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Using diagrammatic techniques we have obtained a new operator for the process p(y,K+)A°
which includes the Born terms in addition to resonances in the s and u channel near threshold. The
coupling constants are obtained by a least squares fit to cross section and polarization data for pho-
ton energies from threshold through 1400 MeV. We find a number of changes from the earlier
operator obtained by Thom about twenty years ago when less data were available. To aid in com-
paring this operator to other work, we give its multipole decomposition in the center of mass frame,
and to aid in its use in nuclear physics we write out the operator in a frame fixed in the nucleus and,
further, take the nonrelativistic limit of the operator as Blomqvist and Laget did for the pion pho-
toproduction case. Finally, we discuss the validity of the nonrelativistic limit of this operator.

I. INTRODUCTION

With the advent of continuous wave electron linacs
with higher energy and intensity, the reaction p(y,K*)A°
has great prospects for becoming an important probe of
the nuclear interior."> Both the photon and the positively
charged kaon interact rather weakly with the nucleus so
that the reaction can occur deep in the nucleus. For the
case where the A remains bound in the nucleus this will
permit the study of deep lying hypernuclear states.

The analysis of photoproduction of kaons from nuclei
is most straightforwardly carried out with a distorted
wave impulse approximation whereby the incoming gam-
ma interacts with a proton in the nucleus to produce a
K* and a A®. The A° goes into some bound state, while
the K% exits the nucleus interacting with the remaining
A —1 nucleons via a rather weak optical potential. The
basic ingredient to such an analysis, which is similar to
previous work on pion photoproduction and electropro-
duction,>* is the kaon production operator from the free
nucleon.

Thom® wrote a kaon photoproduction operator in 1966
using Feynman diagrams for the Born terms and partial-
wave amplitudes for the resonances. Since that time more
data have become available, making it necessary to reex-
amine Thom’s results. Moreover, since the struck proton
is in motion in the nucleus, one requires a frame indepen-
dent kaon production operator. Therefore, resonant
terms, such as the ones used by Thom,’ are not appropri-
ate because of their transformation properties. For this
reason we derive in Sec. II the scattering amplitude by us-
ing diagrammatic techniques for the Born terms as well as
for the resonant terms. This assures the relativistic in-
variance of the operator. In Sec. III we decompose the
amplitude into its multipoles following a procedure by
Berends et al.® for use in comparison with other work and
for future considerations of unitarity constraints. For use
in nuclear physics we take the nonrelativistic limit of the
operator in Sec. IV and discuss the validity of this approx-
imation in a system where rather large energies and mo-
menta are present. In Sec. V we give a table of all cou-
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pling constants obtained and compare the theoretical pre-
dictions of different models with data. A collection of all
data used in fitting the coupling constants is given in
Tables VI and VIL

II. DERIVATION OF THE OPERATOR

Throughout the paper we use the notation and conven-
tions of Bjorken and Drell.” Figures 1(a)—(e) show the
Feynman diagrams for the nonresonant background or
Born terms for the reaction p(y,K+)A% Using the pro-
cedure described by, e.g., Gourdin and Dufour,® the
S-matrix elements can be written as
MM, 172

1
Mg8%p,+p, —Px —PA)
4E,ExE,E, 15 (Pp+Py —Px —PA)

S,'=
= rr

(1)

where the matrix element
4
Mfi=17(pA’sA) 21 Aiju(pp,Sp) .
l =

The matrices M; are given by
M,=—vsep ')

M;,=2ys(€'p,py"PA—€DPAPy Pp) >
)
M;=ys(¢p, pp—P,€Dp)

M,=vs5(e€p,"DA—Py€PA) >

where p,=(E,,p,), Pp, Pk, and p, are the four-vectors
of the photon, proton, kaon, and lambda, respectively,
The amplitudes A; are given in Table I using the follow-
ing definition of the Mandelstam variables:

s=(pp+py)% t=(p,—px)? u=(p,—px)*.
It should be noted that the amplitudes as well as the ma-
trices are Lorentz and gauge invariant. They are related
to the cross section by the expression
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FIG. 1. Feynman diagrams for the process ¥y +p—K™* +A°.
(a)—(e) represent the Born terms including the vector kaon ex-

change, (f) and (g) stand for spin % and -;— resonant terms in the

s channel, and (h) represents spin % resonant terms in the u

channel.
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MpMA IMﬂ |284(PP+P7 —pK“‘PA)
4E\Ex[(py'py ) —pip} 1"

d’pxdpa

Qmier)?

Of the nine different coupling constants involved in the
amplitudes 4;, the charge e and magnetic moment p, of
the proton are well known, and the magnetic moment p
of the lambda has recently been determined to be
(—0.6138+0.0047) un.’ The remaining six constants can
be grouped into four effective constants

do=02n)*

(3)

gA=8KAN >

Gz =KTgK3N >
4)

v
Gy =8x*xy8k*aN ’

T
GT:gK*K‘ng*AN ’

which can be determined by a least squares fit to cross
section and polarization data (see Tables VI and VII). Us-
ing these parameters (see Table V in Sec. V), however, the
obtained X? is rather large indicating that this simple
operator is not sufficient for the description of the pho-
toproduction process. Furthermore, it is impossible to ex-
plain the polarization by using the Born terms alone and
since the threshold energy (E;°=911 MeV, E5mi =1610
MeV) is already higher than the rest masses of some
baryon resonances, the presence of excited states in the
direct and cross channels cannot be excluded. According
to previous workers,'” high spin resonances have little ef-
fect in improving the fit to the data. For this reason, and

TABLE II. Particles of interest and the low spin baryon resonances up to 1800 MeV.

Particle Je Mass (MeV) Width (MeV)
P 1t 938.2796
K+ 0- 493.669
K*+ 1- 891.8
A 1t 1115.60
b3 1+ 1192.46
N1 (1470) + 1400 to 1480 120 to 350 (200)
N2 (1520) 3- 1510 to 1530 100 to 140 (125)
N3 (1535) + 1520 to 1560 100 to 250 (150)
N4 (1650) 1+ 1620 to 1680 100 to 200 (150)
N5 (1700) 3" 1670 to 1730 70 to 120 (120)
N6 (1710) 3+ 1680 to 1740 100 to 140 (120)
N7 (1720) 3+ 1690 to 1800 150 to 250 (200)
Y1 (1405) 5+ 1405 30 to 50 (40)
Y2 (1670) 3 1660 to 1680 20 to 60 (40)
Y3 (1800) - 1700 to 1850 200 to 400 (300)
Y4 (1660) +* 1580 to 1690 30 to 200 (100)
Y5 (1750) 5+ 1730 to 1820 50 to 160 (75)




1684

the fact that the energies to be used in nuclear physics are
close to threshold and hence high angular momentum
states cannot be easily excited, we only include resonances
up to spin % in the s channel and spin —;— in the u channel.
The possible effect of resonances in the ¢ channel or spin
2 resonances in the u channel is left for future considera-
tion. Table II shows all resonances!! under consideration
where we refer to the three low-lying A* resonances as
Y1—Y3 and the two low-lying =* resonances as Y4 and
Ys. ‘

As noted earlier, in order to keep relativistic invariance
one cannot use the standard method of partial-wave am-
plitudes. It is, however, possible to include resonant terms
in a relativistic invariant way by using the same procedure
used for the Born terms. Figures 1(f)—(h) show the Feyn-
man diagrams for such terms. Because the diagrams for
each of the baryon resonances are identical (apart from
the coupling constants) only three diagrams are shown
representing the spin + and spin 3 resonances in the s
channel and the spin -;— resonances in the u# channel,
respectively.

The propagators for the spin 0, 5, and 1 states can be
found in several sources, such as Refs. 7, 12, and 13. The
spin 3 propagator is derived by Pilkuhn'? as well as by
Schwinger.!3 A compilation of all propagators is given in
Table III. It should be noted that the spin + propagator
given in these references is not unambiguously defined. In
order to ensure gauge invariance it is necessary'* that the
mass appearing in the numerator of the spin % propagator
be replaced by the total invariant energy given by V's.
Furthermore, it is necessary to replace M2 by M>—iMT
in the denominator of the propagators in order to take
care of the finite width of the unstable particles.

The vertex factors for the Born terms (including the
vector kaon exchange term) can be found in Refs. 5, 8, or
12. The spin % vertex factors are constructed in analogy
with those of the delta resonance of pion photoproduc-
tion,>*12 apart from replacing the mass M, by Vs asin
the case of the propagator. For the spin 5 nucleon reso-
nance the vertex factors are similar to the vertex factors
of the proton exchange term. In fact, the structure of the
KAN* vertex is identical to the KAp vertex. The only
difference is at the N*yp vertex, where the proton has to
make a transition from its ground state to one of its excit-

TABLE IIL Propagators for particles with mass M, width T,
and four-momentum gq.

. 1 g—f—M
spin =
PN T T MriiMT
spin = ___q_'tfs_
2 3(g2—M?*+4iMT)

2 .
8uv + Vv¥pu— :quqv

1 .
—TS(MV—Vﬂ,‘)J

spin 0

spin 1
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ed states. This cannot be achieved by an electrostatic po-
tential, but by electromagnetic currents only. Hence, the
only possible coupling is through the magnetic moment.
Therefore, the pyp coupling e¢+pup,¢ has to be
replaced by u «py¢ for the N*yp vertex. This replace-
ment is also necessary to ensure gauge invariance. The
different parity states are accounted for by inserting the
¥s matrix in the appropriate place. A collection of all
vertex factors is given in Table IV. The two independent
coupling constants of each spin 5 resonance can be com-
bined into one effective constant, and the three indepen-
dent coupling constants of each spin 3 state can be
grouped into two effective parameters representing the
two independent coupling modes as given below:

TABLE IV. Vertex factors for the reaction ¥ +p—K*+A°.
The mass M equals 1000 MeV, and is inserted to make Ex*ky

dimensionless. For the same reason 8y an+ is divided by M .

PYP eg+up,e
AK*p IgKANY 5
SK+p IgxENYs
K+yK+ e€(2px —py)
AyA HAD €
SyA 1129 2%
8. %
gxs
. v _Ex*an
K*+Ap gla T+ MM, (ZA—pp)7*
+
N3 WP Byelye
N* G IKYA gy, na?s
N*(3+ )yp NV ALE
N*(3 K*A ExAN*
. qpv
N*(3) i|gx by SV
7 Jvp En*py Vs +M,
5 EPpPy—PyPr€
+ €' PpPy—Dy'Pp€”
8 N*py (\/E-;-Mp)z &
g *
N*(3HKR+A KA
M_ .
N
va- . . __€py
N*(5 yp En*pr Vs —M, ]
€DpPy —Py'Pp€”
+8 Yk — L
En*py (Vs =M,
_ lg +aAn®
N*(% K*A ~M‘—P'X7’s
MN*
+
Y*(4 A KynP €
Y*(%+)K+P Bny*?s
YA ipgapers
Y*(3 K*p Exny*




GN1 =KNIEKANI >

G'Na =KN4EKAN4 >

G s =8 Xsyp8KANS »

Ghis =8 sypKrANs » (5)
G N7 =878 KANT »

G =878 KANT >

Gys =Kys§KNY5 -

By using the appropriate vertex factors and propagators
the scattering amplitude can be calculated in the usual
way. Table I shows the resulting invariant amplitudes.

III. MULTIPOLE DECOMPOSITION
OF THE OPERATOR

As an aid in comparing our photoproduction operator
to other approaches, and for possible future considerations
of unitarity and time reversal invariance,'>~!7 we present
a multipole decomposition of our operator using the tech-
niques and notation of Ref. 6. Initially, we write the ma-
trix elements appearing in Eq. (1) in two-component form
by expressing the ¥ matrices in terms of the Pauli o ma-
trices and writing the “small” component of the Dirac
spinors in terms of o matrices times the large component.
In the K-A° center of momentum (c.m.) frame, the
kinematic variables are defined as

pp=(Ep’—“k)’ py=(k’k) ’
Px=(0,q), pa=(Ex,—q).

The reaction angle cos@=k-§=x, where k=k/|k| and
4=q/|q]|. The z axis is the quantization axis and the
gauge (transverse) condition on the photon polarization is
the usual €,=0, e-'k=0.

In the c.m. frame, the matrix element M i of Eq. (1)
can be written as,

4
a(pp) 3, Ai(s,t)M;u(p,)
i=1
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F=0-€F 1 +ilcq)okxe)F,
+(o k)G €.F 3+ (09 (G-€)F,4 @)

and the &; are given in terms of the 4; in many refer-
ences.>®

The multipoles E;., M;. are defined by the following
equation:

~ 1 ~
Mys)= [_ dx Dix)F(s,0), (8)
where
F1 E;,
- | .72 - E]_
y(s’t)= ‘73 ’ MI(S): MI+ ’
Fa M;_

and the matrices D;(x) are given in Ref. 6. The multipole
amplitudes can now be calculated by direct integration of
Eq. (8) which lead to Legendre functions of the second
kind,

Py(x)
0=+ J ax ’_x
and combinations of these functions given by
R,(y)= 21+1 Ql—l(y)+ 2I+1 Q1 1y),
T,(y)= 21+1 5 [Qi1)=Qr )] .

These functions occur with arguments E,—E, given by
E,=—E, /q, E;=(M%—M3%—2E\k)/2kq ,
E;=w/q, E4=02ko+M2—M)/2kq .

Since it may be desirable to investigate the contribu-
tions of the Born terms and the resonance terms individu-
ally, we give the multipole amplitudes separately.

A. Born terms

172 172
_ | EatMyp E,+M, For convenience the result is presented in matrix form,
= XA | F|X(p)),
2M 2M,
M Bom— 2 Oi(E)H; +C;, )
(6) i=1
where where
|
QI(E,') Q[+1(E,') R](E[) R1+1(E1 TI(E1 T1+1(Eg)
Hlowy o w IHre e { SN P “ﬂ Ti_A(E:)
= 1
QUE;) =~
2(1+1) QI(E;) Q1 (Ep) R(E;) R 1(E)) '—"‘TI(El) Y
~ D og) g gy ~UlpE) ~Ug @) Ly 0

The six and four element column vectors H; and C,; depend only upon kinematic factors and coupling constants, and are

given by
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1 Ms+M,
%(EA —Mypa) g |BA=— 2 ¢
M Ms+M
Al . 2 A Ejla—1) 0
Ex+My Ex+M, 2 0
~  gaeKa 1 ~ 2Gse 1 ~ 0
H == > =0 N = ,
! MA -1 2 MA +M2 -1 H3 0
—a —a 2gAe
——92 S — E,+M,
Epn+My Ex+My __28aeg
k(Epx+M,)
1 + GT - 2
;[ —Gp(2Ep+o+aM ™)+ F[wM —a(Mg —2kow)l}
1 Gr \ _
m{GV[w(a—l)+aM+]+M+ [(a—1)2E, —0)M ™ +a(ME —2kw)]}
Gy+ L (M~ —2ka)
—2ka
.1 M (10)
4= ’
M (a—1) Gr
L4 — (M~ —2a(E,+M
ExtMy |t a(Ep+Mp))
Gr
—Gya+m[2(a—1)(Ep+k)—M‘a]
GV + Gr 2(Ep+k) M~a
— a
UNVEr+M, "M+ | E,+M, " Ey+M,
(kp+1a Kp
' 810
AE,+k)  2M, | "
~ 0
Ci=gpe 0 >
q alk,+1)  (a—1k,
- 811
Er+M, | 2(E,+k) M,
where M*=M,+M, and a=1+k/(E,+M,).
[
B. Resonance terms The spin & resonance amplitudes 4. 2* and A} de-
Th ltipol ing fi he 1+ and 1~ pend on x and are rewritten in terms of new quantities
e muitipoles coming irom the 3 and 3 . reso- By, B;, Dy, and D3, which are independent of x and are

nances in the s channel have a simple form since their
amplitudes A4,!” 2% and A}?” only depend upon s and not
the reaction angle 6. Here A;*" and 4!"*" denote,
respectively, the parts of the amplitudes A4; in Table I that
have the coupling constants Gy; and Gy, as forefactors.
The multipole amplitudes for the spin 5 resonances are

given by
+ + +
E[{ =k[—ad{"” +(E,+k)43"7 18,0,

EM* —o0,
. , (11)
MI14/_2¢ =0,

Yo Ui -V

—(a—1 k)42 15,, .
EitMn (@a—1INE,+k)A3 " 18,

defined by

1
A%/2+ =B?~ _ GN7kqx
(s —MR7 +iMy; T My +V's )My,
=Bi* —Dikgx ,
2
A§/2+ ZB;_ _ GN7kqx
(s — M3 +iMy; Ty (M +V's "My
=Bi —Dikgx ,

(12)
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4 _p- G \iskgx If =K[(E,+k)Bf —aBf +E 4371,
1 =D — R

(S—M%]5+IMN5FN5)(1/E—MP)MN5 %’ [Z(a__l)(Ep+k)A3/2- __aA3/2—] ,

=B —Dikgx , t——k__[,p* —(a—1)E,+k)B3

1 1 kgx 3 EA+MA[ i +k)Bj3
‘ +
43 _p- GRiskgx —(@a—1E 4371, (14)
3 =D3 —

(S “‘M%IS +iMN5FN5)(‘/§ —Mp)2MN5 +
__Q____ 2(E +k)A3/2'—+aA3/2—
=B3_ .._.Ds_kqx ‘ EA +M [ P 4 ] ’

~
S
ll

| I =kq[A§ +kaDf +k(E,+k)D}],
Finally, the spin % multipoles can be written as 2 2
It = —k*q 1 A Lap*
+ gt + ot ° Ex+My | Ep+M, ! 1
32t + Ia—1Ig Is+15)
Eiy = Ii+— 810+ 81| » .
—(a—1)XE,+k)D3
E 312i =—tuf+a; )82, The multipoles coming from the spin +  resonances in
(13)  the u channel can be expressed by using the matrix Q;(E),
Mzsfi =tat -1, , defined in Eq. (9):
MY =0(EsH; ,
3/2% 12i ~I;‘t + 1+
M2 == 5 St sleb, |, where
ML —MYs —2E sk +iMysTys
5 —
where the quantities f,...,IZ contain all the kinematic 2kq
factors and coupling constants and are given by and
]
Ll \Mys—My—Liry |-E
712 Ys A= lys A
1 a i kE
| = | Mys—Mp——Tys | —————
Ex+M, |2 |70 TAT 2 Y T E oM,
~ ZGy5ekq -1
Hy=——""—"— 15
T Mys+M, _ gk (1)
(Ep+M ) Ep+M),)
a
—9q92
Ex+My

IV. NONRELATIVISTIC OPERATOR

For kaon production from nuclei where the initial and final (hyperon) single particle states are described by conven-
tional (Schrodinger) wave functions, we require a production operator which operates on two-component wave functions.
We obtain such an operator by reducing the free Dirac spinors for the lambda and the proton to their two-component
form. If we then evaluate the matrix element in Eq. (1) in a general frame, we can identify those contributions coming
from the big-big, big-small, small-big, and small-small parts of the Dirac spinors. Carrying this out we can write the
matrix element in Eq. (1) as

E,+M,
M,

Eyx+M,
M,

4
a(l) 3 M;A;(s,t)u(p)=

i=1

X{X(A) | F\(o-€)+F,(o-k)€ep)+Fi(o0-k)el)+Fylop)ep)+Fs(op)el)
+F¢(o-1)ep)+Fq(o1)el)+Fglo-€)ok)op)+Fy(o1)ok)o€)
+Flo1)o-€e)op)+F (o 1)ok)ep)op)+Fplol)Nok)el)op) | X(p)) , (16)
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where p=pp and I=p, and the F; are given in terms of
the A; of Table I by

Fi=—kA,+kpAs+k-ld,,
F,=4,,

Fy=4,,
Fy=—QAyk-1+kd;)/(E,+M,)
Fs=(2d,k-p—kAs)/(E,+M,) ,
Fo=(2Ayk-1—kA3)/(Ex+My) ,
Fi=—(2Akp+kA4)/(Ex+M,),
Fy=d, /(E,+M,),

Fo=A, /(EA+M,),

Fro=(kd, +k-pd;+k-14)/[(E,+M,)Ex+M)] ,
Fyy=A4; /[(E;+-MNEx+M,)],
Fio=A4 /[(E,+Mp)(Ex+My)] .

The terms in Eq. (16) containing F;—F3; come from
products of the big parts of the Dirac spinors, while the
terms Fiy—F;, come from products of the small parts of
the Dirac spinors. Since the nonrelativistic wave func-
tions of the proton and the lambda in the nucleus already
implicitly contain some portion of the small component of
the Dirac spinors, we should certainly discard terms con-
taining Fjp—F;;,. A more extreme nonrelativistic limit
would be to further discard terms involving F,—F, since
they involve a small component from either the lambda or
the proton. Previous workers? have kept the complete
o€ term but have assumed frozen protons and have ex-
amined (apart from the second paper in Ref. 1) kaon pro-
duction at 0°. Under these conditions only terms F; and
Fq contribute, and the Fy term plays a significant role.

In pion photoproduction near threshold it is well
known that the leading Kroll-Ruderman term (equivalent
to the F; term) provides a good description of the produc-
tion process. However, in the case of kaon photoproduc-
tion, the much larger change in rest mass during the pro-
duction process requires much more energetic photons
and consequently much higher momenta and energies. It
is not at all obvious that first-order relativistic corrections
can be neglectéd. To investigate this point we compare
the cross section calculated with only F;, with F;—F,,
and with F;—F;, for different kinematics which might
arise inside the nucleus. We choose the target proton to
have momentum |p| and to be moving in various direc-
tions defined with respect to a laboratory coordinate sys-
tem defined by choosing the z axis to be along the in-
cident photon direction and the outgoing kaon to lie in the
x-z plane. Given the initial proton momentum p, the
photon energy k, and the kaon laboratory angle 6, all
remaining kinematic variables are defined.

As an example of our findings we show in Fig. 2 the
cross section as a function of laboratory photon energy
calculated with the F; term only, the F;—F,y terms, and
with all the terms, F;—F;, for 0° kaon production. The
laboratory momenta of the proton for the three cases in
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FIG. 2. The laboratory cross section as a function of photon
energy for protons of three different momenta for kaons at 0°
for the full operator and for two different nonrelativistic ap-
proximations: (a) p,=100 MeV/c, 6,=150° (b) p,=0; (c)
Ppp=100 MeV /¢, 6,=30°.

Fig. 2 are p,=100 MeV/c for 6,=30° and 150°, and
Pp=0. When the photon energy is 1200 MeV, the magni-
tude of the recoiling lambda momenta for these three
cases is 523, 248, and 375 MeV /c, respectively. One sees
that the extreme nonrelativistic approximation (F; only)

- is a very bad approximation to the full calculation. On

the other hand, for photon energies up to about 1400
MeV, the nonrelativistic approximation which only dis-
cards the terms of order p?/M? in the production opera-
tor (F1p—F1,) is quite a good approximation. These three
cases shown display a general result we found. Whether
or not the F; term alone approximates the full operator is
strongly dependent on kinematics.

To see if the errors made in using the F; term only tend
to average out when integrating over the momentum dis-
tribution of both protons and lambdas in a nucleus, we
performed a calculation of 0° kaon production from an in-

- finitely massive pseudonucleus. We assume the initial and

final “nucleus” has the same energy apart from the differ-
ence in rest mass of the proton and lambda. Therefore,
the energy of the kaon, w =k +M,—M,, and momentum
of the kaon is ¢ =1 w?>—M} where k is the laboratory
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FIG. 3. The ratios R;=o0(F,)/o(F,—F;;) and

Ry=0(F,—Fy)/o(F;—F;;) shown by --- and — — —,
_ respectively, are compared to one for laboratory energies from
0.680 to 1.0 GeV. '

photon energy. In the kaon production amplitude the
proton is taken to be on its mass shell, while the lambda
energy Ep=k+E,—o and the lambda momentum
l=k+p—q and, therefore, the lambda is off. its mass
shell. With these kinematics we averaged the cross sec-
tion over proton momenta p and angles 6, by using a Fer-
mi distribution,

1

polp)=
Pb—Ppo
Ap

14 exp

with po=100 MeV /c and Ap =50 MeV /c which gives a
rms value of the proton momentum equal to 200 MeV /c.
For each value of p (for 0° kaon we have azimuthal sym-
metry), we weighted the cross section with a similar Fermi
distribution for the lambda momentum |1|. That is,
lambda momenta which were too large to be kept in a nu-
cleus were effectively discarded. We formed the ratios of
cross sections R;=o(F; only)/o(F,—F;;) and R,
=0(F,—Fg)/0(F{—F;), and show the values of these
ratios from threshold (=680 MeV) up to 1000 MeV in
Fig. 3. Clearly keeping only the F; term is not justified,
particularly at higher energies, while once again keeping
the F;—Fg terms in a good approximation to the full
operator.

We realize this procedure is only a rough description of
kaon photoproduction from a nucleus where the produc-
tion amplitude must be sandwiched between proton and
lambda momentum space wave functions. However, our
results suggest that the o-€ term with only the coefficient
F, should not be used to include nuclear Fermi motion.

V. RESULTS AND CONCLUSION

Since our primary goal is to provide a kaon photopro-
duction operator suitable for use in nuclear physics where
the final A° remains in the nucleus, we only consider pro-
duction data from threshold (E;°=911 MeV) up to a lab-
oratory photon energy of 1400 MeV. Higher energy pho-
tons result in larger momentum transfers to the nucleus

1689

TABLE V. Coupling constants obtained by a least squares fit.

ga /Var 2.04 1.03 1.29
Gy /V'arn —1.24 —0.807 —3.85
Gy /4w 0.247 0.220 0.298
Gr /4w —0.189 —0.048 —0.134
Gni /Varm 0.0 1.47 1.80
Gns /V 4w 0.0 0.111 0.120
Gys /Var 0.0 0.0 2.20
Gy /47 0.0 0.0 —0.051
G¥, /A 0.0 0.0 —0.349
X2 6.10 2.98 2.30

for non 0° kaons and decrease the cross section appreci-
ably.

Performing a least squares fit to the available data
under 1400 MeV laboratory photo energy shows the insig-
nificance of all resonances below threshold except the N1
(1470) resonance. The reason is probably that this reso-
nance has the same spin-parity structure as the proton and
interferes strongly with the dominant direct term. On the
other hand, the most important resonance is the N4 (1650)
state which is a 5 state. This can be explained by the
proximity of this resonance to threshold (only 40 MeV
above threshold).

The next two resonances of importance are the spin 3
state Y5 (1750) and the spin = state N7 (1720). If one
neglects resonances in the # channel, the X2 can be im-
proved by including the spin 5 state N5 (1700). We
have neglected N5 (1700) in our calculations but we do
present the amplitudes and multipole decomposition for
this spin state. The remaining resonance states given in
Table II provide little improvement in the reduced chi-
square (chi-square per degree of freedom). We, therefore,
restrict our considerations to the Born terms and the reso-
nances N1 (1470), N4 (1650), Y5 (1750), and N7 (1720).

As a check on our procedure and computer programs,
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FIG. 4. Comparison of the theoretical c.m. cross section of
the different models up to 1.4 GeV.
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TABLE VI. Differential cross section data for the reaction y +p—K™*+ A°

(deg) (1073° cm?/sr) (MeV) Ref. (deg) (103 cm?/sr) (MeV) Ref.
90.0 0.055+0.012 934 21 89.0 0.135+0.012 1172 25
60.0 0.067+0.006 942 5 69.5 0.196+0.012 1175 25
54.0 0.093+0.006 964 5 92.6 0.129+0.010 1190 18
31.1 0.134+0.008 976 21 15.0 0.379+0.027 1200 22
64.0 0.133+0.008 974 21 25.0 0.334+0.015 1200 22
56.5 0.112+0.012 994 25 30.0 0.341+0.019 1200 22
30.0 0.204+0.007 1002 21 30.0 0.353+0.019 1200 19
60.3 0.169+0.009 1003 21 35.0 0.300+0.014 1200 22
88.6 0.154+0.009 1004 21 42.0 0.284+0.015 1200 22
132.00 0.121+0.010 1004 21 49.0 0.282+0.016 1200 22
54.0 0.141+0.013 1005 25 55.0 0.276+0.016 1200 22
30.3 0.228+0.011 1013 21 63.0 0.241+0.016 1200 22
43.6 0.196+0.011 1020 21 70.0 0.202+0.014 1200 22
55.6 0.200+0.010 1018 21 78.0 0.194+0.017 1200 22
69.8 0.155+0.008 1022 21 85.0 0.154+0.018 1200 22
94.2 0.145+0.011 1024 21 90.0 0.152+0.012 1200 5
97.0 0.133+0.006 1018 21 90.2 0.143+0.007 1200 5
27.5 0.281+0.014 1040 21 92.1 0.143+0.010 1200 18
45.0 0.230+0.008 1036 21 127.0 0.134+0.040 1200 22
50.5 0.237+0.015 1047 25 91.7 0.124+0.009 1210 18
78.0 0.172+0.011 1047 25 89.7 0.125+0.007 1290 18
24.0 0.342+0.030 1050 19 6.0 0.321+0.033 1300 20
30.0 0.276+0.015 1054 21 10.0 0.314+0.020 1300 20
31.0 0.284+0.022 1054 22 15.0 0.316+0.016 1300 20
42.5 0.2711+0.013 1055 21 20.0 0.328+0.013 1300 20
48.0 0.233+0.019 1054 22 30.0 0.337+0.018 1300 20
53.5 0.244+0.014 1054 21 40.0 0.330+0.020 1300 20
80.2 0.196+0.012 1051 21 50.0 0.295+0.015 1300 20
89.7 0.157+0.009 1054 21 60.0 0.233+0.015 1300 20
132.3 0.123+0.011 1060 21 70.0 0.200+0.017 1300 20
49.0 0.259+0.017 1064 25 80.0 0.176+0.018 1300 20
76.0 0.187+0.009 1064 25 89.8 0.143+0.009 1300 5
46.5 0.244+0.012 1080 21 90.0 0.137+0.017 1300 20
46.5 0.279+0.018 1080 22 89.4 0.1294+0.007 1313 18
'90.0 0.158+0.008 1080 21 62.0 0.239+0.020 1327 20
119.7 0.125+0.008 1080 21 52.7 0.2704+0.022 1332 20
48.0 0.248+0.012 1090 25 89.1 0.142+0.007 1335 18
73.5 0.209+0.010 1090 25 43.2 0.299+0.020 1336 20
96.0 0.132+0.008 1090 25 335 0.340+0.019 © 1340 20
28.0 0.396+0.020 1100 19 233 0.361+0.015 1342 20
89.9 0.139+0.009 1100 5 17.7 0.349+0.018 1343 20
72.5 0.204+0.013 1110 25 11.2 0.334+0.025 1344 20
93.5 0.141+0.008 1110 25 88.9 0.136+0.007 1353 18
47.5 0.234+0.012 1113 25 88.7 0.123+0.008 1371 18
90.0 0.142+0.013 1130 21 88.6 0.116+0.007 1387 18
46.5 0.253+0.009 1150 25 17.5 0.279+0.024 1400 5
71.0 0.209+0.011 1150 25 25.0 0.271+0.021 1400 5
91.0 0.131+0.014 1150 25 325 0.294+0.021 1400 5
36.0 0.259+0.017 1160 5 40.0 0.261+0.014 1400 5
60.0 0.206+0.012 1160 5 450 0.266+0.016 1400 5
75.0 0.205+0.016 1160 5 60.0 0.232+0.011 1400 5
90.0 0.144+0.010 1160 5 75.0 0.181+0.013 1400 5
135.0 0.079+0.009 1160 5 90.0 0.157+0.008 1400 5
46.0 0.247+0.015 1170 25 142.5 0.117+0.010 1400 5

we reproduced Thom’s results by fitting the Born terms to given in Tables VI and VII. The resulting coupling con-
the data given in Ref. 5. Furthermore, we used the Born stants, given in the first column of Table V, are in reason-
terms to fit all the cross section and polarization data able agreement with Thom’s original parameters,’ but the
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TABLE VII. Polarization data where the polarization vector has been defined in the direction

ﬁ'r XﬁK-

" E, ™ E,

(deg) P(p, XPx) (MeV) Ref. (deg) P(p, XPx) (MeV) Ref.
93.0 —0.12+0.14 960 25 91.0 '—0.09+0.11 1095 23
91.0 —0.19+0.14 963 24 47.6 —0.38+0.12 1100 10
93.0 —0.23+0.11 1000 23 72.8 —0.48£0.10 1100 10
94.0 —0.21+0.16 1015 25 90.0 —0.34+0.09 1100 5
92.0 —0.30+£0.13 1018 24 94.4 —0.321+0.19 1100 10
61.0 —0.16£0.12 1020 24 90.0 —0.37£0.11 1121 23
87.0 —0.21+0.10 1026 23 46.0 . —0.54+0.09 1160 10
86.0 —0.47£0.18 1040 25 70.0 —0.4410.10 1160 10
85.0 —0.39+£0.15 1050 24 90.0 —0.27£0.14 1160 10
49.8 —0.2810.12 1054 10 90.0 —0.30+0.07 1200 5
76.8 —0.07+0.13 1054 10 90.0 —0.08+0.07 1300 5

. 80.0 —0.38+0.09 1056 23

X? per point for this fit is rather large.

Since we expect the fit to the polarization data to be
more sensitive to the various resonances than the fit to the
cross section data, we emphasized the polarization data by
weighting them with a factor of 4 with respect to the
cross section data. Although this leads to a small im-
provement in the X? per point, the effect on the coupling
constants is minor. Our final coupling constants given in
Table V were obtained without any weighting.

In the second and third column of Table V we give the
coupling constants and X? values for the inclusion of the
resonances N1 (1470) and N4 (1650) plus the resonances
Y5 (1750) and N7 (1720), respectively. Clearly the addi-
tion of only N1 and N4 (model 1) improves the fit greatly
(X?=2.98) as compared to the Born terms alone which re-
sult in X?=6.10. The further addition of Y5 and N7
(model 2) does improve the fit (X2=2.30), but also results
in a considerably more complicated operator.

Figure 4 illustrates the difference between the two
models at a laboratory angle of 0° and shows the standard

407/ m(0°)(Lb/s1)

: cesses BORN TERMS
o NI, N4 -
—==- NI, N4, N7, Y5

000
o9 1 13 5 7 o 21 23 25 27 29

Eipl GeV)

FIG. 5. Comparison of the theoretical c.m. cross section of
the different models up to 2.9 GeV.

Born terms for comparison. It can be seen that the model
with the Born terms only generally overpredicts the cross
section at high energies as well as close to threshold, while
the two models employing the resonances agree almost ex-
actly up to an energy of about 1 GeV laboratory photon
energy. In Fig. 5, the high energy behavior is shown.
One can see that the resonant terms tend to decrease the
effect of the nonresonant background at high energies. In
Fig. 6, we compare the different models with data at a
fixed laboratory photon energy of 1200 MeV. Here the
two models agree pretty well, and there is no compelling
reason to prefer one to the other. For this reason we show
in Fig. 7 the polarization at 15° predicted by the two
models. Here the difference is rather remarkable. More
polarization data would be helpful in deciding whether or
not more resonances should be included (model 2).

In conclusion, we find that the Born terms plus the ad-
dition of two spin + resonances N1 (1470) and N4 (1650)
in the direct channel (model 1) provide quite a good
description of the available cross section and polarization
data for the reaction p(y,K*)A° for laboratory energies
from threshold (E%®=911 MeV) up to 1400 MeV. The

. inclusion of the resonances Y5 (1750) and N7 (1720) pro-

vides a somewhat better description of the data, but also
adds increased complexity to the kaon photoproduction
operator. Additional polarization data would be useful in

0.5 T T T T T T T T
™~
& 0.4
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= 03
=
€ 0.2
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S ++e+ BORN TERMS
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FIG. 6. Comparison of the theoretical c.m. cross section with
data at 1.2 GeV.
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FIG. 7. Comparison of the polarization at 15° predicted by
the various models. The polarization vector has been defined in
the direction p, Xpx.

determining the resonance contributions.

In Sec. III we gave the multipole decomposition of our
operator for the convenience of other workers, and in Sec.
IV we examined various nonrelativistic reductions of the
operator. We find that the use of the o€ term with F,
alone is not justified, but do find that a less extreme non-
relativistic reduction of the operator works quite well near
threshold. Finally, we suggest that it may be necessary to
consider a relativistic treatment of the proton and lambda
wave functions.
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