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A Lorentz-invariant representation for NN scattering amplitudes is derived. The general NN
representation assuming parity invariance involves 128 amplitudes for a given isospin, all but 8 of
which involve negative energy projection operators and therefore possess vanishing matrix elements
in positive energy states. When charge symmetry and time-reversal invariance are taken into ac-
count, the number of independent amplitudes reduces to 56 for a given isospin, and this number fur-
ther reduces to 44 when all particles are on mass shell. Relativistic meson theory is used to deter-
mine the negative energy terms since they cannot be determined from physical scattering data. The
formalism is developed to determine the complete set of invariant amplitudes starting from partial
wave f-matrix elements which arise from solving quasipotential equations for NN scattering.

I. INTRODUCTION

Recent work has shown that a relativistic impulse ap-
proximation! provides interesting predictions for inter-
mediate energy proton-nucleus scattering.>~> Although
the construction of an optical potential requires
knowledge of the fully-off-shell relativistic NN ampli-
tudes, successful predictions have been made by choosing
a “good” set of five relativistic covariants.! The associat-
ed invariant amplitudes are determined by equating posi-
tive energy matrix elements to known physical ampli-
tudes.® Once the five NN amplitudes and covariants are
fixed, one can predict negative energy matrix elements
which control pair effects in the relativistic description of
proton-nucleus scattering.’> However, negative energy ma-
trix elements are ambiguous because it is possible to alter
them without changing the positive energy matrix ele-
ments.” For example, one may add new covariants whose
positive energy matrix elements vanish. The amplitude of
such new covariants cannot be fixed without theoretical
input. Positive energy NN data are necessary but not suf-
ficient input to construct the relativistic NN amplitudes
and optical potential unambiguously. |

In this work, a general representation of NN ampli-
tudes in terms of Lorentz covariants is developed con-
sistent with parity invariance. The representation chosen
clearly embeds the Fermi covariants used previously but
also contains terms which only affect negative energy ma-
trix elements. The invariant amplitudes are obtained by
equating matrix elements to c.m. frame helicity ampli-
tudes. The latter may be obtained by solving dynamical
equations for NN scattering based on meson theory. Pre-
vious work by Tjon and collaborators has developed a
satisfactory description of NN phase shifts in the 0—1000
MeV range by solving coupled-channel (NN,NA,AA)
Bethe-Salpeter equations based on meson exchange.® This
formalism provides partial wave ¢ matrices. In this paper
we show how to construct the c.m. frame helicity ampli-
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tudes from the partial wave ¢ matrices based upon a
quasipotential reduction® of the meson exchange dynam-
ics. '

For purposes of constructing an optical potential, it is
essential to be able to boost the NN amplitudes to the
p + nucleus c.m. frame. By using a covariant representa-
tion, the boost and its associated Wigner rotation of spin
operators are automatically taken into account in a simple
and straightforward manner. Using the formalism of this
paper and meson theoretical calculations of Ref. 8 (slight-
ly extended), the first calculations of a complete set of
Lorentz-invariant amplitudes have been used in Refs. 7
and 10 to develop the proton-nucleus optical potential.

This paper presents the detailed formalism necessary to
determine NN amplitudes. Section II derives a general
covariant representation for NN scattering and Sec. III
analyzes the role of symmetries in reducing the number of
independent amplitudes. Section IV develops the relations
between invariant amplitudes and the c.m. frame helicity
amplitudes. A matrix which provides the necessary link
between relativistic covariants and helicity amplitudes is
explicitly constructed in Appendix A. The construction
of c.m. frame helicity amplitudes for positive and negative
energy states is discussed in Sec. V. Our analysis closely
follows some parts of the paper by Kubis,!! except that
the NN dynamics.is assumed to be adequately described
in the quasipotential reduction of Ref. 9. A transforma-
tion from the Dirac spinors of Kubis to the standard
spinors of Bjorken and Drell'? is given in Appendix B.
Details concerning how the partial wave f-matrix ele-
ments obtained by solving the quasipotential equation are
used in the partial wave expansion of helicity amplitudes
are given in Appendix C. Some concluding remarks are
given in Sec. VL.

II. GENERAL LORENTZ-INVARIANT
REPRESENTATION

In order to unambiguously expand the relativistic NN
amplitude, one first needs a complete set of Lorentz co-
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variants which can describe transitions between all possi-
ble two-fermion states. The two-fermion system has four
spin states and four energy states: + +, + —, — +,
and — —. Thus, there are 16 states in all and a 16X 16
matrix is needed to describe all matrix elements for a
given isospin. However, not all 256 elements of this ma-
trix are independent. Parity invariance reduces the num-
ber of independent elements to 128. Other symmetries to
be discussed further on, reduce the independent elements
to 56. For the case that the particles are on mass shell,
i.e., pf=m}, or symmetrically off mass shell, the number
of independent amplitudes further reduces to 44.

A general parity invariant representation of the NN
amplitudes can be developed as follows. Following Ref.
11, consider the complete set of NN helicity. amplitudes,

(Pip2p1P)
¢A’1 AMAA,
denotes energy, 1 and 2 are particle labels, and primes
denote final state quantum numbers. The helicity ampli-
tudes are Dirac matrix elements of 2ipﬁ' as follows in the
c.m. frame:

where A=z denotes helicity and p=+

p})

) i P2) .
¢ = (2ip)u A, (p')a _A£(~—p )

AiAZAR,

a (py) (py)
xPu (pu s (—p),

2.1
where the convention for particle 2 helicity states follows
Refs. 11, 13, and 14. Furthermore, the ¥ matrices and
spinors follow the conventions of Bjorken and Drell ex-
cept in Sec. V where spinors of Kubis are used. For the
present, the problem is how to obtain invariant amplitudes
which can be used in an arbitrary frame from helicity am-
plitudes which have a simple partial wave expansion only
in the NN center-of-mass frame. Construction of the op-
tical potential is easily done in terms of Lorentz covari-
ants although other methods can also be used. The helici-
ty amplitudes are not covariants for 6540 due to the well-
known Wigner rotation! which arises in Lorentz boosts.

A Lorentz-invariant representation of the NN ampli-
tude constructed directly from the c.m. frame helicity am-
plitudes using projection operators takes the form

-~ (p}) (p5)
F=@ip)=t 3 AL IAZ (—p)
ey 2
Pip3p1py) \ (pY) Py
X@raian, A, (PIAZ(—p) .

(2.2)

Here AP)(p) is a projection operator with p=+ denot-
ing sign of energy and A denoting helicity eigenvalue.!?

AP (p)=AP(p)=\(p) , (2.3)

where A are projection operators to positive and negative
energy

A¥(p)=[+(E,y°—y-p)+m]/(2m) (2.42)
and 2./, is a helicity projection operator
Ss1(P)=7(127%) (2.4b)

with E,= pi+m? s=(v% —E,y-€)/m, and €=p/p.
Obviously c.m. matrix elements of (2.2) reproduce (2.1).
In other frames Dirac spinor matrix elements of (2.2) au-
tomatically give rise to Wigner rotation effects. One
drawback to (2.2) is that there is no evident connection to
the Fermi covariants which have been found useful in pre-
vious work. Another is that matrix elements of (2.2) in
other than the c.m. frame are not simple.

Proceeding schematically, we eliminate positive energy
projection operators by use of

AP =3, —A. (2.5)
The term in (2.2) which has four A projectors therefore
expands to 16 terms. A general form for F after all A+
projectors have been eliminated has 16 terms which we
choose to divide into four classes each containing four
subclasses as follows:

F=Fl4 AT F24F3A T+ AFAA) (2.6)
ﬁi=j:-i1+A(2;—)f,-i2+l’}i3A<2—)+A2,—)ﬁ-mA(z—) ,
i=1to4. (2.7

In this scheme, the first superscript of P is the class
index, i =1 to 4, which refers to the associated negative
energy projectors for particle 1 and the second superscript
of FY is the subclass index, j =1 to 4, which refers to the
associated negative energy projectors for particle 2. The
full expansion is

ﬁ=1’;‘v11+A(2,—)ﬁ12+ﬁ13A(2—)+A(2,—)1’$14A(2—)
+A(1,—)[ﬁ21+A(2,—)I’;‘-22+ﬁ23A(2—)+A(27)ﬁ-24A(2—-)]
+[ﬁ~31+A(2,—)1’;\~32+}’:-33A(2—)+A(2,—)F‘34A(2—->]A(1-)
FATFNASTF 2L FOAT AR “A AL
(2.8)

Subclass 2, 3, and 4 contributions involve A5~ projection
operators which tend to be suppressed when it comes to
calculating the nucleon-nucleus optical potential. Thus
the most important parts of (2.8) are subclass 1, namely
FUF2 F3 oand F4. Contributions which have no
A=) projectors, namely F11, are clearly separated from
all others. Thus the positive energy matrix elements in-
volve just class 1; subclass 1 and the 15 other classes and
subclasses define the remainder which cannot be fixed
from knowledge of positive energy scattering data.

Rather than using helicity projectors 3, each F¥ in
(2.8) is expanded in terms of a set of nine covariants as
follows:

AN s 9 e
FV= 2 Flx,, (2.9)
n=1
where
‘z/ln={S:V’T’P'A’YZ'QI,YI'QZsPYZ'QbP'}’l'QZ} (2.10)

and
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Ot =(p1+p1 ¥*/(2m), Q8 =(ps+p>2/(2m) . (2.11)

For example, %" |=S and % 9y=Py,'Q,. The Fermi co-
variants used are S =1, V=y,'y,, T =040y, P =y3v3,
and A =P-V. The remaining four, ¥ ¢ to ¥4, have been
selected taking into account the equivalence theorems of
|

1669

Scadron and Jones.'®
A symmetrized expansion is also employed as follows:

~ 5
Fi=Qip)~'S fik,, (2.12)

n=1

where

— ~ - o
kn={S—8,7(T+T),—A+A,V+V,P—P,y,01—71"02,72Q1 +71'C2,P(¥2°Q1 —71°Q2),P(¥2° Q1 +71°Q))} .

Amplitudes FY are related to f¥ for n =1 to 5 by a Fierz
matrix as follows (omitting superscripts ij):

F, 3 6 —4 4 1 ||N
F, -1 0 =2 2 1 ||fa
Fy|=@ip)-'|—1 1 0 o —Li||fl. @
F, -1 6 4 —4 3 ||fs
Fs , 1 0 —6 —2 —1]|fs

See Refs. 7 and 14 for more detailed discussion of the
Fierz transformation. Additional relations needed to
complete the connection are

Fs=Q2ip)~"(f1+f6) ,
Fy=(2ip)~(f7—fs) ,

Fy=(2ip)~(fo+fs) »
Fy=(2ip)~Y(fo—f3) -

Only eight of the covariants in (2.10) or (2.13) are linearly
independent. Therefore (2.9) and (2.12) allow for
16X 8=128 independent contributions to F consistent
with parity invariance. The redundant covariant changes
from one class to the next. This complication is easily
dealt with by using the overcomplete set of nine covari-
ants supplemented by simple constraint conditions.

(2.15)

(2.13)

Table I shows the constraint conditions used to elim-
inate the redundant covariant for each class and subclass.
As shown by Scadron and Jones,!® k;=y,-Q; +7,'Q, is
redundant for (4+ +,+ + ) matrix elements where only
positive energy states enter. For matrix elements such as
(— 4,4+ +)or (+ —,+ +) where one negative energy
state is involved, we find that the set formed by omitting
ks is again linearly independent. Thus in these cases the
constraint is f¥=0, or from (2.15), F¥=—F4. The
remaining cases in Table I can be deduced from their rela-
tion to the two just discussed. Using u'~'=y%u*) to
transform negative energy states to positive energy ones,
observe that in the fourth row of Table I, the transforma-
tion yields

(—+ [k | =) =—(++ | Vika¥i| ++) .

Since the redundant covariant in (+ +,+ -+ ) states is
k4, we need to find which covariant is transformed into
+k,. Inspection of (2.10) shows that y3ke¢yi=k; and
thus k¢ is the redundant covariant for (— + ,— + ) ma-
trix elements and we choose f¢! =0 as the appropriate
constraint. Similar reasoning produces the rest of Table I.

Linear independence of the resulting sets of eight co-
variants has been verified explicitly by computing a
nonzero determinant for the matrix which relates the
eight linearly independent f;’ to the corresponding set of
eight parity conserving helicity amplitudes.

" TABLE 1. Redundant covariants and amplitudes.

Class Subclass Redundant Constraint Constraint
i j P P2 P1 P2 covariant in Eq. (2.12) in Eq. (2.9)
1 1 + + + + ks o Fll— _Flt
2 1 -+ + + ks = Fg=—F7
3 1 ++ -+ ks fi'= Fi=—F3
4 1 -+ -+ ke ¢ =0 F¢'=—F7%
1 2 + — + + ks fi= F¢=—F}
2 2 - -+ + ko =0 Fy=—F%
3 2 + - =+ ks 2=0 FP=F%
4 2 ===+ ks fé€=0 F@&=F%

1 3 ++ + - ks y=0 F@=—F7
2 3 -+ + - ks fE = F@=F§
3 3 + + - = kg 3=0 F=—F3
4 3 -+ - - ko &= F@=F%p
1 4 + -+ - ke o= Fg'=F7'
2 4 - — - ks ¥= F@¥=F%
3 4 + - - - ke 8t=0 F=F3
4 4 - - — - ks fit= F¢'=—F7
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III. SYMMETRY CONSIDERATIONS

Symmetries other than parity invariance exist in the
NN system and these significantly reduce the number of
independent amplitudes. In this section, we assume that
the nucleon-nucleon dynamics is governed by a charge
symmetric, time-reversal invariant Lagrangian. Consider
first the amplitude for scattering of identical particles,
e.g., pp scattering or nn scattering. Figure 1(a) shows the
basic process for pp scattering. When momenta and spins
of particles 1 and 2 are simultaneously interchanged, the
diagram must have the same value since it is exactly the
same process. Due to charge symmetry, the same state-
ment holds for pn and np scattering.!” Thus

(pn|F|pn)={(np|F|np)

holds if F=e '"Fe'™, which is the condition of
charge symmetry. This means that Figs. 1(b) and (c) are
governed by matrix elements of the same F (which, of
course, is different from the F which governs pp and nn
collisions). Simultaneously interchanging spins and mo-
menta of particles 1 and 2 in Fig. 1(c) produces exactly
the same process as is described by Fig. 1(b). Therefore it
is clear that under such an interchange, the nucleon-
nucleon amplitude is invariant, and this statement holds
for fully-off-shell particles since it derives from the under-
lying Lagrangian.  Note that when Coulomb interactions
are included, pp scattering still has the stated symmetry.

For the most general case, the invariant amplitudes, F,/
or f,/, can depend on all the available Lorentz scalars.
These are

s1=(p1+p2)’=(p1+p2),

s2=(p1—p1’=(p2—p>)*,

s3=(p1—p3 =1 —p2)?,

ss=7(pi+p3),

ss=7(12+p3%),

s6=%(P%‘—P%) ’
and

s7=3(p1*—p3?) .
Under the interchange of momenta of particles 1 and 2, s,
to 55 are even but s¢ and s, are odd. The meaning of this
interchange is somewhat clarified if the momenta are
written as py=+P +p, p=+P—p, pi=+5P+p’, and
)23 =%P —p'. Then s¢=p'P and s;=p’'P. In the c.m.
frame where P*=(1/5,,0), it follows that s¢ and s; are
directly proportional to the time components of relative
momenta, i.e., p® and p®’ . In general, charge symmetry
involves relations between invariant amplitudes with re-
versed signs of p and p’. For kinematic conditions such
that s¢=s7=0, i.e.,, when p-P =p’-P =0, charge symme-
try results in direct equalities between invariant ampli-
tudes with all arguments equal. This includes the interest-

ing case when all particles are on mass shell. '
The five Fermi covariants are unchanged if the spin la-

bels and momenta of particles 1 and 2 are interchanged .

P p'
p | |
p A2 ‘2 b
Py Py
(a)
p p'
p | |
X 1
n 2 )‘2 n
Py P5
(b)
n Pi Py n
A () Ny
P X2 X2 b
P, P,

(c)
FIG. 1. Diagrams for proton-proton, proton-neutron, and
neutron-proton scattering.

simultaneously. Covariants %' to % 9 and negative ener-
gy projection operators become interchanged:

‘9//'6(_)‘%/7 ’

.Ws(—hyg )

A (p)AS (p)
and

AT (PDAST(pS) .

Consequently, charge symmetry requires the symmetry
with respect to interchange of class and subclass super-
scripts as follows:

FI=F} or fi=fF n=1t05,

F{=F{ fe=—r

F'J:Fé’ or f5/=f1;' (3.1)
F{=F{ f=—f%

F{=F{| * |r§=rf

where i and j refer to any class and subclass, respectively.
As noted above, these equalities are to be interpreted as re-
lations between amplitudes with reversed signs of p and
p’, or as direct equalities if p-P =p’-P =0. Charge sym-
metry reduces by half the 96 independent amplitudes for
the 12 cases where i=£j. For i =j, Eqgs. (3.1) show that f7
to f5, f7, and fg are even under simultaneous reversal of
p and p’, while f§ and f§ are odd under the same
transformation. In the general case, 48 new relations are
thereby found leaving 80 amplitudes independent, for a
given isospin, due to parity invariance and charge symme-
try. Moreover when p-P=p’-P =0, an additional eight
relations hold as follows:

F=fl=fP=fP=fP=fP=rt=rt=0. 62

Coilsequently the number of independent amplitudes for a
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given isospin is 72 when p-P=p'-P =0.

In what follows, we consider the representation of Egs.
(2.12) and (2.13) since it is more convenient for discussion
of symmetries. Time-reversal invariance requires that the
amplitude for scattering from initial momenta p,,p, to fi-
nal momenta pj,p; be equal to the amplitude for scatter-
ing from initial momenta —p},—p; to final momenta
—p1,—p;z- Time components of initial and final momen-
ta are left unchanged. Upon time reversal, the Lorentz
scalars s; to s3 are unchanged, s, and ss are inter-
changed, and s¢ and s, are interchanged. Stated in terms
of the relative momenta, time reversal interchanges p and
p’. For the c.m. frame, the special kinematic condition
pP=p'*P=0 and p?=p'? results in s¢=s7 and s4=ss.
In this case, time-reversal invariance leads to direct equal-
ities between invariant amplitudes at the same kinematic
point. This includes the interesting case when all particles
are on mass shell. Explicit dependence on the momenta
occurs in F due to A~ projectors and due to covariants
H g to H g (or kg to ko). A formal statement of time-
reversal invariance is

¥p'p3)E(p1py—pips W(p1p2)

=B, F(F 1.5 —PL.BWE LB, (3.3)
where ¥(51,p2)=7(p;,p;). Here p;=(p{,—p;) has re-
versed space component compared with p; and .7 is the
antiunitary time-reversal operator. Expressed in terms of
Dirac operators, the requirement is

YT E B 1,5 —F1.52)0T Y3
=ﬁ'(p1,p2—>p'1,p’2) (3.4)

where'? .7 =TK with T =(iyly})iy}y3) and K is the
complex conjugation operator. Covariants ¥"; to %" (or
k, to k) are time reversal invariant in the sense of (3.4).
Covariants ¥ and % ¢ (or kg and kg) are odd under
time reversal. Negative energy projectors are invariant in
the sense that

PTIA N —p) N7~ 10=A"p), (i=1,2), (3.5

however, projectors to the right in ﬁ'(p' 1,0 2—D1,D2) are
moved to the left due to Hermitian conjugation. Inspec-
‘tion of (2.8) shows that time-reversal invariance relates
amplitudes which transform into one another when A'~
projectors on the right are moved to the left and vice ver-
sa. Specifically, we find

=z,
==,
=z,
=2,
21=i 31 s
Y " I (3.6)
=13,

P=1£2,
fB=21f3,
fR=xf3,
A=t

where the signis + for n =1to 7 and — for n =8 and 9
(since kg and kg are odd). These are equalities between
amplitudes whose arguments are related by interchange of
initial and final relative momenta, p<>p’. The first four
condmons, 1n eneral spccnfy symmetry properties. For
example, f,°, fn'» f,fl, and f}* are even (n =1to 7) or odd
(n =8 and 9) under interchange of p and p’. The remain-
ing conditions in (3.6) reduce the number of independent
amplitudes to the extent that they are not redundant w1th
charge symmetry conditions. For example, fAogfH

means that eight amplltudes, f x> can be determined from
knowledge of the f;' amplitudes, which for sake of illus-
tration, we take to be independent. Equation (3. l) fixes
eight f!* amplitudes also from knowledge of {‘ and
moreover fixes eight f,2 amplitudes once the f2' ampli-
tudes are determmed Therefore the time-reversal relation

12— +f1 is redundant when charge symmetry holds.
Slmllarly the time-reversal relation f2*=+f3? is redun-
dant but does contam symmetry information for p<p’.
However, f22=+f3 prov1des elght new relatlons From
the two conditions fi?=+f2* and f¥=+f>3*, another
eight new relations are obtained when charge symmetry
holds. In all, we find 24 new relations and these reduce
the number of independent amplitudes for the most gen-
eral case to 56 for each isospin due to parity invariance,
charge symmetry, and time-reversal invariance.

Twelve additional relations hold when p-P=p’-P=0
and p%?=p’?, i.e.,, when particles 1 and 2 are symmetrical-
ly off mass shell by the same amount in initial and final
states, or are all on mass shell. Stated more simply, the
additional symmetry relations hold when
pl—-pz—p’l =p52. Eight of these addltlonal relatlons
are glven in Eq. (3.2). Two more are f2=f3* and
fB=_f32 % whlch follow from (3.6) after elimination of
parts of f23=+£32 which are redundant with (3.1). How-
ever, when (3.2) holds, two relations from f22=+f3,
which were previously counted as independent, become
redundant. Finally, the cases i,j =1,4 from (3.6) lead to
eight relations,

fi'=ri'=rst=r*=0,
s=rot=r3'=ri'=

(3.7

but four of these relations are redundant when charge
symmetry holds. Consequently when p, =p2 =pi —pz ,
we have 12 additional relations and these reduce the num-
ber of independent amplitudes to 44 for a given isospin.
In particular when all particles are on mass shell, there are
44 independent amplitudes.

In class 1, subclass 1 (i.e., F!!), there are just five
nonzero amplitudes which are associated with the five
Fermi covariants when particles are on mass shell. These
are determined by positive energy matrix elements and
therefore they are exactly the same as defined in Refs 1,
6, and 7. The amplitudes of covariants % to %'y in F i

vanish due to symmetries which hold when
pi=pi=pi?=p) 2, Nonzero amplitudes corresponding
to covariants ¥ to %" are needed to describe off-mass-
shell or negative energy matrix elements of P
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The final symmetry property of interest is due to the
generalized Pauli principle,!! which may be expressed as

PySF=(—)F, (3.8)

where I is the isospin quantum number, O or 1, Py is the
operator for_exchange of four-momenta of the two nu-
cleons, and S is the Fierz operator for exchange of Dirac
spinor indices. In contrast with analyses of charge sym-
metry; in this case exchange of particles 1 and 2 takes
place on just one side of 7. Therefore only the final state
(or equlvalently, the 1n1t1a1 state) is affected. Exchange
operators take A1 into Az , and vice versa in (2.8). The
overall antisymmetry requires

fitmr—6)=(—=1"*1ff6), n=1t05.

Since covariants k¢ to ko are not purely even or odd
under particle exchange in the final state, it is not possible
to give a simple exchange symmetry for amplitudes f}/,
n=6 to 9. Note that for isj, different amplitudes ap-
pear on the left- and right-hand sides of (3.9). However,
charge symmetry relations (3.1) together with (3.9) pro-
duce simple symmetry properties of individual amplitudes
when p:P =p’:P=0:

fim—0)=(—)"tifig),

This concludes the formal considerations. Our general
representation (2.8) turns out to be a convenient Lorentz-
invariant representation of the NN amplitude with simple
symmetry properties. One-meson exchange contributions
take an' evident form in this representation and the physi-
cal positive energy matrix elements involve only the FU
term of the representation. The five nonzero components
of 1! on mass shell are identical to the usual representa-
tions given in Sec. II of Ref. 7 and shown there to be sim-
ply expressed in terms of the c.m. frame helicity ampli-
tudes for positive energy states. In order to determine the
other amplitudes, it is necessary to relate them to c.m.
frame helicity amplitudes which involve negative energy
states.

Many other equivalent representations are obviously
possible; for example, there is one similar to (2.8) but with
all A'~) projectors eliminated in favor of A‘*’ projectors.
Another is obtained by using A‘*) projectors in place of

(3.9

n=1toS5. (3.10

J. A. TJON AND S. J. WALLACE
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unit operators in (2.8) so that F 1 would have four associ-
ated A'*) projectors, and so on. Invariant amplitudes for
all such representations can be formed from linear com-
binations of the invariant amplitudes as defined in (2.8)
and (2.9).

IV. RELATION OF INVARIANT AMPLITUDES
TO c.m. FRAME HELICITY AMPLITUDES

Although symmetries and constraints greatly reduce the
number of independent amplitudes needed on shell, we
consider the full set of 128 amplitudes for a given isospin
consistent with parity invariance. The object is to deter-
mine invariant amplitudes f,/ appropriate to Eq. (2.12)

from knowledge of parity-conserving helicity amplitudes,
(
= a0 w

in the c.m. frame. Here a, denotes a kinematic factor to
be divided out of the helicity amplitudes. Table I defines
the correspondence between energy labels pipspip, and
class and subclass superscripts ij of ¢;/. Notice that i and
j do not have the same meaning as in Eq. (2.8). For ex-
ample, ¢! involves only positive energy states while FU
has matrix elements for both positive and negative energy
states. Table II defines the correspondence between helici-
ty labels AjA3A A, for parity-conserving transitions'' and
the subscript n of ¢;; and defines the kinematic factors a,
which are divided out in definitions of ¢;/. Helicity am-
plitudes @,/ are free of kinematic singularities at 6=0 or
.

When Eq. (2.12) for F is used in Eq. (2.1), helicity ma-
trix elements of the covariants k,, must be evaluated.
The 8 X9 matrices so defined for a fixed i and j are

(py)

( (
Ve 7L (—pVemu (o 23

[ R—— (4
2y

Aim=1u A (phu_5 (—pl/a, ,

4.2)

where Tables I and II relate ij<—piprpp, and
n—AjA3AA, and define kinematic factors to be divided
out. The matrices 4,), are defined in Appendix A.

From Eq. (2.1) we see that the c.m. frame helicity am-
plitudes can be expressed in terms of invariant amplitudes

TABLE II. Parity conserving helicity transitions.

n 1 2 3 4
rat ‘11 11 11 1 1 1 1 1 1 1 1 11
A1A2, M2 73T TTHTToT TmTTT T —7TT
0 .
a, 1 1 cos? = —gin2?
) 2 2
T, 1 2 3 4
n 5 6 7 8
1At 11 1 1 11 11 1 1 11 11 11
AAg, Aide TTT T 7777 T TT —77:77
) 1 . . .
a, — 5 sinf 3 sinf 5sin@ —5sind
T, 8 7 6 5
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as follows (summation over m =1 to 9 is implied):

2 =Apmfm s (4.3)
A =Ap(fal S ) (4.4)
d=A (fal+f @4.5)
12_ 412 (p12 ) olly (4.6)
w=Amm f 4+ fm) @.7)
n=Amm (f S o+ ) s (4.8)
= A ot a2 i (4.9)
22.—A22 (f +f + i+ fm) s (4.10)
P A R A 4.11)
,2,3_,423 (f T Ny Sy S I 4.12)
Y= A (ol ) (4.13)
,,=A3:.<f o fa S
Ll A g N 4.14)
P A (fe ot o o
I A Fm S s (4.15)
n=Ammf + o+ S+ S
I+ fm A+ fm+fm) s (4.16)
n=Anm fm +Fm + S +Sm
R b N Ry A N (4.17)
oat=Am é éf,';{ . 4.18)

i=1j=1

Omitting the constrained amplitude f3' =0 (see Table
I), (4.3) defines a system of eight linear equatlons which
may be solved for the eight unconstrained f,,| amplitudes.
Once the £} are fixed, Eqs. (4.4) to (4.7) together with ap-
propnate constramts from Table I can be solved to deter-
mine f2!, £, f12, and £} amplitudes. Given these Te-
sults, Eqs (4 8) to (4 13) and Table I determine f!, f14,
F2 f8) £33 and f22 amplitudes, and so on until all am-
phtudes are determined. Finally when the fY are avail-
able, the F,, appropriate to Eq. (2.9) can be determined
using (2.14) and (2.15).

For each i and j, an 8 X8 matrix is inverted to deter-
mine eight unconstraiped f¥ from eight parity conserving
helicity amplitudes ¢}/ and previously determined f}/.
have verified that the 4 matrices are nonsingular, and
that for on-shell physical states the f,\! determined by ma-
trix inversion agree with the analytic formulas given in
Ref. 7. The matrix inversion method is also applicable off
shell and therefore is the more general method. When
one-boson exchange helicity amplitudes are used as input,
the correct invariant amplitudes are obtained as output.

Symmetries discussed in Sec. III are present in the in-
put helicity amplitudes and therefore they must be au-
tomatically obtained from solving the equations given
above We have verified that the expected symmetries for

;] are obtained and this provides a very useful check of

the analysis Time-reversal symmetry for helicity ampli-
tudes ¢} can be analyzed in a manner similar to the dis-
cussion above for fY. Due to Hermitian conjugation,
class and subclass superscripts are interchanged under
time reversal and also initial and final helicities are inter-
changed. Since parity invariance guarantees the helicity
amplitudes are unchanged by sign reversal of all helicities,
the net outcome of time-reversal invariance can be ex-
pressed as

5{=¢]¥‘n ’
where n and Tn subscripts are as shown in Table II. For
example, in i =j cases, ¢s=¢; and ¢¢=ds.

V. HELICITY AMPLITUDE ANALYSIS

Relativistic calculations for NN scattering have been
performed recently in Refs. 8 and 9. A partial wave ex-
pansion for helicity amplitudes is employed and coupled
integral equations of the Bethe-Salpeter—type are solved
numerically to obtain t-matrix elements. By inclusion of
inelastic couplings NN<>NA and NN«AA, the one-boson
exchange model employed in these analyses has been
found to yield reasonable phase shifts and inelasticity pa-
rameters up to 1 GeV. The model assumes pseudovector
7N coupling.

In the above calculations, negative energy spinor states
were neglected. These states are not very influential for
the physical amplitudes when pseudovector #N coupling
is used.!® In the present work, the model of Ref. 8 has
been extended to also include negative energy intermediate
states in the NN channel. A quasipotential approach is
used which gives results for the phase shifts comparable
to those of the Bethe-Salpeter equations. By summation
of the calculated partial wave z-matrix elements, we are
able to determine a complete set of helicity amplitudes for
positive and negative energy spinor states with all ampli-
tudes derived from one consistent set of integral equations
and meson-baryon couplings. Thus the NN dynamics
provides predictions for the helicity amplitudes involving
negative energy states within a theoretical model which
successfully describes NN phase shifts and inelasticities.
Using the methods of Sec. IV, the results can be directly
transformed into invariant amplitudes.

We now review the helicity amplitude formalism to the
extent necessary to describe our analysis. In this section,
spinors defined by Kubis!! are employed. They differ
from the conventions of Bjorken and Drell'? in the choice
of the negative energy spinors. Helicity amplitudes ¢}/ de-
fined by Eq. (4.1) possess partial wave expansions (omit-
ting ij superscripts),

=3 (2J +1)¢7d5(0)/ay, (5.1)
J

where A=A, —A,, A=A} —Aj, djy are the usual rotation
matrices and a, is the divisor which eliminates kinemati-
cal singularities of the rotation matrices. The helicity am-
plitudes are calculated using conventions of Kubis for
negative energy spinors. Once they are obtained, a simple
transformation, as given in Appendix B, is used to obtain
the helicity amplitudes using the conventions of Bjorken
and Drell for negative energy spinors. It is the latter set
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which can be used to determine invariant amplitudes us-
ing the methods of Sec. IV.

To exhibit the symmetries of the generalized Pauli prin-
ciple for off-shell states,!! it is convenient to use sym-
metrized states in p spin made up of products of single-
particle states as follows:

¢tIA2=u(l+)u(2+) ’
¢;llzéug~)ua—) >
(5.2)
Y0, =27 2P b g
¢¢;~1A2=2~1/2(u(1+)u(2_) ___u(l—)u(2+)) .
) (py) b)) (py) . .
Here u;" su;ﬁ’ (p) and u;? =u fiz(——p) are single-

particle states. Under interchange p;<>p,, the o state is

odd while +, —, and e states are even. These states
J

é:(p°,p,JLSp'p)= ;{p°p,JL'S'p’ | V| OpJLSp),

1 3 «© Q| T o~ rg o~
+—3 3 [ da.p°p.JL'S'p'| V| 0q,IL8p); Q;(a,)8;(0,q.IL8pp) ,

=135

where

6:(p%p,JL'S'p'p)=2m) " 'pp;(p°,p,JL'S'p’ | ¢ | 0,p,JLSp) .

Here p, p’, and g refer to + , —, e, or o in the basis set of
(5.2). We follow the notation of Refs. 8 and 9 where i and
Jj denote the channel: 1is NN, 2 is NA, and 3 is AA. For
the NA and AA states we have only used (p',p)=(+,+)
and their couplings to the negative energy NN states are
neglected. The variable p is the relative momentum in the
c.m. frame and p is its on-shell value. The time com-
ponent of relative four-momentum, p° is zero in the
quasipotential approximation we have used and this elim-
inates all states of the full Bethe-Salpeter analysis which
are odd in p°. Also with this choice of p°, the generalized
Pauli principle is automatically satisfied by the integral
equations.

For a fixed J value, Eq. (5.3) consists of three separate
sets of integral equations. Each set can be characterized
by the positive energy physical states occurring in the set,
i.e., one set contains the physical singlet spin state, anoth-
er contains the uncoupled triplet state, and a third con-
tains the coupled triplet states. Appendix C presents a
summary of the NN states which are coupled and the cor-
responding 7-matrix elements which are obtained by solv-
ing (5.3).

The partial wave helicity amplitudes ¢, from Eq. (5.1)
can now be determined from the calculated z-matrix ele-
ments based on Eq. (5.3). The analysis is based on helicity
states of definite total angular momentum and spatial par-

ity, P=r(—)’ ~! where » = +1. These are given by
| oA A =272 | A A ) +7 | T — A —Ay)) .
‘ (5.5)
States with » = — 1 must have orbital angular momentum

L =J and states with » =41 must have L =J+1. Ma-
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comprise a singlet and triplet with respect to total p spin.

Since negative energy Dirac states have odd intrinsic
parity, ¢ and 9° each have intrinsic parity opposite to
that of ¥+ and ¢¥~. Consequently there are two kinds of
matrix elements which conserve overall parity. The first
group, denoted by T, involves p-spin transitions in which
intrinsic and spatial parity are conserved, namely,
(p',p)=( +,+ )’ (_’_), ( + )_‘)’ (“" + ); (e’e)’ (eaO)»
(0,e), and (0,0). The second group, denoted by U, in-
volves transitions in which intrinsic parity and spatial
parity change, namely, (p',p)=(+,e), (+,0), (—,e),
(—,0),(e,+), (0,+), (e,—~), and (0,—).

Using the basis set of states (5.2), the Bethe-Salpeter
equations can be partial wave decomposed to yield
coupled-channel integral equations in two continuous
variables. When the quasipotential approximation is used,
these equations become one-variable integral equations.
They are of the form

(5.3)
(5.4)
—
trix elements in this basis are defined for two cases:
<J’r’))"'1A'12 I ¢ I J’r’)“l;‘Z)
(MAS | T M) if r=r,
(5.6)

= AR | U m) | My i riser

where r'=r when intrinsic parity is conserved and r’'s£r
when intrinsic parity changes. There are eight cases of in-
terest in (5.6) when intrinsic parity is conserved as follows
(for simplicity we write | ++) for A;=+~, A=+,
etc.):

T{=(++|TL | ++)=¢{—¢7,
Ti=(+—|TL | +—)=¢3—¢1,
Te={++|TL | +—)=¢i—¢%,

T3={+—|TL | ++)=¢7—93,
(5.7)
Ty={(++|T, | ++)=¢{+¢37,

Ti=(+—|Ti|+=)=¢i+i,

Ts=(++|TL | +—)=¢5+¢%,

Ti=(+—|T, | ++)=¢7+41,
yvh(e;rc; )¢i are partial wave helicity amplitudes appearing
in (5.1),

$n=_T3AiA3 |6 |T3010,) (5.8)

with index n denoting (AjA3,A;A;) values as in Table II.
Similarly evaluating helicity matrix elements (5.6) for the
case when intrinsic parity changes leads to
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Ul=(++ | U+, =) | ++)=¢]—¢],
Uf=(++ | UN—,+) | ++)=0]{+¢7,
Us={++ | UN(—,+)| + =) =¢I+¢{,
Ui=(+—|UN+,=) | ++)=¢7+6% ,
(5.9
U= — | U7, =) |+ =) =¢5—¢1,
Ui={+— U=, +)| +—)=¢}+41,
Us={++ | UN(+,—) | + =) =¢5—¢¢,
Uf=(+— U=, +)| ++)=¢7—¢3 .
Evidently the ¢, can be found by inversion of (5.7) or
(5.9) as follows:
I=+(T{+T3),
$r=7(T3—T7),
$1=7(T3+T%),
$i=3(T1—T3),

(5.10)

#i=+(ri+T)) ,

¢l=Ti-T),

¢1=5(T7+T3),

$i=75(Ti—T7).
Equations (5.10) hold when intrinsic parity is conserved;
substxtunon of UJ for T produces the corresponding re-
sults for ¢ when 1ntnns1c parity changes.

Coefficients T possess a close relation to the f~matrix
elements in the LSJ basis which are obtained by solving
the quasipotential equation. We find

T{=T,,
T3=ciTyy_1+ci1Tyr
—cser Ty 1,041+ Tor41,0-1) 5
T}=T,,,
T{= c}+th,J—1+C}Tt,J+1

+eser Ty i1+ Terpr,0-1) »
(5.11)

Ti=ciTyy_1,541—7+1T4s 41,01
+erer Ty 1—Try41) s

Tg:’“Tst ’

T9= —ci 1 Tos10e1+¢i sy
+erer iy 1~Tor41) s

Ti=—T, .

Similarly for the cases where spatial parity changes,

J
Ui=c;Uyy_1—¢c5 41U 541 »

J
Us=c;Up s 1—Cr4+1Us 415

7
Us=—c; 1 Ups_1,0—csUsyi1,0 »

7
Ui=—c;11Ugs1—ciUssg41

; (5.12)
Us=c;1Ugy_1+¢csUg 415

7
Us=—c;Upy_1,0+¢c5+1Us41,0 »

J
Ur=c;1Usy_1—ciUs 415

J
Ug=—c;Upss_1—cs+1Ussr41»

where ¢;=[J/(2J +1)]'%, ¢y 1=[(J+1)/(2J +1)]'/
are Clebsch-Gordan coefficients and subscripts refer to
singlet (s), triplet (¢), singlet-triplet transitions (st), and
triplet-singlet transitions (#s).

In order to implement Eq. (5.1) for a given i/ and j, one
must obtain f-matrix elements for the corresponding p
values as defined in Table I. Appendix C shows how this
is done and gives some examples. Given the quasipoten-
tial t-matrix elements T and U, Eqgs. (5.10) to (5.12) are
used to obtain ¢ partial wave amplitudes and Eq. (5.1)
determines the helicity amplitudes in the basis of Kubis
spinors. Appendix B shows how to obtain the helicity
amplitudes in the basis of Bjorken and Drell spinors. Fi-
nally, the invariant amplitudes are determined using the
methods of Sec. IV.

VI. CONCLUDING REMARKS

A general Lorentz-invariant representation of nucleon-
nucleon scattering amplitudes is derived in this paper. All
the necessary linkage is developed to determine the 128 in-
variant amplitudes of the representation from partial
wave t-matrix elements based on solution of a quasipoten-
tial equation.® Due to charge symmetry and time-reversal
invariance, the number of independent amplitudes reduces
to 56 for a glven 1sosp1n and th1s number further reduces
to 44 when p3=p3=pi?=p,2. The formalism developed
in this work provides the basis for the first calculations of
a complete set of Lorentz-invariant NN amplitudes.

This formalism has been developed in order to answer
some basic questions in relativistic nuclear physics. Use
of a Dirac equation optical potential in nuclear scattering
intrinsically involves introduction of virtual NN pair ef-
fects.® In order to predict these effects, one needs the ful-
ly off-shell NN scattering amplitude, in particular, those
components which are not determined in positive energy
scattering experiments. Meson theory provides the only
existing model of relativistic NN scattering dynamics
which (a) describes the observations over a wide energy re-
gion, and (b) provides theoretical predictions for the nega-
tive energy matrix elements. Therefore it has become a
central question whether the Dirac successes are compati-
ble with the underlying meson-baryon dynamics conven-
tionally assumed as the theoretical basis for the nuclear
force. References 7 and 10 utilize the methods and results
of this paper to test the meson theoretical basis for nu-
clear scattering of protons.
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APPENDIX A: 4 MATRIX

The matrix 4 defined by (4.2) to relate Lorentz covari-
ants to ‘helicity amplitudes is developed in detail.
Throughout this appendix, we suppress superscripts ij
which specify the energy labels pjpjpip; according to
Table I. A device introduced by Goldberger, Grisaru,
MacDowell, and Wong'* (GGMW) is used to simplify the
task by eliminating covariants V' +¥ and T +T as fol-
lows:

V+V=S+S§—-P—F,
+(T+T)=S+S5+P+P.

(A1)
(A2)

The factor 5 in (A2) accounts for the difference between
our tensor covariants and those of GGMW. Equation

(2.12) for F¥ can be rewritten using these relations to ob-
tain the form,

F=g:S+8,5+8:P+8.P+gs(A —A)+geH

+81H 1+83 K s+89H 9 (A3)

where

si=fi+fo+f4,

g=—f1+f2+f4,

g&=fs+f2—f4,

8a=—fs+fa—fa,

gs=—/3, (A4)

86=f1+f6 >

g1=f1—FSs >

g8s=fo+/fs

gy=fo—fs -
In the cm. frame, p;=3P4p, pi=+P+p,

pr=+P—p, and p5= +P —p’, where P is the total
momentum while p and p' are relative momenta:

Pt=(W,0) ,

p*=0p°%p),
and

p'h=p'°p’) .

Therefore the covariants % and ¥, take the forms

(AS5)
(A6)

K=y, (P+p+p')/(2m),
K 1=y (P—p—p')/(2m) .

These may be rewritten in terms of on-mass-shell momen-
ta p4 =(E,,tp) and p’ =(E,, =p) as follows:
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He=vp+—v2(p_+p_)/(2m), (A7)
Hr=yp_—y1"(p,+p%)/2m), (A8)

where
W +E,+E,+(p°+p'°)
pi= Ld L4 p P . (Ag)

2m

Matrix elements of the covariants as defined by (4.2) can
be simplified by use of the Dirac equations for initial
States,

(py) (py)
Yipsur’ (P)=pymuy’(p), (A10)

Yap—u T (—p)=pymu s (—p) , (A11)
where p;=1+ and p,=+ tell whether positive or negative
energy states are involved. Replace p. and p by p% and
p’' in (A10) and (A11) to obtain the Dirac equations for fi-
nal states. Consequently, for matrix elements involving
definite pip;p1p,, simplified forms of the covariants in the
c.m. frame are

Hs=VP+—P2 > (A12)

F71=vio——p1 (A13)
where

pi=3(p1+p}), (A14)

Pr=7(p2+p3) . (A15)

Covariants %3 and ¥y are feducible by the same pro-
cedure. We find

K s=P(yp,+8p,), (A16)

H 9=P(yip_+8p), (A17)
where

8p1=1(pi—p1) , (A18)

8pr=73(p5—p2) 5 (A19)

and P=y}y3 is the usual pseudoscalar covariant. The
minus sign in (A18), for example, occurs because of the
anticommutation yfyl-p; =—vY1'P} ¥3 which must pre-
cede use of the Dirac equation in the final state.

Covariants 4 and 4 =S4 may also be simplified by
writing

A =A0—-01'02V0 ) (A20)
where

Ao=virYr3v3, (A21)

Vo= y?yg . (A22)

Consider now the helicity matrix elements as in Eq.

~ (4.2). Initial state Dirac spinors are given by'2 (p is paral-

lel to the 3 axis):
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(A23)

+)

u(_}‘(—‘p)=NP X——A’

AP

AP

1

where p=p /(E,+m) and Np=[(Ep+m)/(2m)]V2. Fi-
nal state Dirac spinors take the same form except for re-
placement of p by p' and replacement of the Pauli spinor
X A by

X(0)=exp(—iod,0/2)X, .

u' S (—p)=Np

X_a

(A24)

Overlaps of Dirac spinors involve the following spin ma-
trix elements:

mmsx;ﬁ(e)xﬁamcos—g—+(w—x)sin§, (A25)
myy EXI'(Q)O'XA

= axk (Zl,él + l’éz )Sin% +27\.'é3 COS'g’

+8y_a [(’él +2ik’éz)cosg- —8 cos-g— (A26)

Helicity amplitudes as defined by Eq. (4.1) involve four
types of spin factors as follows:

Uy =m)~,1klm_ké_k2/a,, ,

Op=my,, ‘m_,, _Az/a,, ,

and the exchange counterparts,

u”=m’~i—lzm—7~il1/a” ,

,=m ‘m /a, .
" R I Y

Table III lists all relevant spin factors which arise in
the helicity matrix elements for ¢J. Kinematic factors a,
listed in the table have been divided out as in (4.1). Note
that all spin factors for n =3 to 8 are unity after division
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by a,. This is a reflection of the fact that spin matrix ele-
ments of the different covariants k,, used in this analysis
are all equal to a, in helicity amplitudes ¢,, » =3 to 8.
Thus division by a, removes zeros which would otherwise
be present in these amplitudes at 8=0 or 7 and the ¢} are
free of kinematic singularities. -

The eight parity conserving helicity amplitudes @7,
n =1 to 8, are found to be related to nine invariant ampli-
tudes g,J, m=1 to 9, of Eq. (A3) by a matrix B.
Suppressing superscripts ij this relation is

Mo

n= Bum8&m » (A27)
m=1
where the nine columns of matrix B are given by

B, 1=u,S (p1,p1,A1,A1)S (p3,02,A5,A,) (A28)
By =,8 (p},p2 A1, A)S (05,01, A5, A1) (A29)
B,3=u,P(p1,p1,A1, AP (p),00,A%,A5) , (A30)
B, 4=, P(p1,p2,A1,A)P(p3,p1,A2,A1) (A31)
Bys= up A(p1,p1,4,A0) 4 (p3,p2A5,4)

=0,V (p1,p1,A1,A0)V (03,02, A5,15)

— @y A(p1,p2,A1,A2) A (p2,p1,A2, A1)

+6n V(p1,p2,A1,A2)V (02,p1,A3,A1) (A32)

Bne=unS (p1,p1,A1,A)V (02,02,A2,A2)p 4 — By 1Ps
(A33)
By7=u, V(p1,p1,A1,A1)S (p3,p2,A2,3)p_ — By 1py
(A34)
Bps=unP(p1,p1,A1,A1) A4 (p2,02,A2,A2)p . +By38p;
(A35)
Bno=un A (p1,p1,A1,A1)P(p2,p2,A2,A2)p_+ By 18p; -
(A36)

Energy labels pip3pip, appearing in these expressions
specify the superscripts i and j of the ¢} and g;) as de-
fined in Table I. Functions S, P, ¥, and 4 appearing here
originate in Dirac matrix elements. They are defined by
the following equations:

TABLE IIlI. Kinematic factors associated with helicity matrix elements.

n 1 2 3 4 5 6 7 8
MAnAA:  IT, T T —T—1 T-TIT-T T-D—IT IDT-T TH—3T 1—TirT —I1hT¥
Ca, 1 1 cos¥(+6) sin%(+6) —+ sinf + sin + sin — 4 sind
Uy cos(+6) —sin%(+6) 1 1 1 1 1 1
@, —sin*($-0) cos¥(50) 1 1 1 1 1 1
On —1—sinX(46)  1+4cos¥+6) 1 1 1 1 1 1
A 14cosX($6)  —1—sin¥($6) 1 1 1 1 1 1
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TABLE IV. ¢ matrix including physical singlet state.
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TABLE V. ¢ matrix including physical uncoupled triplet state.

(s,J;4+)  (s,J,—) (t,J—1e) (t,J+1,e) (tJ,+) (,J,—) (,J—1,0) (t,J+1,0)
(S’J’+) [Ts++] Ts+— Us-tt-;—l Ust.;i‘l (t:J’+) [T'++] T‘+— U‘T]ﬁ]_] U‘:’:]’oj+l
(s,J,—) T+ T~ Usi—1 Ugf+1 (t,J,—) ya Y ru U U1
(t,J —1,e) Ugh - Usi-1 T3 T35 —1,041 (J—10) Uiy Uiy T3, T35 1741
(t,J +1,e) Uil U741 54101 T55 41 (J+1,0) Uity Ul T2 17— TS
= (p" )1y, (p) ’ ’ 9 9
z'(pulf (p)=Sp,p,A,Mmy, , (A37)
xf’, pluf’(p PP =3 Aumfm=3 BumEm - (A45)
& p" W ulf (p)=Pp',p, A, Amyy (A38) m=1 m=1
7L ulf (p)=V(p',p, A, Mmy , (A39)  Replacing the g, by Egs. (A4) and using the linear in-
, dependence of the f,,, (A45) fixes A4,,,. We find the fol-
= (p' ) 1\4,5.,0,, (p) _ ’ ' m»s nm
u(p Iy uil (p)=Ap’p, M, Mmysy, (A40)  1owing expressions for the nine columns of the A matrix:

where mj., is the Pauli spinor overlap given in (A25).
Convenient forms used in our calculations are

PN, N,(1—4N'App "),

if pp'=+1;

NpNp(—=2Np'p’—2App),

if pp'=—1

S(p,p, A, )= (A41)

NN, (=2Mp'p" +2App),
if pp'=+1;
P'NyN,(1—4NApp '),

if pp'=—1

P(p,p,M',A) = (A42)

NN, (1+4\'App”),
if pp'=+1;
N,N,(2M'p" +2Ap),
if pp'=—1

Vip,p, M, A)= (A43)

—N,N,(2M'p"+2Ap),
if pp'=+1;
~N,N,(14+-4\"App "),
[if pp'=—1.

A(pp, N, M) = (A44)

Matrix B defined in (A27) provides helicity matrix ele-
ments of the kinematic covariants which appear in (A3).
We are seeking a matrix A4 defined in (4.2) which provides
helicity matrix elements of the kinematic covariants k,
defined in (2.13). The matrix A4 is found by equating two
equivalent expressions for helicity amplitude ¢,,;

Ani=By1—B,,, (A46)
An2=B,1+Byy+By3+Byy , (A47)
Ay3=—B,s, (A48)
Apn4=By1+By2—By3—By,, (A49)
Aps=B,3—By4, (A50)
Ane=Bn6—By7, (A51)
An7=Bne+Bn7, (A52)
Aps=B,3—By, (A53)
Ay9=Byg+ B, . (A54)

This completes the specification of matrix 4 used in Eq.
(5.2) of this paper.

APPENDIX B: CONVERSION OF KUBIS
TO BJORKEN AND DRELL SPINORS

The spinors used in Sec. V are based on the paper of
Kubis!! as follows:

1
ul((-{)(p)=NK Zkﬁ XA, ’
(B1)
—2AP
ud (P=Nk | | |Xa,

where Nx=[(E,+m)/(2E,)1'/, p=p/(E,+m), and X;
represents the Pauli two-component spinor.

In the rest of the paper we use spinors as defined by
Bjorken and Drell'? as follows:

TABLE VI. ¢ matrix including physical coupled triplet states.

(¢, —1,4) (t,J+1,+) (t,J —1,—) (t,J +1,—) (s,J,e) (t,J,0)

(t,J —1,+) [T:HE] [THE 4] T T 1041 Ui, Ut 1y

(t,J+1,4+) [THY 1] [TH4] T T Udf UHs

(t,J—1,—) Tt Tiytira T T 1,041 Ugss1 U

(,J+1,—) Tirhir—1 T Tiii1,0-1 T+ Ui+ Ui%1,g
(s,J,e) Usb_ Us$i Ui U741 T 7
(t,J,0) USit Ul g —1 Ulis+1 TS T
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1 iy | E 172
ubl (P)=Np |, X2 » R-*=E 2 (B6)
(B2) '
B NG g |2
ugy (p)=Np | { |Xa R~ [—”—] : (B7)
E, |m
where NB=[(E +m)/(2m)]'/2. 1t follows that
u B}. —2 R (p,Mulf) (p) , (B3) Notice that partlcle 2 conventions for helicity amplitudes
ass1gn spinors u‘?}(—p). These take the same form as
where u$f)(p) except for replacement of X; by X _, and thus the
12 R matrix applies to particle 2 spinors without any sign
R++— E, (B4) changes. Consequently, helicity amplitudes ¢ defined as
“m ’ in (2.1) using the Bjorken-Drell basis can be calculated as
e follows from helicity amplitudes ¢ defined using the
Rt—=0, (BS)  Kubis basis:
|
¢A,’A”2;":2 (Bjorken)= 3 R”1(p",A1)R"7(p', A, )Rp‘a’(p,M)szaz(p,Kg)(ﬁk, v e " (Kubis) . (BS)

’ ’
01920102

APPENDIX C: -MATRIX ELEMENTS
BASED ON QUASIPOTENTIAL EQUATION

For a fixed J value, three types of couplings in the NN
sector arise in Eq. (5.3). For example, the physical singlet
state is coupled to three other states with negative energy
content as shown in Table IV. Singlet spin states are la-
beled (s,L,p) and similarly triplet spin states are labeled
(t,L,p), where L is the orbital angular momentum (L =J
or J+1), and p=+, —, e, or O is the p-spin index. Physi-
cal -matrix elements are enclosed in brackets. Table IV
shows the 4X4 t matrix for each J obtained by solving
the equations which include the physical singlet state.
Symbol T is used for matrix elements in which spatial
parity is conserved and symbol U is used for matrix ele-
ments in which spatial parity changes. In similar fashion,
physical uncoupled triplet states (L =J) are coupled to
three other states as shown in Table V and the corre-
sponding solutions of (5.3) yield a second 4X4 matrix.

TABLE VII. (p’,p) content of the helicity amplitudes ¢¥.

ij (p1p2,p1P2) (p'p)

11 (+ +,+ +) 2+ +)

22 (——,+ +) 2(— +)

33 (+ +,—-) 2(+ —)

44 (——,— =) 2(——)

41 (—+,—+) (ee)—(eo)—(oe)+(00)
32 (+ ——+) (ee)—(eo)+(0oe)—(00)
23 (—+,+ —) (ee)+(eo)—(oe)—(oo0)
14 (+ —,+ —) (ee)+(eo)+(oe)+(00)
21 (—+,+ +) V2[(e +)—(0 +)]

31 (+ +,—+) V2[(+e)—(+0)]

12 (+ —+ +) V2[(e +)+(0 +)]

13 (+ +,+—) V2[(+e)+(+0)]

42 (———+) V2[(—e)—(—0)]

43 (—+,——) V2[(e —)—(0 —)]
24 (——,+ =) V2[(—e)+(—0)]

34 (+ ———) V2[(e —)+(0 —)]

r
Physical coupled triplet states (L =J+1) are within a
group of six coupled states which yield the 6 X6 matrix
shown in Table VI. These three matrices contain all
t-matrix elements which are coupled to the positive ener-
gy states by the quasipotential equation. They are suffi-
cient to define the helicity amplitudes of interest in this
work.

However, it is necessary to link the p-spin states (p’,p)
which are used in the quasipotential ¢ matrices to the
ij<>(p1p3p1p2) labels used in helicity states ¢¥ as shown in
Table VII. This table takes into account the definitions of
p-spin states given in Egs. (5.2) and an overall factor 2
which originates in Pauli antisymmetrization (only states
consistent with the Pauli principle are to be used in the
partial wave expansion). The first eight entries of Table
VII involve p-spin transitions which conserve intrinsic
parity. For these cases, amplitudes ¢” are expanded in
terms of T coefficients in (p’,p) basis. Table VII shows
how to use Tables IV—VI to construct the T} using Egs.
(5.11). The last eight entnes are for cases where intrinsic
panty changes and then ¢¥ is obtained from correspond-
ing U; coefficients. Table VII then shows how to use
Tables IV—-VI to construct the U; using Egs. (5.12). For
example, consider that ¢3!, n =1 to 8, are to be deter-
mined. The fifth line of Table VII shows that ee and oo
superscripted elements of T from Tables IV—VI which
are needed in Eqgs. (5.11) enter with plus one multiplier
while the eo and oe superscripted elements of T which are
needed in Egs. (5.11) enter w1th a minus one multiplier.
Similarly for amplitudes ¢,, , e+ superscripted elements

TABLE VIII. ¢ matrix for group IV states.

(s,J,0) (t,J,e)
(s,J,0) T Ty
(t,J,e) TS Ty
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of U from Tables IV—VI which are needed in Eqgs. (5.12)
enter with plus V2 multiplier, while o + superscripted
elements enter with minus V2 multiplier. Proceeding in
this fashion, partial wave expansions for all helicity am-
plitudes @, for any i and j can be obtained. Any z-matrix
elements which occur in (5.11) or (5.12) that are not

present in the quasipotential results are taken to be zero.
This prescription omits coupled states (s,J,e¢) and (s,J,0)
which are completely decoupled from the physical states
as shown in Table VIII. Although one-meson exchange
contributions exist for these states, they have been neglect-
ed in our analysis.
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