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Using diagrammatic techniques we have obtained a new operator for the process p(y, K+}Ao
which includes the Born terms in addition to resonances in the s and u channel near threshold. The
coupling constants are obtained by a least squares fit to cross section and polarization data for pho-
ton energies from threshold through 1400 MeV. We find a number of changes from the earlier
operator obtained by Thorn about twenty years ago when less data were available. To aid in com-
paring this operator to other work, we give its multipole decomposition in the center of mass frame,
and to aid in its use in nuclear physics we write out the operator in a frame fixed in the nucleus and,
further, take the nonrelativistic limit of the operator as Blomqvist and Laget did for the pion pho-
toproduction case. Finally, we discuss the validity of the nonrelativistic limit of this operator.

I. INTRODUCTION

With the advent of continuous wave electron linacs
with higher energy and intensity, the reaction p(Y, K+)A
has great prospects for becoming an important probe of
the nuclear interior. ' Both the photon and the positively
charged kaon interact rather weakly with the nucleus so
that the reaction can occur deep in the nucleus. For the
case where the A remains bound in the nucleus this will
permit the study of deep lying hypernuclear states.

The analysis of photoproduction of kaons from nuclei
is most straightforwardly carried out with a distorted
wave impulse approximation whereby the incoming gam-
ma interacts with a proton in the nucleus to produce a
K+ and a A . The A goes into some bound state, while
the K+ exits the nucleus interacting with the remaining
A —1 nucleons via a rather weak optical potential. The
basic ingredient to such an analysis, which is similar to
previous work on pion photoproduction and electropro-
duction, ' is the kaon production operator from the free
nucleon.

Thorn wrote a kaon photoproduction operator in 1966
using Feynman diagrams for the Born terms and partial-
wave amplitudes for the resonances. Since that time more
data have become available, making it necessary to reex-
amine Thorn's results. Moreover, since the struck proton
is in motion in the nucleus, one requires a frame indepen-
dent kaon production operator. Therefore, resonant
terms, such as the ones used by Thorn, are not appropri-
ate because of their transformation properties. For this
reason we derive in Sec. II the scattering amplitude by us-
ing diagrammatic techniques for the Born terms as well as
for the resonant terms. This assures the relativistic in-
variance of the operator. In Sec. III we decompose the
amplitude into its multipoles following a procedure by
Berends et al. for use in comparison with other work and
for future considerations of unitarity constraints. For use
in nuclear physics we take the nonrelativistic limit of the
operator in Sec. IV and discuss the validity of this approx-
imation in a system where rather large energies and mo-
menta are present. In Sec. V we give a table of all cou-

pling constants obtained and compare the theoretical pre-
dictions of different models with data. A collection of all
data used in fitting the coupling constants is given in
Tables VI and VII.

II. DERIVATION OF THE OPERATOR

Throughout the paper we use the notation and conven-
tions of Bjorken and Drell. Figures 1(a)—(e) show the
Feynman diagrams for the nonresonant background or
Born terms for the reaction p(Y, K+)A . Using the pro-
cedure described by, e.g., Cxourdin and Dufour, the
S-matrix elements can be written as

Sfg ——

1/2
MPMg

Mf~~ (p, +py PK p~), — —1

(2~)2 4EgExEpEy

where the matrix element

4

Mf; ——u(pz, sz) g AJMJ. u(p~, s~) .

The matrices M; are given by

Mi = Ys~Py-
Mp ——2l s (~ P pp y 'P p —~ PAP y 'P

p ),
Ms =Ys(&py'Pp Py&'Pp) ~—
M4='Ys(&py P~ Py~'P~) ~—

(2)

where py (Ey,py), p~, px, and —p—~ are the four-vectors
of the photon, proton, kaon, and lambda, respectively,
The amplitudes A; are given in Table I using the follow-
ing definition of the Mandelstam variables:

s (pp+py) ~ t (py PK) ~ u (pp PK)

It should be noted that the amplitudes as well as the ma-
trices are Lorentz and gauge invariant. They are related
to the cross section by the expression
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(c)

K'

A A
g

(b)

K'i
rr

g

MpMg iMft i
5 (pp+pr —pK —pp)

do =(2n)
2 2 2 1/24E~E~l(p, .p, ) p—gr l

d pKd ph
X

(2m )3(2m )

Of the nine different coupling constants involved in the
amplitudes A;, the charge e and magnetic moment p~ of
the proton are well known, and the magnetic moment pA
of the lambda has recently been determined to be
( —0.6138+0.0047) pN. The remaining six constants can
be grouped into four effective constants

(e) g

,K gA=gKAN ~

GX TgKXN ~

V
G&=~K+KygK+AN

T
gK Kyg K AN

(4)

K

2
KAN, g KAN

(h) e~

K'g

2 /

FIG. 1. Feynman diagrams for the process y+p —+K++Ao.
(a)—(e) represent the Born terms including the vector kaon ex-
change, (f) and (g) stand for spin z and 2 resonant terms in the

s channel, and (h) represents spin 2 resonant terms in the u

channel.

which can be determined by a least squares fit to cross
section and polarization data (see Tables VI and VII). Us-
ing these parameters (see Table V in Sec. V), however, the
obtained X is rather large indicating that this simple
operator is not sufficient for the description of the pho-
toproduction process. Furthermore, it is impossible to ex-
plain the polarization by usia the Born terms alone and
since the threshold energy (Er' ——911 MeV, Et,'~i ——1610
MeV) is already higher than the rest masses of some
baryon resonances, the presence of excited states in the
direct and cross channels cannot be excluded. According
to previous workers, ' high spin resonances have little ef-
fect in improving the fit to the data. For this reason, and

TABLE II. Particles of interest and the low spin baryon resonances up to 1800 MeV.

Particle

p
K+

K +

N1 (1470)

N2 (1520)

N3 (1S3S)

N4 (1650)

N5 (1700)

N6 (1710)

N7 (1720)

Y1 (1405)

Y2 (1670)

Y3 (1800)

Y4 (1660)

Y5 (1750)

+
2

1
1 +
2

+
2
1+
2

3
2

1

2

3
2

+
2
3+
2

1

2
1

2
+

2

Mass (MeV)

938.2796

493.669
891.8

1115.60

1192.46

1400 to 1480

1510 to 1530

1520 to 1560

1620 to 1680

1670 to 1730

1680 to 1740

1690 to 1800

1405

1660 to 1680

1700 to 1850

1580 to 1690

1730 to 1820

VA'dth (MeV)

120 to 350 (200)

100 to 140 (125)

100 to 250 (150)

100 to 200 (150)

70 to 120 (120)

100 to 140 (120)

15O to 2S0 (2OO)

30 to 50 (40)

20 to 6O (4O)

200 to 400 (300)

30 to 200 (100)

50 to 160 (75)
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the fact that the energies to be used in nuclear physics are
close to threshold and hence high angular momentum
states cannot be easily excited, we only include resonances
up to spin —,

' in the s channel and spin —,
' in the u channel.

The possible effect of resonances in the t channel or spin
—', resonances in the u channel is left for future considera-
tion. Table II shows all resonances" under consideration
where we refer to the three low-lying A resonances as
Y1—Y3 and the two low-lying X* resonances as Y4 and
7'5.

As noted earlier, in order to keep relativistic invariance
one cannot use the standard method of partial-wave am-
plitudes. It is, however, possible to include resonant terms
in a relativistic invariant way by using the same procedure
used for the Born terms. Figures 1(fl—(h) show the Feyn-
man diagrams for such terms. Because the diagrams for
each of the baryon resonances are identical (apart from
the coupling constants) only three diagrams are shown
representing the spin —,

' and spin —, resonances in the s
channel and the spin —,

' resonances in the u channel,
respectively.

The propagators for the spin 0, —,', and 1 states can be
found in several sources, such as Refs. 7, 12, and 13. The
spin —', propagator is derived by Pilkuhn' as well as by
Schwinger. ' A compilation of all propagators is given in
Table III. It should be noted that the spin —,'propagator
given in these references is not unambiguously defined. In
order to ensure gauge invariance it is necessary' that the
mass appearing in the numerator of the spin —,

' propagator
be replaced by the total invariant energy given by v s.
Furthermore, it is necessary to replace M by M —iMI
in the denominator of the propagators in order to take
care of the finite width of the unstable particles.

The vertex factors for the Born terins (including the
vector kaon exchange term) can be found in Refs. 5, 8, or
12. The spin —', vertex factors are constructed in analogy
with those of the delta resonance of pion photoproduc-
tion, ' ' apart from replacing the mass M, by v s as in

the case of the propagator. For the spin —, nucleon reso-
nance the vertex factors are similar to the vertex factors
of the proton exchange term. In fact, the structure of the
KAN vertex is identical to the KAp vertex. The only
difference is at the N*yp vertex, where the proton has to
make a transition from its ground state to one of its excit-

TABLE IV. Vertex factors for the reaction y+p~K++A .
The mass M equals 1000 MeV, and is inserted to make g +K Ky
dimensionless. For the same reason g „ is divided by M +.

pyp
AK+p
XK+p
K+yK+
AyA

XyA

N'( —, )yp

N'( —,'+)K+A

N*( —,
'

)yp

)K+A

NQ( )

e4'+ pppys'

Eg KhNy 5

~gKXNy5

ee.(2pK —py }

P~yl'
I rPy~
g K Ky

~v(Py)p(Ph Pp)o

gK'ANr" + M (ph —p'p)r"
h+ p

pNypyt

KhN

1p +Pyfy5

KhN
V

Vg
Vs+M~

b ~'pr pr pr'pp~
gN (Vs +I )2

ed states. This cannot be achieved by an electrostatic po-
tential, but by electromagnetic currents only. Hence, the
only possible coupling is through the magnetic moment.
Therefore, the prp coupling ee'+ ppze' has to be
replaced by pN+p&e' for the N rp vertex. This replace-

ment is also necessary to ensure gauge invariance. The
different parity states are accounted for by inserting the
r5 matrix in the appropriate place. A collection of all
vertex factors is given in Table IV. The two independent
coupling constants of each spin —,

' resonance can be com-
bined into one effective constant, and the three indepen-
dent coupling constants of each spin —', state can be
grouped into two effective parameters representing the
two independent coupling modes as given below:

spin 2

spin

spin 0

spin 1

g+M
q —M +iMI

g+Vs 2
3( 2 M2 .M~) gpv+ yvyp, qpqv

I—~ (rI ev rm, )—
1

q2 —M~

q~qV

q— gPV +

I

TABLE III. Propagators for particles with mass M, width I,
and four-momentum q.

N*(
2 )K+A

N*( —, )yp

N*( —,
' )K+A

Y*(
~ )yA

Yg( 1 +)K+

Y*(—' )yA

Yg( 1 )K+

gK+hN

N

a
'vr '

P

&'P pPy Py'Pp&+g
(Vs —m )

gK+hN 'p
PhyS

N

pYypyF

gKNY

&p Ygpyky5
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GN1 +NlgKAN1 ~

GN4 +N4gKAN4 &

1 u
GNS —gNSypgKANS ~

2 b
GNS —g NSypgKANS ~

1 a
GN7 =gN7ypgKAN7 ~

2 b
GN7 =gN7ypgKAN7 ~

6Y5 =KY5gKNY5

By using the appropriate vertex factors and propagators
the scattering amplitude can be calculated in the usual
way. Table I shows the resulting invariant amplitudes.

III. MULTIPOLE DECOMPOSITION
OF THE OPERATOR

As an aid in comparing our photoproduction operator
to other approaches, and for possible future considerations
of unitarity and time reversal invariance, ' ' we present
a multipole decomposition of our operator using the tech-
niques and notation of Ref. 6. Initially, we write the ma-
trix elements appearing in Eq. (1) in two-component form
by expressing the y matrices in terms of the Pauli o ma-
trices and writing the "small" component of the Dirac
spinors in terms of a matrices times the large component.
In the K-A center of momentum (c.m. ) frame, the
kinematic variables are defined as

pp
—(Ep, —k), py

——(k,k),
PK=(~,q), PA=«A —q) .

The reaction angle cose=k q=x, where k=k/~ k
~

and
Q=q/~ q ~. The z axis is the quantization axis and the
gauge (transverse) condition on the photon polarization is
the usual eo ——0, e.k =0.

In the c.m. frame, the matrix element Mf; of Eq. (1)
can be written as,

1

Ml (s ) = f dx Dt (x )W(s, t ),
where

(8)

E/

E/
W(s, t) = ~, Ml(s) =

3
'

/+
aF 4

and the matrices Dl(x ) are given in Ref. 6. The multipole
amplitudes can now be calculated by direct integration of
Eq. (8) which lead to Legendre functions of the second
kind,

Pg(x )
Qt(y)= —,

' f dx

and combinations of these functions given by

l+1Qt-)(X)+ Ql+)0»

l
Tl(3 ) 2! 1

[Ql —10»—Ql+ lb»l
21 +1

These functions occur with arguments E, E4 given by—

E) —— EA /q, E2 ——(M—A
—Mz 2EAk )/2kq, —

Es ——co/q, E4 (2kco+MK,——Mk)/2kq . —

Since it may be desirable to investigate the contribu-
tions of the Born terms and the resonance terms individu-
ally, we give the multipole amplitudes separately.

P =cr eP 1+ t(cr Q)(cr kXe)&g

+(cr k)(q e)Ws+(cr cl)(q e)W4

and the P; are given in terms of the A; in many refer-
ences. '

The tnultipoles El+, Ml+ are defined by the following
equation:

1/2 ~ 1/2
P P

2MP

where

4
u(pA) g A;(s, t)M;u(pp)

i=1

EA+MA
2MA

(x(A) (
P

~
x(p) &,

(6)

A. Born terms

For convenience the result is presented in matrix form,
4

M l' ——g Ql(E;)Hl+Cl',

where

2(l + 1)

Qs(& )

!+1
Q (E

Q((«)

Qi+i«)
l+1

Q( i(«)

Q~+i(«)

R,(E, )

R((E; )

E

R(+,(E, )

1+1
R( l(E;)

R(+ I(E; )

(I+1)
Q (E )

(1+1)
Q (E )

(l+1)!1(~ )
(!+1)lt (E )

T((E; )
2

T(E )( i

——T((Ei )
1

(I+1)T(E )( i

T(+1(Ei )

I+1 Tr-i«. )
/ —1

The six and four element column vectors M; and Cl depend only upon kinematic factors and coupling constants, and are
given by
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1—(E~ —Mga )

My+My
9

2

gaea'p
Hi ——

A

Mpa

E~+MA
1 2Gge

H2 ——

Mg+My

1

E~+M~
My+My

2
a E~—(a —1)

qa

Eg+Mp

H3 ——

0
0
0
0

2gpe

Ep+Mp
2ggeq

k(E~+M~)

1
H4 ——

1 GT—
I G~(2E—~+cu+aM+)+ [AM —a(M~ —2k')] Im+

1
t Gz[cu(a —1)+aM+]+ [(a —1)(2E&—co)M +a(Mz —2k')] I

Gp 2

E~+M~ M+

GT
Gv+ (M —2ka )M+

GT
Gp + (M —2a (Ep +My ) )E~+M~ M+

GT—Gza+ [2(a —1)(E +k) —M a]M+ P

Gz Gz 2(E~+k) M a
EP+MA M+ EP+MP E~+Mg

(10)

Ci ——ghe

(a@+1)a ap

2(Ep+k ) 2M@
&i,p

0
0

a(zz+ 1)

E~+Mp 2(Ep+k)
(a —1)~p

'5I, 1
MP

where M +—=Mz+Mz and a = 1+k/(Ez+M&).

B. Resonance terms

The multipoles coming from the —, and —, reso-+ 1

nances in the s channel have a simple form since their
amplitudes A and A only depend upon s and not
the reaction angle 0. Here A and A denote,
respectively, the parts of the amplitudes A; in Table I that
have the coupling constants GNi and GN4 as forefactors.
The multipole amplitudes for the spin —,

' resonances are
given by

EI'+ ——k[ —aA I +(Ep+ k )A 3 ]5(p,

E1/2 —
0

MI+ ——0,1/2-

[aW,'" —(a —1)(E„+k)W,'" ]5„.
A+ A

3 ~ 3/2+The spin —, resonance amplitudes A; and A;- de-
pend on x and are rewritten in terms of new quantities
Bi, B3, Di, and D3, which are independent of x and are
defined by

1

3/2+ G N7kqX
AI ——Bi-

(s MNp+tMNp—l N7)(Mp+ v s )MN7

=Bj+ —D i+kqx,

2
3/2+ + G Npkqx

A3 ——83—
(s —M' „+iM,r, )(M, +Ms )'M„,

=B3
—D3 kqX

(12)
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1

3/2 6Nskqx
Ai ——8)—

(s —M N5 +iMN5 1"N5 )( V s —Mp )MN5

=B& —Di kqx,

2
3/2 G Nskqx

A3 ——B3-
(s —MN5+iMNsl N5)(v s —Mp) MNq

=B3 D3 —kqx .

Finally, the spin —,
' multipoles can be written as

r

3'+ ~ I4 I6 —(Is +» )
El+ = I l~ + 5l,o+ 6 51, 1

Ii+-=k[(Et,+k)B3 —aB1 +E~A4 l

Iz ——kq [2(a —1)(E~+ k )A 2 —aA 4 ],
[aB1- —(a —1)(E~+k )B3

A+ A

+I3———

—(a —l)E~A4 ],

+I6 ——

—(a —1)(Ep+k)D3

k
I4 ——— [2(Ep+k)A2 +aA4 ],

A+ A

Is =kq[A4 +kaD1*+k(E, +k)D3 ],
2 2—k q 1 A3i2 — D+

Ep +MA Ep+Mp
4 +a

(14)

El = ——,(I6 +2I4 )5l 2,

3/2—
Ml+ ———,'(Is I2 )5l 1, —

(13)
The multipoles coming from the spin —,

' resonances in
the u channel can be expressed by using the matrix Ql(E),
defined in Eq. (9):

M l
——Ql(E5)H5,

M3/2—
+ +I2 —Is-

+I3- 5I, &.+ —,I6 5&,2
where

where the quantities I~-, . . . ,I6 contain all the kinematic
factors and coupling constants and are given by and

MA —MYs —2Epk+ its I gs

2kq

1 a i
2 2
—MYs —M~ ——~vs

26Y5ekq
Hs ——

MYs+Mg

1 a i
Ep+M~ 2 2

—Mrs —M~ ——~Ys—

—1

qk

(Ep+Mp)(Et, +My )

a

kEA

Ep+Mp

(15)

IV. NONREE. ATEVISTIC OPERATOR

tc(l) g M;A;(s, t)u(p)=

For kaon production from nuclei where the initial and final (hyperon) single particle states are described by conven-
tional (Schrodinger) wave functions, we require a production operator which operates on two-component wave functions.
We obtain such an operator by reducing the free Dirac spinors for the lambda and the proton to their two-component
form. If we then evaluate the matrix element in Eq. (1) in a general frame, we can identify those contributions coming
from the big-big, big-small, small-big, and small-small parts of the Dirac spinors. Carrying this out we can write the
matrix element in Eq. (1) as

1/2 ' 1/2
Ep+Mp E~+M~

2M' 2M'

X(X(A)
~
Fi(o e)+F2(o k)(e p)+F3(o k)(e 1)+F4(o p)(e p)+F5(o p)(& 1)

+F6(o 1)(e.p)+F7(o l)(e 1)+Fs(o"e)(o k)(Cr p)+F9(Cr 1)(Cr k)(o'e)

+F10(o"'1)(o''&)(o'p)+Fii(o'l)(o'k)«p)(o'p)+F12(o 1)(o k)(e 1)(o p) I
&(p) ) i (16)
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where p=p~ and l= and t=p~ and the F; are given in terms of
l

Fi ———kA I+A pA3+k lA4,

F2 ——A3,

F3 ——A4,

2.5

t/) 2 .0-

I. 5-

O
1.0-

O

0.5-
b

F( —F(p
F) —Fg

I I I

p
= 100 M eV/c, Gp = 15Q

( BORN TERMS)

~ ~ ~ ~ ~ 0 ~ ~ ~ ~ ~
0 ~ ~ ~ ~ ~ ~ ~ ~~ ~ ~ ~ ~ ~ ~ ~ ~ 0 ~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

F4 (——2A—2k I+kA3)/(Ep+Mp

F5 ——(2A2k p kA4—)/(Ep+Mp),

F6 ——(2A 2k.I —kA 3 ) /(EA +Mp ),
F7 ———(2A2k.p+ kAg )/(Ep +My ),
Fs ——A i /(Ep+Mp),

F9 ——Ai /(Ep+Mp),

5.0-

cA
I

4.0

3.Q- ~

O
o 2.0

C3

F, —
F~~

Fi —Fg

Fi

0.0
Q 85 090 096 I 01

I

1.07 1.12 I.I 8 1.23 I. 29 1, 34 I.40
E:I,b(GeV)

p = Q MeV/c
( BORN TERMS)

F =k&p=(kA]+k pA3+k lAg)/[(E +M )(E~+Mg)],
F, i

——A3 l[(Ep+Mp)(E~+Mp)],

F,z ——Aq /[(Ep+Mp)(E~+Mp)] .

The terms in Eq. (16) containin F F—
products of th b'

'
ing i

—
3 come from

irac spinors, while thee ig parts of the D'
s io— i2 come from products of the small part f

e irac s inors.p . Since the nonrelativistic wave fun-
s 0

tions of the proton and the lambd
irn licitl

e am da in the nucleus alread
p icit y contain some portion of the small corn

the Dirac spinors h ld, we s ou certainl di
more extreme nonrelativistic limit

they involve a small c
g 4 9 since

all component from either the lambda or
the proton. Previous workers' have k
o'e term but hav

ave kept the complete
u ave assumed frozen rotons

amined (apart f h
p ns and have ex-

duction at O'. U d
' '

n erm
rom t e second a er in

a . n er these conditions onl term
F o t'bt dth F t

n pion photoproduction near threshold it is

o e i term provides a good description of the rod

uction process requires m h
g e pro-

.nd "-.q-n ly-.h high---. -
s muc more ener etic ho

a a o vious that first-order relativisti
ec . o investigate this point we corn ar

the cross section calculated with onl F
or different kinematics which mi....;..;d. ,h. ...l.... W h

have moment
e c oose the tar et

tions defined 'th
um p an to be movin in

'

g
'

various direc-

m
wi respect to a labora

e ine y choosing the z axis to be alon the i-
nc. iven the initial proton momentum

photon energy k, and the k 1

um p, the

remaining kinematic vari bl d f'
n e aon laboratory an le 8
varia es are defined.

As an exam le of ' '
in ip our findings we show in Fi . 2

cross section as a funct f 1 b
in ig. the

ryp oo gyunc ion o aborato

momenta o t e proton for the three cases in

I .0-

„(b) "".. ~ ~ ~

0.90 0.95 1.00 1,05

~ ~ ~ ~ ~ ~ ~ ~ ~ ~
I

+ ~ ~ ~ ~ ~ ~ a a

1.20 1. 25 1.30 1.35 1.4Q

E., (Gev}

5.0
U)

4 0-'

3.Q-
C)

O

bo

2.0- ~

1.0-
~ ~

(c}
1.00 I.04

I I I

p = 100 Me~/c, ~p = 30
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5.0 TABLE V. Coupling constants obtained by a least squares fit.

4.0-

1.0
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~ ~
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0.68 0.71 0.74 0.78 0.81 0.84 0.87 0.90 0.94 0.97 I.OO

Eiab (GeV)

FIG. 3. The ratios R ~
——o.(Fj ) /a. (F~

—F~2) and
~ 2 —(F$ F9 )/o(F I

—F~2 ) show& by . - and
respectively, are compared to one for laboratory energies from
0.680 to 1.0 GeV.

gp /~4m
Gx /~4m.
Gy /4m.

Gz /4m

GNi /V 4m

GN4 /~4m
Gv5 /V 4n

GN7 /4n
GN7 /4m

2.04
—1.24

0.247
—0.189

0;0
0.0
0.0
0.0
0.0

6.10

1.03
—0.807

0.220
—0.048

1.47
0.111
0.0
0.0
0.0

2.98

1.29
—3.85

0.298
—0.134

1.80
0.120
2.20

—0.051
—0.349

2.30

photon energy. In the kaon production amplitude, the
proton is taken to be on its mass shell, while the lambda
energy E~ ——k +E&—m and the lambda momentum
l=k+p —q and, therefore, the lambda is off its mass
shell. With these kinematics we averaged the cross sec-
tion over proton momenta p and angles 6I~ by using a Fer-
rni distribution,

p~(p) =
p —po1+ exp

hp

with po =100 MeV/c and hp =50 MeV/c which gives a
rms value of the proton momentum equal to 200 MeV/c.
For each value of p (for 0' kaon we have azimuthal sym-
metry), we weighted the cross section with a similar Fermi
distribution for the lambda momentum ~1~. That is,
lambda momenta which were too large to be kept in a nu-
cleus were effectively discarded. We formed the ratios of
cross sections R i

——cr(F i only)/o (Fi —Fiz ) and R 2

=o(F, F9)/cr(F, —F,2—), and show the values of these
ratios from threshold (=680 MeV) up to 1000 MeV in
Fig. 3. Clearly keeping only the Fi term is not justified,
particularly at higher energies, while once again keeping
the F, F9 terms in a—good approximation to the full
operator.

We realize this procedure is only a rough description of
kaon photoproduction from a nucleus where the produc-
tion amplitude must be sandwiched between proton and
lambda momentum space wave functions. However, our
results suggest that the o"e term with only the coefficient
I'~ should not be used to include nuclear Fermi motion.

V. RESULTS AND CONCLUSION

Since our primary goal is to provide a kaon photopro-
duction operator suitable for use in nuclear physics where
the final A remains in the nucleus, we only consider pro-
duction data from threshold (Er' ——911 MeV) up to a lab-
oratory photon energy of 1400 MeV. Higher energy pho-
tons result in larger momentum transfers to the nucleus

0.45
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~ ~ ~

~ y ~
~ ~

0.30-

0,25-
O

E 0.20-

0.15-

a
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0.90 0.95 1.00 1.05 I.I 0 I. 15 I, 20 I. 25 1.30 1,35 I 40
E~„(GeV)

FIG. 4. Comparison of the theoretical c.m. cross section of
the different models up to 1.4 GeV.

for non 0' kaons and decrease the cross section appreci-
ably.

Performing a least squares fit to the available data
under 1400 MeV laboratory photo energy shows the insig-
nificance of all resonances below threshold except the Nl
(1470) resonance. The reason is probably that this reso-
nance has the same spin-parity structure as the proton and
interferes strongly with the dominant direct term. On the
other hand, the most important resonance is the N4 (1650)
state which is a —,

' state. This can be explained by the
proximity of this resonance to threshold (only 40 MeV
above threshold).

The next two resonances of importance are the spin —,
'

state Y5 (1750) and the spin —', state N7 (1720). If one
neglects resonances in the u channel, the X can be im-
proved by including the spin —', state N5 (1700). We
have neglected N5 (1700) in our calculations but we do
present the amplitudes and multipole decomposition for
this spin state. The remaining resonance states given in
Table II provide little improvement in the reduced chi-
square (chi-square per degree of freedom). We, therefore,
restrict our considerations to the Born terms and the reso-
nances Nl (1470), N4 (1650), Y5 (1750), and N7 (1720).

As a check on our procedure and computer programs,
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TABLE VI. Differential cross section data for the reaction y+p —+K++A .
gC. II1.

K

(deg)

90.0
60.0
54.0
31.1
64.0
56.5
30.0
60.3
88.6

132.00
54.0
30.3
43.6
55.6
69.8
94.2
97.0
27.5
4S.O
50.5
78.0
24.0
30.0
31.0
42.5
48.0
53.5
80.2
89.7

132.3
49.0
76.0
46.5
46.5
'90.0
119.7
48.0
73.5
96.0
28.0
89.9
72.5
93.5
47.5
90.0
46.5
71.0
91.0
36.0
60.0
75.0
90.0

135.0
46.0

dc'
dQ

(10 o cm /sr)

0.055+0.012
0.067%0.006
0.093+0.006
0.134+0.008
0.133+0.008
0.112+0.012
0.204+0.007
0.169+0.009
0.154+0.009
0.121+0.010
0.141+0.013
0.228 +0.011
0.196+0.011
0.200%0.010
0.155+0.008
0.145+0.011
0.133+0.006
0.281+0.014
0.230+0.008
0.237+0.015
0.172+0.011
0.342+0.030
0.276+0.015
0.284+0.022
0.271+0.013
0.233+0.019
0.244+0.014
0.196+0.012
0.157+0.009
0.123+0.011
0.259+0.017
0.187+0.009
0.244+0.012
0.279+0.018
0.158+0.008
0.125+0.008
0.248 +0.012
0.209+0.010
0.132+0.008
0.396%0.020
0.139+0.009
0.204+0.013
0.141+0.008
0.234+0.012
0.14220.013
0.253+0.009
0.209+0.011
0.131+0.014
0.259+0.017
0.206+0.012
0.205 +0.016
0.144+0.010
0.079+0.009
0.247 +0.01S

g
(MeV)

934
942
964
976
974
994

1002
1003
1004
1004
1005
1013
1020
1018
1022
1024
1018
1040
1036
1047
1047
1050
1054
1054
1055
1054
1054
1051
1054
1060
1064
1064
1080
1080
1080
1080
1090
1090
1090
1100
1100
1110
1110
1113
1130
1150
1150
1150
1160
1160
1160
1160
1160
1170

Ref.

21
5
5

21
21
25
21
21

,21
21
25
21
21
21
21
21
21
21
21
25
25
19
21
22
21
22
21
21
21
21
25
25
21
22
21
21
25
25
25
19
5

25
25
25
21
25
25
25

5
5
5
5
5

25

(deg)

89.0
69.5
92.6
15.0
25.0
30.0
30.0
35.0
42.0
49.0
55.0
63.0
70.0
78.0
85.0
90.0
90.2
92.1

127.0
91.7
89.7
6.0

10.0
15.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
89.8
90.0
89.4
62.0
52.7
89.1
43.2
33.5
23.3
17.7
11.2
88.9
88.7
88.6
17.5
25.0
32.5
40.0
45.0
60.0
75.0
90.0

142.5

dO'

dQ
(10 cm2/sr)

0.135+0.012
0.196+0.012
0.129+0.010
0.37920.027
0.334+0.015
0.341+0.019
0.353+0.019
0.300+0.014
0.284%0.015
0.282+0.016
0.276+0.016
0.241 +0.016
0.202+0.014
0.194+0.017
0.154+0.018
0.152+0.012
0.143+0.007
0.143+0.010
0.134+0.040
0.124+0.009
0.125+0.007
0.321+0.033
0.314+0.020
0.316+0.016
0.328+0.013
0.337+0.018
0.330+0.020
0.295 +0.015
0.233+0.015
0.200+0.017
0.176+0.018
0.143+0.009
0.137+0.017
0.129+0.007
0.239+0.020
0.270+0.022
0.142+0.007
0.299+0.020
0.340+0.019
0.361+0.015
0.349+0.018
0.334+0.025
0.136+0.007
0.123+0.008
0.116+0.007
0.279+0.024
0.271+0.021
0.294+0.021
0.261+0.014
0.266+0.016
0.232+0.011
0.181+0.013
0.157+0.008
0.117+0.010

(MeV)

1172
1175
1190
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1210
1290
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1313
1327
1332
1335
1336
1340
1342
1343
1344
1353
1371
1387
1400
1400
1400
1400
1400
1400
1400
1400
1400

Ref.

25
25
18
22
22
22
19
22
22
22
22
22
22
22
22

5
5

18
22
18
18
20
20
20
20
20
20
20
20
20
20

5
20
18
20
20
18
20
20
20
20
20
18
18
18
5
5
5
5
5
5

5
5

we reproduced Thorn's results by fitting the Born terms to
the data given in Ref. 5. Furthermore, we used the Born
terms to fit all the cross section and polarization data

given in Tables VI and VII. The resulting coupling con-
stants, given in the first column of Table V, are in reason-
able agreement with Thorn's original parameters, but the
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TABLE VII. Polarization data where the polarization vector has. been defiried in the direction

py Xp~
gc.m

(deg)

93.0
91.0
93.0
94.0
92.0
61.0
87.0.
86.0
85.0
49.8
76.8
80.0

~(p„Xp~)
—0.12+0.14
—0.19+0.14
—0.23+0.11
—0.21+0.16
—0.30+0.13
—0.16+0.12
—0.21+0.10
—0.47+0. 18
—0.39+0.15
—0.28+0. 12
—0.07+0.13
—0.38+0.09

Ey
(MeV)

. 960
963

1000
1015
1018
1020
1026
1040
1050
1054
1054
1056

Ref.

25
24
23
25
24
24
23
25
24
10
10
23

gc.m.

(deg)

91.0
47.6
72.8
90.0
94.4
90.0
46.0
70.0
90.0
90.0
90.0

~(p~ X@K)

—0.09+0.11
—0.38+0.12
—0.48 +0.10
—0.34+0.09
—0.32+0.19
—0.37+0.11
—0.54+0.09
—0.44+0. 10
—0.27+0. 14
—0.30+0.07
—0.08+0.07

(MeV)

1095
1100
1100
1100
1100
1121
1160
1160
1160
1200
1300

Ref.

23
10
10

5
10
23
10
10
10

5

0.40-

0.35-

~ ~ 0 ~ ~ ~ ~ ~ ~ y ~ ~
~ ~

~ ~

X per point for this fit is rather large.
Since we expect the fit to the polarization data to be

more sensitive to the various resonances than the fit to the
cross section data, we emphasized the polarization data by
weighting them with a factor of 4 with respect to the
cross section data. Although this leads to a small im-
provement in the X per point, the effect on the coupling
constants is minor. Our final coupling constants given in
Table V were obtained without any weighting.

In the second and third column of Table V we give the
coupling constants and X values for the inclusion of the
resonances Nl (1470) and N4 (1650) plus the resonances
Y5 (1750) and N7 (1720), respectively. Clearly the addi-
tion of only Nl and N4 (model 1) improves the fit greatly
(X =2.98) as compared to the Born terms alone which re-
sult in X =6.10. The further addition of Y5 and N7
(model 2) does improve the fit (X =2.30), but also results
in a considerably more complicated operator.

Figure 4 illustrates the difference between the two
models at a laboratory angle of 0' and shows the standard

Born terms for comparison. It can be seen that the model
with the Born terms only generally overpredicts the cross
section at high energies as well as close to threshold, while
the two- models employing the resonances agree almost ex-
actly up to an energy of about 1 CxeV laboratory photon
energy. In Fig. 5, the high energy behavior is shown.
One can see that the resonant terms tend to decrease the
effect of the nonresonant background at high energies. In
Fig. 6, we compare the different models with data at a
fixed laboratory photon energy of 1200 MeV. Here the
two models agree pretty well, and there is no compelling
reason to prefer one to the other. For this reason we show
in Fig. 7, the polarization at 15' predicted by the two
models. Here the difference is rather remarkable. More
polarization data would be helpful in deciding whether or
not more resonances should be included (model 2).

In conclusion, we find that the Born terms plus the ad-
dition of two spin —,

' resonances Nl (1470) and N4 (1650)
in the direct channel (model 1) provide quite a good
description of the available cross section and polarization
data for the reaction p(y, K+)Ao for laboratory energies
from threshold (Er' ——911 MeV) up to 1400 MeV. The
inclusion of the resonances Y5 (1750) and N7 (1720) pro-
vides a somewhat better description of the data, but also
adds increased complexity to the kaon photoproduction
operator. Additional polarization data would be useful in
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0.00
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FIG. 5. Comparison of the theoretical c.m. cross section of
the different models up to 2.9 GeV.

FIG. 6. Comparison of the theoretical c.m. cross section with
data at 1.2 GeV.
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0.00

—0 .03-

-0.06-
0

~ -0.09-
O

.O -O. I 2-
C3

g -O. I 5-
O
CL

-O. I 8-

, Y5

determining the resonance contributions.
In Sec. III we gave the multipole decomposition of our

operator for the convenience of other workers, and in Sec.
IV we examined various nonrelativistic reductions of the
operator. We find that the use of the o"e term with I'~
alone is not justified, but do find that a less extreme non-
relativistic reduction of the operator works quite well near
threshold. Finally, we suggest that it may be necessary to
consider a relativistic treatment of the proton and lambda
wave functions.

-0.2 I-
ACKNOWLEDGMENTS

Q, 9Q P.95 I.PO 1.05 I. I 0 I. I 5 l.20 l. 25 I.30 I.35 I.40

E„,(Gev)

FIG. 7. Comparison of the polarization at 15' predicted by
the various models. The polarization vector has been defined in
the direction p~ XpK.
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