full distorted wave treatment. We perform a distorted wave calculation using a relativ-
istic approach to nucleon-nucleus inelastic scattering. We focus on the 1%, T=0 transition in 2C
using 500 MeV protons with special emphasis on spin observables. We obtain sizable effects for
spin observable differences without invoking exchange processes.

I. INTRODUCTION

Current relativistic models of nucleon-nucleus scatter-
ing, using the Dirac equation, have been very successful in
_ describing elastic scattering data and especially spin ob-
servables.! =3 The Dirac formalism incorporates spin very
naturally into the picture, and the study of spin dominat-
ed transitions becomes both interesting and important. In
the present paper we calculate the transition amplitude,
for nucleon-nucleus inelastic scattering, in the framework
of a relativistic distorted wave impulse approximation
(RDWIA). Our main objective is to assess the importance
of distortion effects, which were completely ignored in
our previous relativistic plane wave treatment.* In that
work we developed a relativistic plane wave formalism
which focused exclusively on the transition potential and
allowed the determination of the scattering amplitude in
an exact and completely analytic way. This relativistic
plane wave impulse approximation (RPWIA) formalism
revealed the fundamental role played by upper to lower
transitions in the determination of spin observables, and
particularly spin observable differences like (P—A4,) or
more generally the spin difference function.*>

The additional complication in the present RDWIA
treatment arises solely from the presence of distorted
waves. This fact will render our previous analytic treat-
ment no longer feasible and will make us resort to numeri-
cal computations, where the extraction of physically
meaningful results is not always straightforward. For-
tunately, however, we obtained a great deal of physical in-
sight from the RPWIA calculation done before and this
will, hopefully, put our conclusions on a firm footing.

II. THE TRANSITION POTENTIAL

We consider the excitation of a nucleus, originally in a
0% state, to a final JM state with parity I, by means of
its interaction with a proton of initial momentum k and
final momentum k’. In the present formulation we only
consider excitations to nuclear states by means of single
particle transitions. More complicated modes of excita-
tions (e.g., two particle excitations) are not contemplated
in the present approach. The transition amplitude, in a
relativistic distorted wave impulse approximation treat-
ment, is given, according to Ref. 6, by
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where the Dirac gamma matrices are defined using the
Bjorken and Drell convention;’ t,(|r—r,|) is propor-
tional to the Fourier transform of the Lorentz invariant
parametrization of the NN interaction

ta=ts+tyyty,(n)+tro*o,,(n)
+p7 Y (n) +t VY (n)y(n) @)

written in terms of scalar (S), vector (¥), tensor (T),
pseudoscalar (P), and axial vector (A4) amplitudes, and
1/1&7 Y(r) and ¢} (r) are eikonal distorted waves given by®
eik-reisimxs ,
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where the Dirac eikonal phase
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is written in terms of equivalent central and spin-orbit ef-

fective Schrodinger potentials which depend on the strong
scalar S and timelike vector V Dirac potentials, i.e.,

V.= s +Zvie) |+ 152 —vam],
m 2m

(5

1 1 1d
Vso(r)—zm T " dr[V(r)——S(r)] .

The algebraic manipulations of the transition potential are
identical to those developed in Ref. 6. We then start, by
separating the spin contribution to the NN amplitude,
from the four component Dirac contribution
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and the eight amplitudes
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By expanding these amplitudes in spherical harmonics and the inner product o-o(n) in terms of its spherical com-
ponents, we can write .

4
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and
h)(g)=f"q) for s=0,
=g¥%gq) for s=1.

We continue, by writing the one particle target space operator in a second quantized formalism, and at the end obtain the
most general form for the single-step inelastic transition amplitude

4
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where
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Ay, ) are nuclear structure amplitudes, }:V 2j+1, and Q;(T) is a rotational invariant operator
Q1 5=V3/4w(2%), (I=1,5=0),
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defined in terms of the polarization (axial) vector of the
target

Sy=[17M){0*| . (14)

We readily observe, that in the limit of distorted waves
given by their asymptotic plane wave behavior, we im-
mediately recover the plane wave result.* The selection
rules established in the PWIA treatment allowing values
of / and s, that make Qj; a pseudoscalar operator, to con-
tribute to the transition amplitude, as long as they appear
in conjunction with the structure matrices I'; and Ty
which generate terms linear in the lower components, are
still valid in the present case.

III. THE TRANSITION AMPLITUDE

As we mentioned previously, the only complication
arises from the presence of distorted waves. These dis-
torted waves were obtained by solving a Schrédinger-type
equation for the upper component and subsequently deter-
mining the lower component, in terms of the upper, by

means of the relation
]

.
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So far, we have been able to avoid letting the gradient
operator act on the complicated eikonal phase (3), by ei-
ther integrating by parts, in the case of the elastic scatter-
ing amplitude,® or by using the differential equation satis-
fied by the upper component, in the case of simple
Tassie-type collective excitations.” In the present case of
microscopic transitions, neither of these two approaches is
possible due to the complicated form of the transition po-
tential and all the different types of coupling between
components. Our only recourse then, is to proceed in the
spirit of the eikonal treatment and write, to leading order
in the approximation, the following expression for the
lower components

wi ()= (o Pluitr) .

wih ()~ f-{l-/{ (o' kuitin) ;

Wi (r)~ (oK ui ) (r),

1
(& +.4)*
which in turn make the transition amplitude take the fol-
lowing form:

imb [ f:wdz’l’so ](0-6)

1
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where in the above expression
Xc(b)==i—% S dzvn (16)

is the central part of the profile function, g=(k—k’) is
the momentum transfer to the nucleus, @E(ﬁ xf»), and
we have already performed the algebra associated with the
Darwin term.’

It has been shown!®!! that for moderate to large values
of g, i.e., gc >>1, where c is the nuclear radius, the dom-
inant contribution to the integral comes from a region in
b space close to a singularity of the profile function X.(b)
which, for a Woods-Saxon form, is localized at
bo=c +iwpB, where B is the diffusivity parameter. This is
simply the statement that the dominant contribution to
the integral comes from the surface since only there do

—x,(b)ei[xsow )/2)(o-9)

&+

Ithe rapid oscillations of the integrand not cancel them-
selves out. This implies that the most important contribu-
tion of the Thomas-type spin orbit potential V,(r), pro-
portional to the derivative of the nuclear ground state
density, comes from values of b close to the nuclear sur-
face, or equivalent from small values of z. This fact, to-
gether with the evenness of the spin orbit potential, allows
us to write the above spin orbit integrals as

[ dzve~ fo‘” dz'Ve=1 [ _: dz'V,,
and similarly,
f:w dz'Vsozf_o‘m dz'Vy,= —;— f_: az'vy, ,

and to rewrite the transition amplitude in the following
form

er[xso(b)/z](a-a)

A;=3 %fer}’k(r)e’q"e
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where we have defined the spin orbit contribution to the profile function as

Xso(b)=mb f—-: dz V(r).

(18)

The expression in curly braces, aside from the substitution (E+m)—(& +.#), is precisely the matrix element
evaluated in the plane wave calculation.* In the present case, the spin algebra has not yet been exhausted due to the pres-

80

ence of the spin operator e

(o-@). Its contribution however is not difficult to obtain.. As an operator in the spin

of the projectile, the expression in curly braces is at most linear in the Pauli matrices o, and we can therefore write it as
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The spin independent term then simply gives
ei[xso(b)/2](a-$>a3kei[xso(b)/2](0-&3)

while the spin dependent one yields
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Let us for the purpose of illustration evaluate the v =3, spin independent contribution to the 1% state which clearly has

no nonrelativistic counterpart. In this case

a5’ =0;, Bi’=Vv3/4r | = [(=DK,

and since (ﬁ'$)=0, the contribution from this term to the amplitude is given by

V3 =Vv3/4r —5— (a-ﬁ)fer'fIs(r)e"‘l"e—X‘(b)

(1) .

(19)

The difficulty in evaluating the above expression analytically stems from the fact that GJ,(r) is proportional to the
Fourier transform of the fundamental NN interaction which is only given in numerical form, and is not suitable for a

simple Gaussian- or Yukawa-type parametrization. The spatial dependence of GJ(r) is however only on r=V b2+4z2,
and we can therefore proceed to perform the azimuthal ¢ integration
27 Ay igr i 27 iqr . ~
Jo dpZ Rl =— 22V [T dpe'tt=2mi | \7,(gb)(=Q)
and finally obtain
A% ()= [\/—317'1' % S bavaigpre ™ [7 a [% t(r) (AR . (20)

Note that this yields a contribution to the cross term am-
plitude AqK,4 essential in generating spin observable
differences.

This is as far as we can go without having to resort to
numerical computations. All the remaining contributions
to the amplitude can be handled in a completely analo-
gous way. As we have mentioned before all results that
we have established for the plane wave case hold, obvious-
ly, in this case as well. The presence of distorted waves
however, makes the extraction of simple and transparent
results no longer possible in this case. It is only through
the detailed and careful comparison between theoretical
predictions and experimental measurements that we can
establish any kind of meaningful results. Unfortunately, a
broad range of data, which include all possible spin ob-

Iservables and especially spin observable differences, have
yet to emerge.  Although polarization and analyzing
power differences in the excitation of the 17 state in 2C
by protons have already been measured, these measure-
ments were done at a beam energy of Ti,,=150 MeV
where the use of the impulse approximation is highly
questionable.!?> The full set of spin observables has been
measured, also for the 17 state in '2C, at a higher beam
energy of T, =500 MeV,!3 where the impulse approxi-
mation is expected to work. Unfortunately, only a few
data points exist in this case. Nonetheless, we compare
our theoretical predictions to these data in the absence of
a more prolific source. We concentrate on the 1+ (12.71
MeV T =0) state and present three different calculations,
all of which assume a pure single particle transition from

TABLE I. Strengths and ranges used to fit the elastic spin observables.

Strength (MeV) C (fm) Beta (fm) /4
real —390.06 2.074 0.817 —0.09
Scalar
imag 102.60 2.821 0.311 —0.09
real 282.25 2.019 0.845 —0.09
Vector
imag —102.56 2.735 0.352 —0.09
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0.0 T T T with ¢=1.64 fm and scalar and vector strengths deter-
mined from the impulse approximation'*
d
~0.3pl0ggg (mb/sr) So=(—303+i73) MeV ,
- Vo=(+191—i86) MeV ,
-0.6 \ 7] while the other approach uses instead a three parameter
} Woods-Saxon form and scalar and vector strengths expli-
. citly chosen to fit the elastic spin observable measure-
-0.9F \\* 7] ments.!* (See Table ) Finally, to determine the transi-
\\ tion potential we use the relativistic transformation
-1.2+ .{ - developed in Ref. 16, and bound state upper components
) o iven by nonrelativistic harmonic oscillator wave func-
\ g y
A\ tions, with lower components determined from the upper
-1.5+ \‘ (] - components by using the Dirac equation, i.e.,

—1.81 ‘{.\\.}é

-2.1F —

-2 4 | ] |
2 O 05 10 15

q (fm ')

FIG. 1. Cross section for p->C at Ty, =500 MeV. Experi-
mental cross section is an average of the 400 and 600 MeV data.
Theoretical (RDWIA) calculations were done with a single
geometry (dash) and with geometries chosen to fit elastic
scattering (dash-dot).

a p3/%2 to a p'/? single particle state. We include for com-
parison our previous plane wave calculation.* We also in-
clude two different relativistic distorted wave impulse ap-
proximation calculations which only differ in the form of
the distortion. One uses a single underlying nuclear densi-
ty approach with a harmonic oscillator parametrization
given by

2
p(r)= [1+% [_2,] le—(r/c)z,' 21)
1.2 T T T T
( P-A,)
0.8} y
04t //r_:\ -
/
s
00 =er
- | | 1 |
046705 10 1.5 20
q (fm ")

1

4  (1+x)
(& + )

dr+ r

ij,:(r)% ugj(r), (22)

where

I=j+%; I'=jF+; fork=+(++)
and with bound state potential strengths Sy= —420 MeV;
V=328 MeV, obtained from Ref. 17.

In calculating spin observables we adopt the standard
definition given by .

do

10 Dog=+T,(0ad0p4"), (23)

where a,8=(0,n,q,K); n=qXK, 0p=1, and Dy=1, so
the unpolarized cross section is

do

o= 1T,(44") 24)

and the spin difference function*>

ASE(DqK +DKq)+i(DnO_DOn)
=(Q—B)+i(P—4,) . 25)

In Fig. 1 we show, in the absence of published 500 MeV
cross section data, an experimental cross section given by
the average of the 398 and 597 MeV data, which show
very similar shapes.!®* We note that both RDWIA calcu-

1.2 1 T T
0.8
0.4
0.0}
- 045 ofs 1o 15 2?0
q (fm )

FIG. 2. Spin difference function for p-!>C at Ty, =500 MeV. Theoretical RDWIA) calculations were done with a single geometry
(dash) and with geometries chosen to fit elastic scattering (dash-dot). Also shown is the (RPWIA) (Ref. 4) result (solid).
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FIG. 3. Remaining spin observables for p-'*C at T}, =500 MeV. Theoretical (RDWIA) calculations were done with a single

geometry (dash) and with geometries chosen to fit elastic scattering (dash-dot). Also shown is the (RPWIA) (Ref. 4) result (solid).



lations have very deep minima and both had to be renor-
malized to about 75 percent of their values in order to
reproduce the small g behavior of the experimental cross
section. Since we know that all remaining spin observ-
ables are divided by the cross section, we prevent this
anomalous behavior from affecting the value of the spin
observables, by multiplying the observables by the theoret-
ical cross section and dividing by the experimental one,
i.e., we effectively substitute the experimental one for our
theoretical one.

In Figs. 2 and 3 we observe considerable structure in
the spin observables. We also note that the addition of
distortion and of strong potentials does not qualitatively
change the spin observables but does lead to modest im-
provement with the data. Presumably, a calculation
which includes configuration mixing will further enhance
these results. Unfortunately, a relativistic shell model has
yet to emerge. We note that although we predict (P—4,,)
and (Q—B) to be sizable, especially for g~1.5 fm~/,
the data are too sparse to check that prediction. We stress
that in the Dirac treatment these spin observable differ-
ences arise in a very natural way without having to invoke
exchange processes.
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As far as we can tell the spin difference function*? pro-
vides a clear signature of the importance of lower com-
ponents, and therefore of the relativistic approach, and
more experimental work should be motivated to test this
prediction. More data, at energies where the impulse ap-
proximation should be valid, and for states with very sim-
ple configuration (e.g., stretched states on closed shell nu-
clei) are essential to confront all available theoretical
models. Furthermore, because of the importance of dis-
tortion in detailed studies and because distortion is largely
a geometric effect, these experimental studies should in-
clude elastic and inelastic cross sections along with the
spin observable measurements.
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