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Spin observables in quasi-elastic proton-nucleus scattering near 1 GeV

Richard D. Smith
Lawrence Livermore National Laboratory, Universt ty of'California, Liuermore, California 94550

Stephen J. Wallace
Department ofPhysics and Astronomy, Uniuersity ofMaryland, College Park, Maryland 20742

(Received 20 May 1985}

The spin dependence of quasi-elastic proton-nucleus scattering is studied using Glauber s eikonal

multiple scattering theory, which is extended to include multiple knockout collisions as well as the
full spin dependence of the NN amplitudes. Calculations of the cross section d'or/dQdp and spin
observables DAN, DLL, DSS, DSL, DLS, Ay are presented and compared to data for d o/dQdp
and Ay from inclusive (p, p'} experiments on ' C at Tl,b ——800 MeV. The main feature seen is a
drop in the spin observables in the kinematic region where two nucleon knockout dominates the
cross section. As an initial study of the contribution of quasi-free 6 production to the inclusive

cross section, multiple- scattering theory is used to normalize a plane-wave impulse approximation
calculation of d o./dQdp for p+ ' C~p+m+' C .

I. INTRODUCTION

Many aspects of high energy proton-nucleus scattering
have been understood using multiple scattering theories,
where the interaction with the nucleus is described as a
succession of nearly free or "quasi-free" nucleon-nucleon
collisions. Such a description requires that the target nu-
cleons be weakly bound compared to the incident energy.
The in-medium two-body amplitudes can then be replaced
by the free on-shell NN amplitudes determined from ex-
periment. This procedure has been successfully applied to
the calculation of elastic cross sections and spin observ-
ables using Glauber theory, ' the Kerman, McManus, and
Thaler (KMT) impulse approximation, or the more re-
cent relativistic impulse approximation.

The quasi-free picture of p-nucleus scattering should
also work well to describe inelastic processes. Evidence of
this is seen in the experimental data. A typical cross sec-
tion for inclusive (p,p') scattering at Ti,&

——800 MeV is
shown in Fig. 1 as a function of outgoing momentum at
fixed laboratory scattering angle. There are three peaks in
the cross section. The first is the sharp elastic peak near
the beam momentum. The second is the "quasi-elastic"
peak near 1300—1400 MeV/c, so called because its cen-
troid moves in accordance with NN momentum and ener-

gy conservation. This is a signature of quasi-free elastic
NN collisions where the struck nucleon is knocked into
the continuum. Scattering to discrete nuclear states
would appear as narrow spikes nearer the elastic peak (not
shown in figure). The width of the quasi-elastic peak can
be attributed to Fermi motion of struck nucleons.

At high energy quasi-elastic processes contribute only a
part of the full reaction cross section, because meson pro-
duction becomes possible at sufficiently high energy
transfer. This is the source of the broad third peak in the
cross section seen near 1000 MeV/c in Fig. 1. The dom-
inant reaction mechanism contributing to this peak is the
excitation of the 6(1236) resonance in the projectile or tar-

get nucleons, which then either decays A~mN or initiates
a more complex reaction. Here again the centroid of the
peak moves roughly in accordance with the quasi-free
production of a 4 with mass —300 MeV above the nu-

cleon mass. The peak is broadened by the width of the 5
as well as by Fermi motion.

Calculations of inelastic cross sections have been car-
ried out for both quasi-elastic and quasi-free b, produc-
tion processes using a plane wave impulse approximation
(PWIA). These reproduce fairly well the positions and
widths of the peaks, but the PWIA overestimates the
overall magnitude and requires a phenomenological nor-
malization. The distorted wave impulse approximation
(DWIA) has also been used to calculate the quasi-elastic
cross section ' and the results roughly agree with the
PWIA. The main effect of the distortion is to provide the
correct normalization.

I p

p p

cl 0
dBdp'

I

1000
p' (IVlev/c)

Beam momentum
FIG. 1. Typical cross section for inclusive (p,p') scattering at

Ti,b ——800 MeV. The quasi-elastic peak is seen near 1300—1400
MeV/c. The broad peak centered near 1000 MeV/c corre-
sponds to 5 isobar production.
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The PWIA and DWIA models include only those pro-
cesses involving a single quasi-free scattering. Calcula-
tions which include multiple inelastic scattering have been
carried out by Krimm, Klar, and Pirner (KKP) based on
the theoretical work by Thies. They found that multiple
scattering effects are not only important for normalizing
the cross section, but also multiple inelastic collisions are
needed in order to fill in the "dip" region between quasi-
elastic and 6 production peaks. Since they. used a spin-
independent parametrization of the NN amplitude they
were unable to calculate spin observables. But multiple
inelastic collisions should also play an important role in
determining spin observables in the dip region.

The main focus of this paper is a comprehensive
analysis of the quasi-elastic cross section and spin observ-
ables as a function of momentum and energy transfer.
Glauber's eikonal multiple scattering theory is extended to
include multiple inelastic collisions as well as the full spin
dependence of the NN amplitudes. In Sec. II Glauber
theory is briefly reviewed. Using the formalism of a "Z-
ordered product" it is extended to incorporate noncom-
muting interactions. The quasi-elastic cross sections and
spin observables are derived in Sec. III in a form that can
be evaluated numerically using a harmonic oscillator shell
model and a Gaussian parametrization of the NN ampli-
tudes. In Sec. IV the results for 800 MeV protons on ' C
are presented and compared to the available data on the
inclusive cross section d o/dQdp and Ay which were
measured at the Los Alamos Meson-Physics Facility
(LAMPF). ' Predictions for the remaining spin observ-
ables DNN, DSS, DLL, DLS, and DLS are also shown.
These calculations contain no free parameters except for
an energy shift required to bring the quasi-elastic peak in
line with the data. Finally, as a preliminary investigation
of the 5 region, multiple scattering theory is used to nor-
malize the PWIA calculation of p+ 3—+p+m+A' from
Ref. 5.

no longer contains H. In the center of momentum (c.m. )
frame it is given by

Geik(p) —[ulab(ka ps+I 9)i

k, =k, z= —,
' (k+k');

(2a)

(2b)

+ g I 8 I 8jklk-
i,j+i,k+j

I;—:I;(b—b;), 8;J =8(z; —zj) .

(3b)

(3c)

Here r;=(b;,z;) is the coordinate for the itli target nu-
cleon and 8(z) is the standard step function: 8(z)=0 if
z&0, 8(z)=1 if z&0. The "profile function" I; depends
on the impact parameter b —b; of the projectile relative to
the ith nucleon. It is defined in terms of the two-body
amplitude ~; by

u~,b is the laboratory velocity, and p, is the component of
p along k„ the average of initial and final momenta k, k'.
This defines a z direction appropriate to the eikonal ap-
proximation, where the projectile is assumed to traverse
an essentially straight line path along k, .

The Glauber multiple scattering series' can be derived
from (1) by replacing G~G„k and integrating over inter-
mediate momenta p, by retaining the residues of the poles
in the eikonal propagators (this is known as the "eikonal
pole approximation" and is discussed in Ref. 13). The
coordinate dependence of the two-body amplitudes is ex-
tracted using translational invariance,

( p'
~
r;

~ p) =exp[i(p —p').r;]~;(p—p'),
and they are assumed to depend only on the component of
momentum transfer perpendicular to z: r;(q)~r;(qq).
The resulting Glauber series is

(k'~ T ~k)= i ~,u—bf d be'~ I (b), (q=k —k'), (3a)

II. SPIN DEPENDENT
MULTIPLE SCATTERING THEORY 'p((q)= i ~, ufbd b—e' ' I;(b) (4)

A. Glauber series

The multiple scattering analysis of high energy p-
nucleus scattering begins with the %watson series, " in
which the T matrix describing transitions between initial
and final nuclear status due to the scattering of a projec-
tile is given by

A

T= $ v;+ $ r;Gw~+ $ r;G&JG&k+ . , (la)
i,j&i,k+j

(lb)

z; is the two-body t matrix describing a collision with the
ith target nucleon. Equation (1) assumes the p-nucleus in-
teraction can be described as a sum of two body potentials
u;. It is valid even for noncommuting interactions
[u;,uj j&0. The nuclear Hamiltonian H is embedded in
the propagator G. If the excitation energy of intermediate
states is sma11 compared to the incident projectile energy
then G may be replaced by the eikonal propagator' which

At high energy, where the binding energy of target nu-
cleons is comparatively small, the two-body interaction is
expected to resemble free nucleon-nucleon scattering, and
the ~'s can be replaced by the free NN-scattering ampli-
tudes:

277
fNN(q) . (5)

f N( N) q2/i =kA( )q+i ~oqXzC~(q)

+io2 qXzC2(q)'+o& o2B(q).
+cr& qo'2'qD(q)+o~ zo'2. zE(q), (6)

Here E = k /u &,b. Nonrelativistically E~p =mM /
(m+&), the p-nucleus reduced mass. The NN ampli-
tudes are accurately determined from experimental phase
shifts over a wide range of energies (pp: 0 to 1000 MeV,
pn: 0 to 500 MeV). ' For p-nucleus analyses fNN ls usu-
ally evaluated in the Breit frame' where it has the form
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cri, F2 are spin operators for the incident and struck nu-
cleons, respectively. In elastic scattering from a spin-0
nucleus only the A, Ci terms contribute because of a trace
over target spin variables. However, in quasi-elastic
scattering all terms A, . . . , E contribute.

B. Z ordering

In order to deal with spin-dependent interactions, we
introduce a formalism which will allow a compact repre-
sentation of I in the noncommuting case [I;,I J]&0.
Define the Z-ordered product of two operators A„Az
(acting in the space of target particles 1,2) as

S(b)=1—I (b)

=z gs,
i=1

The unitarity of S quickly follows from (13) and (14):

Sb Sb S& Sz
P~ (a) P~ (b)

Xe(zb, . . . , zb )8(z, , . . . , z, )

(14)

ZI AiA2I =AiAze(zi —zp)+A2Aie(z2 —zi) . (7)

where the sum is over all permutations P„(a}
=(ai, a2, . . . , a„) of (1,2, . . . , n), and

8(zi, . . . , z„)=8(zi —z2)8(zz —z3) 8(z„ i
—z„) . (9)

Using the Z-ordered product, I can be written as

r= gr, —g r, e,,r

+ g rere r, —
i,j~i,k~j

= g r, —g ZIr, r, ) + g zI r, r, r„I—
i &j&k

=z 'gr, —g r, r, + g r, r, r„—
i &j&k

This is exactly analogous to the "time ordered product" in
quantum field theory. The Z-ordered product of n opera-
tors A1,32, . . . , A„ is given by

ZIA, A„I= g A. ,A., A. 8(z... . . . , z. ),
P„(a)

In the last step the product of 8 functions vanishes unless
the z ordering is the same in both. Now use s; s; =1 [Eq.
(13}]and successively eliminate all the s's to arrive at

Sts= g 8(z, , . . . ,z, )=1, (15)
P~(a)

which expresses N-nucleus unitarity. This result holds
even when [s;,sz]&0 as in the spin dependent case or in a
coupled-channel multiple scattering formalism ' where
s; is a matrix connecting the various channels (such as
NN and Nh).

In Ref. 15 it is shown that, in the context of this uni-
tary eikonal multiple scattering theory, and using an in-
dependent particle model of the nucleus, the total cross
section separates into elastic, quasi-elastic, and particle
production contributions: o T

——o.,1+oq, +o ~. This pro-
vides a unified picture of the high energy p-nucleus reac-
tion. The unitarity ensures that all the reactive content is
accounted for and that each piece of the total cross sec-
tion is properly normalized. In the next section the
quasi-elastic contribution will be analyzed in detail.

III. QUASI-ELASTIC SCATTERING'

A

=1—z Q(I —r, ), [r, ,r, ]~0. (10)
A. Cross section

The cross section due to quasi-elastic scattering has the
ITll

In the noncommuting case this reduces to

r=1—/(I —r, ), [r, , r, ]=o,
do—f d. 'b d'b'e''i' '(0

j
r (b')Qr(b)

j 0),
where

j
0) represents the nuclear ground state, and

(16)

s(b)=1 —I (b) . (12)

Assuming the excitation energy of any states accessible
through NN scattering is small compared to the incident
energy, it can be shown' that NN unitarity is expressed
in the eikonal limit as

s (b)s(b)=l . (13)

The eikonal S matrix for N-nucleus scattering is

which is the form that appeared in Glauber's original pa-
per 1

To illustrate the power of this formalism, we will use it
to show that unitarity of the NN interaction implies uni-
tarity of the N-nucleus interaction. Define the eikonal S
matrix for the two-body interaction by

Q= g ja)(aj
a&0

Q=lprojects onto nuclear excited states. Using
—

j
0) (0 j, we have

(0 j
r'Qr

j 0) = (0
j
s'Qs

j
0)

=(ojs'sjo) —(ojs'jo)(ojsjo) .

(For brevity the b, b' dependence of I,I is omitted.
Henceforth I ~, S~, 1";, and s; implicitly depend on b',
and I, S, I;, and s; depend on b. ) Consider the ground
state matrix elements in (17). In the independent particle
model the ground state wave function is
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r~ IO&=+0«1 '' r ) g0'(r') ~ (18)

Assume for the moment that the single particle densities
I

p;(r;)=
I P;(r;) I

are all the same: p;(r;)=p(r;), and that
the s s are the same for pp and pn scattering:
s;(b—b;) =s(b —b;) (in practice suitable averages will be
taken). We then have

&OISSIO&= y &()Is.'„~ ~ $.'...,
~ ~ ~ $. 8(. . . . ), Io&

=A.&OIs~ . $)s) . $&8(z), . . . ,zz)
I
0&, . (19a)

&OIsIO&=A!&OIS, ~ ~ ~ $„8( „.. . , „)Io&. (19b)

It would be nice to be rid of the 8 functions which com-
plicate z integrals in the ground state matrix elements. In
an integral of the form

1[F]=I ff [dz, ]F(z„.. . ,z„)8(z„.. . ,z, )

if F is symmetric under z;~zj, then since the z s are
dummy variables, 8(z), . . . ,zz ) may be replaced with any
permuted ordering 8(z, , . . . ,z, ). Hence it may be re-

placed by

8(z„.. . ,z„)~ g 8(z, , . . . ,z,„)=, . (20)
1 I

I

In the independent particle model Q can be expressed in
terms of the single particle projection operators:

(24)
a;

I P;& is the single particle ground state for the ith nu-
cleon, and

I a;& is a single particle excited state. Since

p; +p = 1, Q can be written as

A

Q g( 0+ 4) g 0

i=i i=1
A

= Xp'tIpj'+Xp p,' ll pk
j+i i )j k~i,j

In the noncommuting case [s;,sj]&0 the z integrands in
Eqs. (19a) and (19b) are not symmetric unless the ground
state happens to be symmetric under z;~zl [this would be
true if, for example, the single particle density is a Gauss-
ian:

A+" +rrp, "

Q ())+Q (z)+. . . +Q (A) (25)

&OI S I0&=&OIs) . . sq I0& . (21b)

The first-order correction to this approximation is a dou-
ble scattering term which vanishes in the independent par-
ticle model. This can be seen by considering the z integral
for the double scattering contribution to (19a) or (19b). It
involves

2

p(r;)-e
or if the nucleus is a deuteron, since its density depends
only on (r) —rz) ]. Nevertheless, we will make the re-
placement 8(z), . . . ,zz)~1/A! in the matrix elements
(19) as an approximation:

&0
I
StS

I
0& =—&0

I
sz . $)s) . s„

I
0&, (21a)

Thus Q'. "' projects onto states where n nucleons have
been excited out of the ground state by quasi-free or
"hard" collisions with the projectile. The contribution to
the cross section from single hard scattering processes in-
volves

&oI r'Q r Io&

A

Xp'IIpj' $)
i =1 j+i

(26)

Expressed in terms of the single particle matrix elements

1
dz)dz2p(r) )p(rg)8(z) —z2) =— dz, dzzp(r, )p(rz) .

2!

(22)

Q=&$; Is(b —b;) IP;&,
Qt= &P; I

st(b' —b;)
I P; &,

(27)

This equality holds because p depends only on r; =
I
r;

I
.

Thus the replacement 8(z) —z2)~1/2! can be made in
the double scattering contribution regardless of the form
of p(r;). The lowest order nonvanishing correction to (21)
is a triple scattering term involving I; or I; or both for
three distinct nucleons. Inserting (21) into (17) we have

Eq. (26) becomes

&o
I
r'Q (')r

I o& = g
a (m+n =A —1)

+m3 a+nn3 am

y =&a Is(b —b )14 &= —&a Ir(b —b ) IP &

y =&@;Is (b' —b;)Ia;&,

&OIrtgr IO&—= &OIsq
. $|Qs) . . sq

I
0& . (23) (28)
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where Q~ =—(Q), and g~ +„z,~
means sum over all

m, n such that m +n =A —1. This equation has a simple
physical interpretation: Q, Q describe the distortion
due to the interaction with m & A —1 nucleons before the
hard collision, and Q„,Q„describe the final state distor-
tion due to interaction with the remaining n =A —1 —m
nucleons after the hard collision. This is analogous to the

l

DWIA if the distorted waves are generated by solving the
Schrodinger equation with an optical potential

uo ——0 v;0

describing the elastic scattering.
The contribution from n hard scatterings is

&oI r'g &"&r Io&=
a&, . . . , a„(mo+m&+ . . +m~ =A —n)

moVa&+m&
' Ya„+m„+m„Xa„' m& Va]mo . (29)

Here a„ labels the final state for the nth excited particle. The spin structure in Eq. (29) is complicated and difficult to
work with in practical calculations of spin-dependent quasi-elastic cross sections. To simplify it we will assume the dis-
tortion factors Q are spin independent, involving only the A term in the NN amplitude (6). Then Eq. (29), summed over
n, becomes

I

&o
I
r'gr

I o& = $ „(Q'Q)"-"
n=1 a&, ~ . . , a„

(30)

(Q Q)" " is the scalar distortion. To test this approximation the single scattering contribution will later be calculated
with the full spin dependent Q using (28), and compared to the n=1 term in (30). We will find that the distortion,
whether scalar or spin dependent, serves mainly to normalize the cross sections. The spin observables, which are ratios
of spin-dependent to spin-averaged cross sections, are largely unaffected by it. Therefore Eq. (30) turns out to be a good
approximation to (29).

At high energy, the quasi-elastic cross section is dominated by knockout processes. The knockout states will be
described by plane waves of momentum k; and energy k; /2m:

n d k n

III &&
I fII Ik&&kI & —r «)

al' '''ani=j (2ir)

co =Ek Ep, Ep =+—p +Nz, 6(kg )=eg +kg /2'
Here

I
k; & is a plane wave state:

&r; Ik;&=e' '".

(31)

co is the energy lost by the projectile (which has initial and final momenta k, p), and e(k;) is the energy lost on the ith
hard collision. e~ is the average (positive) binding energy per nucleon. There is, by definition, energy loss only on the
hard collisions, although momentum may be transferred on any two-body collision. Contributions to the energy loss as
well as corrections to the scattering amplitude due to target recoil are neglected for a heavy nucleus. Under these condi-
tions the double differential cross section is given by

d oqe
2

dQdp

P

A g n d3k, nf d bd b'e''i' b' g (QtQ)" "fg 5 co —g e(k;)
(2m. ) n=l (2ir)

Xtr(target)Irn)n is i-)'i . )'n i)'. I (32a)

r'=&k, Ir(b —b, )I@,&,

~,'= &~; I
r'(b'-b;) Ik; &

(32b)

The trace is over target spin variables and assumes a spin-0 nucleus. [We use a normalized trace throughout:
tr(m-cr) =0, tr(1):—1.]

B. Spin observables

The polarization asymmetry Ay and the polarization transfer observables DK%, DSS, DLL, DLS, and DSL (some-
times called the "triple scattering parameters") form a complete set of spin observables for p-nucleus scattering con-
sistent with parity- conservation. These are linear combinations of another complete set, the D,J s, which in the present
analysis are given by



32 SPIN OBSERVABLES IN QUASI-ELASTIC PROTON-. . . 1659

Dcj(qi, co)=Scj(qi,co)/SN2(qi, cp) (i j=0,1,2,3),
n dk.

S. (q&,co)= f d2b d b'ec'~'~ b g (QtQ)~ "f Q
n=l (2CT)

5 co —Q e(k;) trI0;(y„y, )0J(y, . y„)I .

(33a)

(33b)

Here the trace is in the projectile spin space (a trace over
target spin variables is implied) which is spanned by the
basis .

0p='1, CTi =CT n, '0'2 =CT'qi, CT3=CT'2,
(34)

n=kXk'/( k&&k' ~, R=(k+k')/[k+k' ~, g, =R&&n.

This basis is defined using '2=k and c|i which is ap-
propriate to the. eikonal approximation. It should be not-
ed that the D,J's are usually defined with respect to
Q =(k—k')/

~
k —k'

~
and p =q)& n in place of Qi, —z. '6

For parity conserving interactions the D;J's form a
block diagonal matrix:

I

tions (e.g., DLL' +DL—L). 8 is the laboratory scattering
angle, and 8» is the angle between k and qi (cos8»
=k gi). [Formulae similar to 36(c)—(g) also appear in
Eq. (7) of Ref. 16 with the D;1's defined using the basis
n, c|,p. However, they contain two typographical errors:
in the equation for DSS' the term + D~ sin8 should be
replaced with —D~ sin8, and in the equation for DSL'
the term Dzz sin(8+8») cos8»D~ cos8 should be replaced
with Dzz sin(8+8») cos8»+D~ cos8. Here 8» refers to
the angle between k and q rather than k and qi as in our
notation. ]

C. NN amplitudes and the nuclear ground state

Dio

Doi

D22 D23
(35)

To simplify the evaluation of (32) and (33), the terms
/I, . . . ,E in the NN amplitudes (6) will be approximated
as Gaussians:

a(q)=ape ""',
0

D3

d 0
dQdp

U&abp

(2n )

Ay =Doi =Dio

DLL =Dq» cos(8+8») cos8»

+D~ sin(8+8» ) sin8»+D», sin8,

(36b)

(36c)

In spin- —,
' -spin-0 scattering Dip ——Dpi (i.e., the asymmetry

/Iy =I' the polarization) and D32 ———D23. Thus there are
five independent D;J's which together with the cross sec-
tion comprise a complete set of observables for inclusive
(p,p') scattering on spin-0 nuclei.

The quantities normally measured in laboratory experi-
ments have spin states referred to the incident and final
(primed) momentum directions: L =k/k, L ' =k'/k',
N =N'=n, and S =N &I., S'=N'XI. '. The laboratory
observables are

etc., with parameters fit to the Breit frame amplitudes
determined from experiment. ' This procedure is often
used in Glauber theory. ' It is reasonably accurate and is
discussed in more detail in Refs. 12 and 15. The Gaussian
parameters for T&,„——800 MeV in the Breit frame of a
heavy nucleus ( M &&m) are given in Table I.

Since the multiple scattering formalism developed here
does not specifically take into account the difference be-
tween protons and neutrons in the target, the pp, pn ampli-
tudes are averaged as follows. In elastic collisions, which
contribute to the distortion, the pn, pn amplitudes can in-
terfere, so the Gaussian parameters are taken to be the
average of the pp, pn values. However, in a hard collision
the knocked-out nucleon is either p or n, and these pro-
cesses do not interfere. Therefore at each stage in a se-
quence of knockouts the contributions from pp, pn col-
lisions are computed independently and then averaged.

Calculations will be performed for ' C at Ti,b
——800

MeV. Single particle matrix elements are evaluated using
harmonic oscillator shell model wave functions for the s
and p shells:

DSS=Dqq sin(8+8») sin8»

+D cos(8+8q) cos8q+Dq, sin8,

DSL = Dqq cos(8+8») sin8»

+D sin(8+8» ) cos8» D», cos8, —
DLS = Dqq sin(8+8») cos—8»

+D~ cos(8+8») sin8»+Dq, cos8,

DNN =D„„.

(36d)

(36e)

(36f)

(36g)

3/4
ar2/2-

7T

' 3/4

(2CC)1/2& &
ar /2—

+(Ti+CT2)/~2
~m =

P'3

(37)

Here we have written Dqq, Dq, in place of D22, E23, etc. ,
and primes have been omitted from final laboratory direc-

The single particle density, which is used in evaluating Q,
is taken to be a weighted average:
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TABLE I. 800 MeV parameters for Gaussian NN amplitudes. (Parameters are for the Breit frame in a heavy nucleus: A —+ 00. )

PP
PN

Ap
(GeV )

4.80+ i0.06
3.95+ i 1.28

Bo
(GeV )

—0.18+ i 1.11
—0.21 —i 1.41

C)o
(Gev-')

—1.24 —i 5.33
—1.97—i 4. 19

Ceo
(GeV )

—2.69—i 5.03
—3.18—i 4.97

Dp
(GeV 4)

—9.1 —i 122.0
—4.35+ &1.33

(GeV 2)

1.09—i 0.43
0.09+ i 0.67

PP
I'1V

QA

(GeV/c)

4.18—i 3.01
4.45 —i 2.28

12.07+ i 14.26
2.44 —i 1.66

Qc

3.42+ i 1.24
3.87+ i0.48

2.54+ i 0.02
3.75 —i 0.25

24.5+ i 5.9
20.6—i 1.26

20.2—i 9.12
0.61—i 7.4

r

p(r) =
3 I A I

'+
3 3 2 14'i

m

3/2

(3&)

r

e (1+ , ar ) . —1 u —ar 4 2

3 m

The oscillator parameter a is determined from the nuclear
rms radius: a= —", (r ) by taking (r )'~ =2 5fm. for
' C. Contributions from knockout collisions involve the
Wigner transform of the single particle density pir(r, p)

which is similarly averaged over shells. The binding ener-

gy ez [Eq. (31)] is determined from electron scattering.
Averaging the proton and neutron binding energies for the
s and p shells taken from Ref. 18, we have eti ——25.72
MeV.

D. Evaluation of S;J-

We return to Eq. (33) for S,&. The central part describ-
ing the sequence of inelastic collisions can be separated by
writing

&; (q&,~)= f d2bd2b'e''t' ' g [A'(b')Q(b)]" nW'"'(1'1~)
n=1

(39a)

W,J (b', b, to)= g 3
5 to —pe; trIo;(y„y &)O'J(P& ~ P„)] .

i=i ir i
(39b)

Henceforth all operators in the projectile spin space expect
the basis matrices cr; [Eq. (34)) will be denoted by carets:

3
A= gA;o;.

The integrals d k; over final momenta of the unobserved
nucleons are complicated by the presence of the energy
conserving delta function which depends on all the k;.
Following KKP, we overcome this problem by Fourier
transforming Wi"' with respect to to:

l

Now reexpress yn in terms off=f NN /ik:

y„=(k„
I
r(b —1„)I y„)

f d r„e '"" '"P(rn)

X f d qe "f(q). (42)

After some manipulations involving a change of variables
to

W "'(b', b, to) = f e' 'W,'"'(b', b, t),
2%

(40a)

a 3 ' —' t
W,'.,". '(b', b, t) = f g ', e ' trI I . (401)

(2m )'

R= T'(r„+r'„), x=r„—r„'

Q= (q+q ) e=q —q

8= —,'(b+1'), P=b —1',
(43)

8",,"'(b',1,t) =tr[o; U,'"'(b', b, t)],
t

U (n)

(2m )

(41a)

'nniy t U (n —1)y
d3k„;~ t

(2m)
(41b)

We now proceed to evaluate W';z' analytically. Define
U(n) byJ

and the replacement

U(n~ f d&ge && ttf t(Q iV&/2)— —

X U,' n "f(Q+&V, /2)Z. -(B,g, t),
R(&,g, t)= f d'k. e

' "
p (» lk. —Ql »

(44a)

(44b)

f d E' F(e,Rj )~5 (8 Rq )F(i Vs—,8),
(2m )

we find
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p (8pi= f dzp (R,p), R=(B, z),

ip (R,ip) = f e 'i'"P„'(R—x/2)(I|)„(R+x/2),
(2~)

—+ f e 'i'"Xiaigi (R—x/2)gi(R+x/2) .
(2n )

(44c)

(44d)

The Vs's act only on R(B,Q, t) not on UJ" ". p (r,p) is
the Wigner transform of the single particle density, and
X~a~ represents the weighted average over shells.

Before proceeding, consider the physical content of Eq.
(44). The Wigner transform p (B,p) is associated with
the probabihty of finding a target nucleon at the classical
impact parameter B with momentum p =

~

k„—Q ~

.
Thus the scattering can be viewed classically as a sequence
of collisions in phase space (see Ref. 8). The function
R (B,g, t) contains all the nuclear structure information
and is independent of the NN amplitudes. It is related to
the single particle nuclear response function R i (Q,co) by

R((g,~)= f d'k &(k—Q)5(co —es k /2m)—

(45)

where n(p) is the single particle density in momentum
space. The essential nuclear information contained in .R,
is the position of the single knockout peak, given roughly
by cop= eg +Q /2m, and its width due to the momentum
distribution (Fermi motion) of struck nucleons. This
width is determined by the oscillator parameter a.

We now wish to approximate

I—,(b b—i)o i VbXz]p, (r; ),
r„(b)=—f d q

' ' a(q),

r, (b}=—' f d'q ''-c, (q) .

(48a)

(48b)

Thus if the V&p term is dropped, 0 becomes spin indepen-
dent, involving only the A term in fNN. One might ex-
pect the Vp te~s to be important, because most of the
scattering takes place near the surface where Vp&0 (this
is due to the distortion, which cuts down the cross section
if the projectile passes through much of the nuclear interi-
or). Also, in elastic scattering the spin observables vanish
when the Vip terms are dropped. However, in the inelastic
case they turn out to be relatively unimportant. This will
be seen by comparing the single knockout Ay with and
without all Vp, Vp terms.

Inserting (46) into (44) we have

U(B)(p B r) f d2ge iQ pf—t(Q. )

X UJ" "f(Q)R (B,g, t), (49a)

,
' f—(Q+iVg/2)

~A (Q)+imari (Q+iVz/2) XzCi(g)+ (47)

(short range approximation). To arrive at (46} we must go
one step further and eliminate all terms involving Vsp~.
This is consistent with the approximation of scalar distor-
tion, which amounts to dropping terms containing Vsip.
In a spin-0 nucleus 0 has the forin:

Q(b)=1 —f d r;[rz(b —b;)

f (Q iV&l2)U f(Q—+iV&/2)p„(B,
~
k —Q ~

)

f t(Q)U f(Q)p (B,
~

k —Q ~
) .

Xo' f(Q)R(B,g, t) . (49b)

(46) Using the wave functions (37) R can be shown to have the
rm:

This approximation was also made by KKP in the spin-
independent case. Consider the structure off:

—,f(q)=&(q)+io; qxzCi(q)+

Terms dropped by replacing 2 (Q+ &'Vs /2) ~p ( g),
Ci(Q+iVs/2)~Ci(g), etc., vanish in the short range
approximation (RNN/R„„, ) -+0 (where RNN -gz

is the range of the NN force, and R„„,-a '/ is
the nuclear radius). Thus

R(B,g, t)=e "("& [g(B,t)+Q'h(B, t)] .

With the Gaussian parametrization of f(Q), Eq. (49) can
be evaluated analytically. Expressions for R (B,g, t} and
the components of U&" are given in Ref. 15. Equations
(49) define an iterative procedure for determining U&"'

and hence Wij' [Eq. 41(a)]. Wii"' is calculated with one
numerical Fourier transform in the t variable [Eq. (40a)].
Once this is known, SJ is found by numerically integrat-
ing over the magnitudes of P= [P [, B = [8 ~:

I

Si(qi, co)= g „ f d Pe'q~ f d B[Q (b')Q(b)]" "f dte '"'W J". '(P,B,t) .
n=1

(51)

(In the distortion b'=
~

8——,
' P ~, b =

[ 8+ —,P
~

~ )

depends on B,P and powers of qi P, so integrals over
the azimuthal angle in f d P can be evaluated analytical-
ly in terms of the cylindrical Bessel functions J~(qiP).
Reference 15 contains a detailed discussion of the numeri-
cal integrations.

IV. RESULTS AND DISCUSSION

A. Quasi-elastic cross sections

Theoretical curves for the cross section at 8=15' based
on Eqs. (51) and (36a) are shown as a function of outgoing
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FIG. 2. (a) Quasi-elastic cross section (solid line) at 8=15
based on Eqs. (51) and {36a) of text. Data are from Refs. 9 and
10. Dotted lines labeled n=1,2,3 indicate contributions from
single, double, and triple knockout. (b) Same results shifted in
energy by hco=e~ as in Eq. (52). AB curves in this paper are
for 800 MeV protons incident on ' C.

proton momentum in Fig. 2(a) along with the inclusive
(p,p') data from Ref. 9. Dotted lines labeled n= 1,2,3 are
contributions from single, double, and triple knockout,
and the solid curve is the full quasi-elastic cross section
summed through n=3. The multiple knockout series
converges quickly: successive peaks are down by roughly
one order of magnitude. We remark that this supports
the use of approximation (23) which eliminated 8 func-
tions responsible for z ordering in ground state matrix ele-
ments. Because of the scalar distortion, only z ordering of
the hard collisions is important, and the lowest order
correction to (23), which involves triple scattering terms,
now involves only the small triple knockout term. The
single and double knockout cross sections calculated with
scalar distortion are exact in the sense of approximation
(23).

The normalization of the quasi-elastic peak in Fig. 2(a)
agrees very well with the data, although the peak position
is shifted towards larger energy loss. Such a shift has
been seen before in PODIA and DWIA calculations. " As
suggested in Ref. 6, the shift could be due to the neglect
of distortion on the unobserved particle. At low scatter-
ing angles the momentum transferred to the struck parti-
cle is small enough that it may not escape but remain
bound in an excited nuclear state. The single particle shell
model response functions [(44b) and (45)], which deter-
mine the position and width of the peak, would in this
case be inadequate both because of the use of plane waves
and because the kinematics involve the full binding energy

F~ and the kinetic energy k; /Zm of a knocked out parti-
cle.

In the present model it is important to account for this
shift in some way, because the spin observables are expect-
ed to exhibit structure in the kinematic region where the
double knockout term dominates. Therefore all cross sec-
tions and spin observables will be plotted as a function of
a shifted energy transfer:

dtT(qJ. ~tO)shown dt7(qi~~ e8)calculated ' (52)

This does a good job of bringing the quasi-elastic peak in
line with the data as seen in Fig. Z(b). The n=1,2,3
quasi-elastic cross sections at 61=8', ll, 15', and 20' are
shown as dotted lines in Figs. 5(a), (c), (e), and (g). All
curves shown in this paper except for Fig. 2(a) are plotted
with the shift (52).

A breakdown of numerical accuracy occurs when the
cross sections drop &3 orders of magnitude below their
peak values. In the kinematic region where they were cal-
culated (0&co—e~ &0.2 GeV) only the single knockout
terms exhibited this breakdown. Therefore, the single
knockout S,J's were extended beyond the region of conver-
gence by assuming they fall off exponentially in co. This
is consistent with the asymptotic form of the single parti-
cle response function (45) for fixed qi as co—+co.

B. Quasi-elastic spin observables

The five independent spin observables D„„, Dz~, D~,
Dz„and Ay are shown at 0= 15' in Fig. 3 (solid lines). In
order to display the effect of the multiple knockout can-
tributions, the quantities DJ"' (n=1,2,3) are also shown
(dotted lines). These are defined by

(n) (n) (n)D,J Stj /Soo——
(53)

y S( )

The D,J"'s are what the spin observables would be if only
processes involving n knockouts are included. In the re-
gion of low energy transfer (high p) D;J =DJ", but at
higher energy loss the double knockout cross sections
dominate and D,z

-—D,J '. In all cases this causes a drop in
the spin observables in the double scattering region
(p & 1.27 eG/Vc at 8=15').

The effect of distortion on the single knockout terms
can be seen by comparing the long dashed lines in Figs.
3(a)—(e) which show the ~lane wave results (DJ")pw
(these are the same as DJ' with Q~l). In the single
knockout region (p & 1.27 GeV/c) the distortion produces
only a small deviation from the plane wave results. Fig-
ure 3(f) shows the plane wave polarization (Ay)pw and
(Ay'"')pw (n= 1,2,3). Comparing Fig. 3(e) we see that the
distortion has even less effect on the multiple knockout
terms. The distortion provides the same nearly constant
normalization term by term in the multiple knockout
series. That is

S~J"'(qi, to) =W'"'[SJ."'(qi, co)]pw, (54)

and therefore D;z"'- (DJ"')pw. This nor—malization varies
with n (&'"-—,

' while &' '- —,'), which can slightly
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momentum transferred in the elastic collisions participat-
ing in the distortion is responsible for the difference be-
tween D,J"' and (D,J"')pw seen in Fig. 3.

In order to test the assumption of scalar distortion, the
single knockout cross section and Ay were calculated with
the full spin dependent Q [Eq. (48)] based on Eq. (28). In
addition, all Vp terms which remain in the short range
approximation (47) were kept. The spin structure in (28)
combined with the presence of these extra terms make this
calculation considerably more complicated (see Ref. 15 for
details). The results are shown in Fig. 4 at 0=15'. Solid
lines are d cr'"/dQdp and Ay"' with scalar distortion,
crosses indicate results of the full calculation with all Vp,
Vp~ terms, and the dashed line in (b) is ( Ay'")pw. We see
that the distortion, whether scalar or spin dependent,
leaves the polarization largely unchanged from the plane
wave result.

Predictions for the laboratory spin observables DNN,
DLL, DSS, DLS, and DSL are shown in Figs. 5(b), (d),
(f), and (h) along with the calculation and inclusive (p,p')
data for Ay. ' The normalization of Ay is a little off:
-0.4 in the single knockout region compared to -0.3 in
the data, but the drop from -0.3 to -0.1 is clearly ac-
counted for by the double knockout term. There is fur-
ther structure in the data, namely the "shoulders" seen
most clearly at 11', 15' in the 1.0—1.25 GeV/c range. As
suggested in Ref. 10, these are most likely a signature of
quasi-free b, production. The polarization data on inelas-
tic p-p scattering show a corresponding peak in Ay just

0.2—
(c) Dzz

0 I I I i I I I I I I I I i I I I I I ~~I t I I I i I I I 1 t i & I

1 ~ 1 1.2 1.3 1.4 1 ~ 1 1.2 1.3 1.4

p (GeVt'c)

Flax. 3. Quasi-elastic spin observables D; at 8=15' (solid
lines). Dotted lines labeled n= 1,2,3 show D,z"', and the dashed
line is DJ" with no distortion. (f) shows Ay and Ay'"'
(n= 1,2,3) with no distortion.

— (a)

change the full D,J compared to (D,J )pw because it affects
how quickly D;J falls from D,J" to D,J

' when passing
from the single to double knockout region. Calculations
were also performed by evaluating the distortion factors
at the classical impact parameter:

10-3 i i i i I

1.0
— (b)

0.8—
&'(b')n(b)~

I
Q(B)

I

z, (55)
0.6—

which amounts to forcing all the momentum transfer to
occur on the hard collisions [this can be seen by perform-
ing the f d P integral in (51) using the expression (44a)
with (41a) for &IJ"', the result is a factor

5' q —gQ"

where Q" is the momentum transferred on the ith hard
collision]. The D,J" 's computed with the replacement (55)
are almost identical to the plane wave results. Thus,

0.4—

0.2—

0 I I I I I i I i I I I I 3 I I I I I I I I I I I

1.0 1.1 1.2 1.3 1.4 1.5
p (GeV/c)

FIG. 4. Single knockout cross section (a) and Ay (b) at 8= 15'
with spin-dependent distortion (crosses) and scalar distortion
(solid curves). In (b) the long-dashed curve is Ay"' with no dis-
tortion.



1664 RICHARD D. SMITH AND STEPHEN J. WALLACE

10

(a) 8
0 1—
X

~ 10"=
E
CL 102:
U

10
0

{e}
I

15'

oooooo

) I ( I
'( I

1
s
1

1

I
I
s
s
I

1.0
- (b) 8

0.5—

0

1

'
I

'
l

DNN~ DSS
DLL—

Ay

LS—

I

'
l

(f) 15

DSS

oooo
clcl&o

t DNN
DSS-
DLL

Ay
DLS

-0.5 I i I ) I i

10-
(c) 11'

$

l

i

(g) 20'

10 "
E

g 102
U

10 3

'~
1

I
I
I
I
I

I

S

I i.' l l

1

\
1

S
I

\

10 i
l

(

(d) 11'

0.5— DSS

~ DNN-
DSS—
DLL

Ay

DLS

l

20'
l

DNN

DSS
DLL
DLS

Ay

0 aors &~a '' '

—~DSL—
ooooooo

05 i l l I ( I

0.6 0.8 1.0 1.2 1.4
I i l

1.6 0.6 0.8 1.0 1.2 1.6
l
DSL—

1.4

p (GeV/c)

FIG. 5. Cross sections and laboratory spin observables DNN, DLL, DSS, DLS, DSL, and Ay. In (a), (c), (e), and (g) dotted lines

are the n=1,2,3 quasi-elastic cross sections; the long-dashed line is the 6 production cross section based on Eq. (56) of text, and the
solid line is the sum of these. In (b), (d), (f), and (h) DLL and DLS are shown as dotted lines. Also shown are data for the inclusive

(p,p') cross sections and Ay from Refs. 9 and 10.

where the inelastic cross section begins to rise (presumably
due to the b, ). Evidently this peak is smoothed out in the
nucleus and appears as a low shoulder which, as the 6
production begins to dominate the cross section, becomes
distinguishable in a background of quasi-elastic scattering.
Having isolated the quasi-elastic contribution, it should
now be possible when data becomes available to look for
similar signatures of quasi-free 5 production in the other
spin observables.

C. The 5 region

A single scattering impulse approximation should work
well in the 6 region because processes involving the
creation of more than one b, with mass ma & m +m are
not energetically favorable. Therefore, as a preliminary
step in understanding the 6 region, multiple scattering
theory has been used to normalize the P%'IA calculation
of the cross section d cr IdQdp for p+ A ~p+ m. +A'
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from Ref. 5, which is based on spin-independent
NN~NNm amplitudes calculated in a one-pion exchange
model. No attempt will be made to calculate spin observ-
ables due to b, production because the spin dependence of
the NN~NA and NN~NNm amplitudes is poorly
known and strongly energy dependent.

The normalized PWIA has the form:

O~

dQdp
(56)

This assumes all momentum and energy transfer occurs
on one quasi-free NN —ANN+ collision. The distortion
factor & depends on the energy of the fast nucleon be-
fore and after this collision. To indicate how it is derived,
consider the analogy in the quasi-elastic case. As in Eq.
(54), suppose

d&o(i) d2~(1)~())
dQdp dQdp pw

&',"can be derived from Eq. (51) if, in addition to the re-
placement Q (b')Q(b)~

~

Q(8) ~, we also approximate
the Wigner transform by

(57)

p (B,p)=t(8)n(p),

t (b) = f dz p(B,z) .
(58)

[Both of these approximations were made by KKP; they
used the momentum density n (p) -8(k~ —p). ] Now the

f d B.integral completely separates, and we find

u")= f d'8 t (8)
~

Q(8)
~

""-" (59)

In the b, production case, a similar derivation yields (see
Ref. 15 for details):

energy transfer. In Ref. 5 the decay cross section was too
big by a factor of 4. As a result it washed out the recoil
term and the 6 peak appeared broader than it should
have. This seemed alright because the data prefers a
broader b, peak, and the factor of -4 error in magnitude
was compensated by normalizing both 6 and quasi-elastic
peaks with a slowly varying function of 8 approximately
equal to —,'. )

Dashed lines in Figs. 5(a), (c), (e), and (g) show the
PWIA production cross section normalized by W as in
(56). The solid lines are the sum of this plus the n= 1,2,3
quasi-elastic contributions, which were extended into the
b, region in these plots by assuming an exponential fall off
in co. The calculation of (d o /dQdp)pw is essentially
the same as in Ref. 5 except the NN~NNn. amplitudes
were slightly modified to better fit the hydrogen data. '

The positions of the b, peaks agree fairly well with the
data although they are too high and narrow. Also, the dip
region is not filled in enough to meet the data, suggesting
both b, production and quasi-elastic contributions should
be larger in this region. The quasi-elastic peaks may be
too narrow because the response function (45) depends on
g J rather than q due to the eikonal approximation. How-
ever, the calculation of (d o /dQdp)pw did not irivolve
an eikonal approximation. The fact that it is too high and
narrow suggests the 6 may have a broader width in the
nuclear medium. More concrete evidence for such a
broadening has been seen in recent inelastic electron-
nucleus experiments' which show a broader 6 peak in the
nuclear data compared to the hydrogen data, even if
broadening due to Fermi motion is taken into account.

V. CONCLUSION AND SUMMARY

&~(Ek,Ep)= f d 8 t(B) QDk—(B)Dp(B) .
(m+n =A —1)

(60)

Here Dk (Dz ) represents the distortion in the initial (final)
state due to the elastic or quasi elastic sc-attering off a tar-
get nucleon at energy Ek (Ez). It is given in the short
range approximation by

Dp(B) =1 o;„(Ep)t(8) .— (61)

o;„(Ez) is the inelastic NN cross section for a nucleon at
incident energy Ez. & varies from -0.5 at p=1460
MeV/c to -0.7 at p=800 MeV/c. This behavior arises
because at large energy loss E& drops below threshold and
cr;„~0 causing Dz~l. These values of & are quite.
different from the normalization of the quasi-elastic peak(W("-

~ ) which contrasts with the procedure used in
Ref. 5 where the PWIA calculations of both peaks were
normalized to the data by the same factor. (The calcula-
tions in Ref. 5 also contained an error. The cross section
has two pieces ca11ed the "recoil" and "decay" terms
which depend, respectively, on whether the 6 is made in
the projectile or a target nucleon. The recoil contribution
is smaller and has a more narrow peak than the decay
cross section which is wider and flatter as a function of

We have developed a method for calculating spin ob-
servables due to quasi-free nucleon knockout in high ener-
gy (p,p') reactions. This is based on an extension of
Glauber theory to include noncommuting spin-dependent
NN interactions and multiple inelastic collisions. Calcu-
lations have been performed at 800 MeV on ' C for the
quasi-elastic cross section d o/dQ dp and all spin observ-
ables consistent with parity conservation: Ay, DXX,
DI.I., DI.S, DSS, and DI.S. The distortion due to elastic
NN collisions normalizes the cross sections, which agree
in magnitude extremely well with the data. The distortion
has little effect on the spin observables, however, which
are ratios of spin dependent to spin averaged cross sec-
tions. In the analysis, certain terms involving the gradient
of the nuclear density Vip(b, z) were dropped in order to
simplify the spin algebra. A more detailed investigation
of the single knockout contribution to d o/dQ dp and Ay
shows that this approximation is justified. In all cases
multiple knockout contributions cause a drop in the spin
observables in the kinematic region where they dominate
the cross section. This explains the drop from -0.3 to
-0.1 in the inclusive data for Ay (O,p) seen in the dip re-
gion between quasi-elastic and 6 production peaks. Fur-
ther structure in the inclusive Ay data most likely corre-
sponds to quasi-free b, production. A PWIA calculation
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of the single 5 production cross section, normalized using
multiple scattering theory, suggests the 6 may have a
broader width in the nucleus compared to the free width,
agreeing with more conclusive results from electron
scattering experiments. Also, in contr ast to previous
theoretical analyses, multiple scattering theory predicts
that the 6 and quasi-elastic cross sections are normalized
differently by the distortion (the quasi-elastic PWIA is re-
duced by = 4 while the 6 PODIA is reduced by -0.5 to
0.7). Future PWIA calculations which take into account

a larger b width, even if only phenomenologically, may be
able to successfully describe both cross sections and spin
observables in the 6 region. First, however, more
accurate knowledge of the free spin-dependent
NN~Nh —+NNm amplitudes is needed.

This work was performed at the University of Mary-
land under DOE Contract No. 01-5-27078, and at
Lawrence Livermore National Laboratory under DOE
Contract No. %-7405-ENG-48.
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