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%e construct a set of separable potentials for the nucleon-nucleon, pion-nucleon, and pion-pion
subsystem for all partial waves with angular momentum I. &2 within the framework of the relativ-
istic two-body Kadyshevski equation. These interactions serve as input for the relativistic three-
body equations proposed by the authors as well as for the three-body formalism derived by Vinogra-
dov.

I. INTRODUCTION

The relativistic generalization of the Faddeev equations
has been considered by many authors' within the con-
text of the three-body Bethe-Salpeter equation applying
the methods developed by Blankenbecler and Sugar.
These methods result in integral equations with the same
general structure as those of the nonrelativistic three-body
problem but satisfying relativistic three-body unitarity
and Lorentz invariance. Although these equations have
been successful in the treatment of the various reactions
of the pion-deuteron system, it has been found recent-
ly that they are completely inadequate for calculations in
the bound-state region, since they contain spurious
bound-state solutions and lead to a singular behavior as
the invariant mass squared tends to zero. Moreover, in
the case of two-body interactions with a very long range
in momentum space, this pathological behavior can ap-
pear also in the scattering domain. Thus, it has become
necessary to modify these equations in order to avoid such
problems. The modified equations that we have pro-
posed are well behaved as a function of the invariant
mass of the three-body system ~S throughout the
bound-state region. The main difference between our ap-
proach and the standard one is that the two-body ampli-
tudes are now constructed by solving the two-body in-
tegral equation proposed by Kadyshevski' rather than by
the solution of the two-body Blankenbecler-Sugar equa-
tion. Thus, our formalism has the same input as the one
proposed by Vinogradov, " although it differs in other
respects.

In this paper, we present a set of separable two-body in-
teractions for the nucleon-nucleon, pion-nucleon, and
pion-pion subsystems, which are solutions of the Ka-
dyshevski equation. These interactions can serve as input
for relativistic calculations of three-body systems com-

. posed of nucleons and pions whether they are performed
within our formalism or within Vinogradov's approach.
Among the possible applications of these interactions are

the systems composed of (i) three nucleons, (ii) two nu-
cleons and one pion, (iii) one nucleon and two pions, and
(iv) three pions. As an example of our formalism and the
use of these separable interactions, we have studied recent-
ly' the possible existence of bound states or resonances of
a pion and two nucleons in the three-body channels with
isospin 0 and 2. Another obvious application of this
theory would be the calculation of vrNN resonances with
isospin 1 which correspond to the so-called dibaryon reso-
nances as has been done, e.g., by Ueda and collabora-
tors' ' within a nonrelativistic three-body theory. Simi-
larly, these interactions can be used to study the scattering
and bound-state problems of three nucleons. In addition,
one has now a reliable framework in which to study the
possible existence of three-pion resonances' ' as well as
those of a nucleon and two pions.

In order to keep this paper complete we begin with a
short summary of the most important steps of the deriva-
tion of our equations in Sec. II. By comparison of our re-
sult to other relativistic equations it will turn out that the
difference between our as well as Vinogradov's approach
and the other ones consists in the loss of the so-called
clustering property. Since this is an important feature in
the scattering domain, we discuss this clustering property
in detail in Sec. III. We also give numerical results in or-
der to show whether the loss of clustering is a serious
drawback or not. Finally, in Sec. IV we give the analytic
forms and parameters of the separable potentials for the
nucleon-nucleon, pion-nucleon, and pion-pion systems for
all partial waves I.&2 in the framework of the Ka-
dyshevski equation.

II. MODIFIED RELATIVISTIC
FADDEEV EQUATIGNS

The relativistic generalization of the Faddeev equations
for the three-body problem has usually been carried out by
summing up all possible sets of Feynman diagrams in
which two particles interact while the third particle acts
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as spectator. ' This procedure leads to integral equa-
tions of the same form as in the nonrelativistic three-body

problem but they are now dependent on four-dimensional
variables. In order to eliminate some of these variables
without destroying relativistic invariance as well as two-
and three-body unitarity, a Blankenbecler-Sugar reduction
is performed. If the two-body amplitudes are separable,
the relativistic Faddeev equations reduce after a partial

l

wave decomposition to a set of integral equations in one
variable. For example, the relativistic Faddeev equations
for the bound-state problem corresponding to a separable
interaction

&(p;,p )=g;(p;)&;g;(p )

can be written for three spinless particles as

g;(p;)g, (p, ) [~ (a)+~ (e )+~k(
I q +q, I )1

Tg qi, S = T (q;S),
D, (s, ) ~ 2~, (q, )2~k(

I q;+q, I ) S [~—, (a)+~;(q, )+~k(
I q;+q, I

)1'+ie ' ' (2)

(4)

where q; is the momentum of particle i in the three-body
c.m. frame and

coj (p) = (mj +p )'~

The denominator D;(s; ) is given by

~, (p)+~k(p)
D;(s;)= — p dp

2~;(p)~k (p)

X
g (p)

(3)
[~,(p)+~—k(p)]'+i~

and the argument s; of D; is the two-body invariant mass
squared and can be written as

s; =[v S —(m,. +q; )'~ ] —q, .
The origin of the problem with the integral equations

(2) lies in the definition of this two-body invariant mass
squared s; as given by Eq. (4). In Fig. 1 we have plotted
s; as a function of S for two values of the momentum q;.
The calculation was done for the particular case of the
Nnn system in which m; =M is the mass of the nucleon
and mJ =mk =p is the mass of the pion. As we see from
Eq. (4) and Fig. 1, s; has a minimum as a function of S
when S=m;+q;. Thus, for values of S ~m;+q; the

I

I

two-body invariant mass squared s; decreases when S de-
creases, which is the normal behavior, since the momen-
tum of the spectator particle q; is kept constant; however,
for values of S &m;+q; the two-body invariant mass
squared s; has an abnormal behavior as a function of S
since it increases, when S decreases. As we have shown in
Ref. 9, this gives rise to the appearance of spurious bound
states and to the development of a singularity as S tends
to zero.

Moreover, as we see in Fig. 1, the minimum of s; moves
to the right, as q; increases, so that, for the curve labeled
q;=M, the minimum is already above the three-body
threshold M+2@. Therefore, the abnormal behavior of
s; in this case does not only effect the bound-state region
but also the scattering domain. Consequently, for two-
body interactions having a very long range in momentum
space [so that the effective values of q; in Eq. (4) are
large) the results of the relativistic Faddeev equations will
be unreliable also in the scattering region.

In order to eliminate the spurious bound-state solutions
and the abnormal behavior in the scattering region for the
case of large q;, we first write the denominator inside the
integral in Eq. (3) using Eq. (4) as

s; [~,(p )+~k(—p )1'+ ~i
1

2(a'+ [~,(p )+~k(p )]']'"
X

1

vS (m; +q—; )'~ tq;+[—coj(p;)+co (p;)] j'~ +i@

1

~S —(m; +q; )'~ +Iq;+[a)J(p;)+co (p;)] I'~

M

20- N ~threshold

cv

&0

0

-20- I
-Nrt~

FIG. 1. Two-body invariant mass squared s;(q;,S) as a func-
tion of the total invariant energy squared S of the Nm. m system
for two values of the momentum q;.

The conditions that Aaron, Amado, and Young have
imposed to construct their theory are to satisfy relativistic
invariance and two- and three-body unitarity. With re-
gard to this last point they show that the two- and three-
body propagators must obey certain discontinuity rela-
tions. In particular, this implies that the function
1/D;(s;) must have a cut across the positive real axis
starting at s;=(mj+m~) . The conditions of Aaron,
Amado, and Young are fulfilled by Eq. (3) with the two-
body propagator (5), but they are also fulfilled if one
keeps only the first term in the parenthesis. Thus, one is
allowed to drop the second term still satisfying the unitar-
ity requirements. That means that from this point of
view both theories are equivalent; nevertheless, both
models have merits and failures in other respects. The
Aaron, Amado, and Young formalism has imposed clus-
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tering but gives rise to spurious bound states. These
spurious bound states disappear in our formalism but this
is necessarily connected with the loss of clustering.

Dropping the second term in Eq. (5), the propagator of
the interacting pair, which was given by Eq. (3), now be-
comes

ao co, (p)+ cok (p) g (p)D(s;)= — p dp0 4co.(p)co (p)Iq. +[co.(p)+co (p)] } IV. Iq. +[co.(p)+co (p)] I +ie
where

8;=(s;+q;) = S —(m;+q;)2 1/2 2 2 1/2

(6)

It is easy to see that the energy of the interacting pair W;, given by Eq. (7), does not have any abnormal behavior, since it
is just a straight line as a function of ~S. If q; =0, particle i is at rest and the c.m. frame of the interacting pair coin-
cides with the three-body c.m. frame and Eq. (6) becomes

D (s;)= —f p dp
] oo g (p)

4coj(p)cok(p) ~$; coj(p—) —cok(p)+le

which corresponds to the solution of the Kadyshevski equation'

;(p,p', ~s;)= V;(p,p')+ f „„V;(p,p") r;(p",p', ~s; ) (9)~j P" cok P' s co (p—") cok(P—")+i@

for the separable interaction of Eq. (1).
The modified relativistic Faddeev equations, given by

Eq. (2) with the propagator of the interacting pair D;(s;)
replaced by Eq. (6), are well behaved as a function of v S
throughout the bound state region

—oo ~ ~S & m; +mj +mk .

They do not develop any singularity at VS =0 nor do
they contain any spurious bound-state solutions.

A different formulation of the relativistic three-body
problem independent of the Bethe-Salpeter equation has
been proposed by Vinogradov. " This approach is an ex-
tension of the formalism developed by Kadyshevski and
co-workers for the relativistic two-body problem to the
case of three particles. In this theory, all the particles are
kept on their mass shells at every stage, so that no need
arises for a Blankenbecler-Sugar reduction. The resulting
three-body equations have also as input the propagators of
the interacting pair D; (s; ) calculated from the Ka-
dyshevski equations [Eqs. (6)—(8)]. However, the
Vinogradov-Kadyshevski theory differs from our ap-
proach in that the three-body propagator

2(cog+coj+cok)[S —(co;+coj+cok) +le]
of Eq. (2) is replaced by the propagator ( V S —co;—Co —Cok + l E')J

Inherent in both approaches, however, is the feature
that the propagator of the interacting pair, given by Eq.
(6), does not satisfy the clustering property [as the propa-
gator of the original Eqs. (3) and (4) does]. Since the clus-
tering property is very important for scattering processes,
we will concentrate on it in the next section.

III. THE CLUSTERING PROPERTY

The loss of the clustering property may be very
dangerous for the scattering problem, because it means
that the poles of the two-body amplitudes corresponding

Solving this equation for q; and taking the derivative
gives the maximum value of q; for which the singularities
occur (the breakup threshold):

q;,„= [S—(m;+mzk) ][S—(m; —mzk)2], (11)

where

mjk ——mj+mk . (12)

Equations (11) and (12) mean that the maximum momen-
tum, for which the breakup singularities occur, corre-
sponds to the pair jk having an invariant mass

jk ~j+mk.
The pole due to a bound-state of the pair jk, on the oth-

er hand, is determined by the equation

VS =(m +q )'"+(co,„+q )'",
where

(13)

m.k ——nZ +mk —8J J

is the invariant mass of the bound state with binding ener-
gy 8. Solution of Eq. (13) for q; yields

q; = [S—(m)+cojk) ][S—(m; —cojk)2] . (15)

If we compare Eqs. (11)and (15) we see that the pole com-
ing from the two-body bound state is located at a higher
momentum than the logarithmic singularities of the
breakup channel. We also see that Eqs. (11) and (15)

I

to bound states are not at the correct position with respect
to the logarithmic singularities produced by the breakup
channel. The breakup singularities are determined by the
equations

v S =(m, '+q,')'"+(m,' +q,')'."+[m„'+(q, +q, )']'" .
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differ only in that the invariant mass of the pair is in one
case mjk and in the other case to)k [Eqs. (12) and (14)] and
they are separated precisely by the binding energy of the
pair 8. Thus, if the bound state of the pair jk has a very
small binding energy, as, e.g., for the deuteron, the break-
up singularities lie very close to the bound-state pole.

Therefore, it may lead to very large errors if the bound-
state pole is not at its correct position due to the loss of
the clustering property.

We have calculated the effective binding energy of the
deuteron in our theory by first searching the bound-state
pole of the Kadyshevski equation for q;&0

OO to, (p)+cok(p)
t (p'p";~~ q;)=I'(p'p")+, p'dp &(p 'tp)4, (p)~t, (p) I q'+ [~,(p)+~k(p)]'J '"

X 2 2 1/2 2 t;(p,p";~S,q; )~S —(m; +q; )'r2 —Iq; +[coj.(p)+co (p)] I
'~

and then using Eqs. (13)—(15) to find the effective value
of the binding energy B as a function of the kinetic energy
of the projectile (which is determined by ~S) for both
pion-deuteron and nucleon-deuteron scattering. These re-
sults are shown in Fig. 2 for our model of the SI- DI
nucleon-nucleon interaction. %'e see that the changes in
the effective binding energy are smaller than 0.1 MeV for
kinetic energies of the projectile up to 500 MeV in both
pion-deuteron and nucleon-deuteron scattering.

In order to estimate how these small changes in the
two-body binding energy will affect the three-body results
we calculated nonrelativistically the two-nucleon exchange
term for nucleon-deuteron scattering at TN ——500 MeV.
%e assumed that the 'So and 81 nucleon-nucleon chan-
nels were both equal to a Yamaguchi potential with form
factor g(p)=(a +p ) ', a=1.45 fm ' and the strength
adjusted such that the two-body binding energy is 2.225
MeV. We then repeated the calculation with the two-
body binding energy changed to 2.325 MeV. We found
that the magnitude of the nucleon-deuteron on-shell am-
phtude changed by 1.6% and the phase by 0.05 deg.
Similar changes were observed in the half-shell nucleon-
deuteron amplitude. Thus, we conclude that the errors
generated by the loss of the clustering property in our
theory or in the one of Vinogradov will be negligible for
most applications in medium energy physics.

IV. SEPARABLE POTENTIALS

In this section we present separable potentials fitted to
experimental phases in the context of the Kadyshevski
equation [Eq. (9)] for the nucleon-nucleon, pion-nucleon,
and pion-pion systems for partial waves up to angular
momentum L &2. To facilitate the use of these potentials
in three-body calculations we have kept the rank of the
potentials as low as possible and have used the same struc-
ture of form factors for all partial waves. For the masses
of the particles we have taken M =938.9 MeV for the nu-
cleon and IIt =139.576 MeV for the pion.

A. The nucleon-nucleon system

The introduction of relativity (in our case of the Ka-
dyshevski type) to the nonrelativistic equations results in
moderate changes of the phases due to the relative large
mass of the two nucleons (for the m-N and especially the
m-n. system the situation is different) Ther. efore the se-
parable potentials, constructed in the nonrelativistic
Lippmann-Schwinger equation, ' ' were an excellent
starting point for our parameter search. The parameters
were adjusted to reproduce the phases of the phase shift
analysis of Amdt et al. up to a laboratory energy of
E1ab +400 MeV.

I Se and St.(uncoupled) partial waves

2.30-

2.25-

2.20
0 2N

I

4N

Tg (NeV)

300 500

I I

500 8N

T~ (MIV) &(P P') =gl(P+Igi(P')+g2(P)~~2(P') . (17)

We find it useful to give a parametrization of the SI
wave in an uncoupled formalism in addition to the full
SI- DI coupled channel treatment because of the follow-

ing reasons: (i) three-body calculations are facilitated to
some extent in taking into account just the uncoupled S&
wave; (ii) this approximation is reasonable at low scatter-
ing energies since the coupling to the D1 state is weak.
The most important features of this state at low energies,
namely the binding energy and the scattering length, are
provided also by the uncoupled parametrization.

To generate the sign change of both the 'So and the 3SI
phase shifts, we are forced to use separable potentials of
rank 2

FIG. 2. The effective deuteron binding energy in the Ka-
dyshevski equation as a function of the kinetic laboratory energy
of the projectile for m.-d and N-d scattering.

The form factors consist of the sum of two Yamaguchi-
type terms
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TABLE I. Potential parameters of the 'Sp and S» (uncou-
pled) nucleon-nucleon partial waves {[A,;]=fmP, [a,j]=fm
[pi) =fm ').

180

A2

»»

&z»

22

»2

p2i
pu

'Sp

—1

1

5.240 525
2.003 268

170.8199
1S2.786 3

1.077 186
1.211067
3.797 065
2.262 703

3S

—1

1

7.767 139
—311.961 6

S.225 645
—17.07447

1.596483
5.968 069
8.015 881
1.793 468 .

120

100

6D g

20-

-20
0

~ z(p')'

( 2+p2 )I ( 2+p2 )l+ 1

In this case and in most of the following examples (except
some n.N states) it has turned out to be more effective to
add fractions with different powers of p within one form
factor rather than to take the sum of the same expres-
sions. The parameters of the 'So and S~ potentials are
given in Table I and the quality of the fit can be seen in
Table II (low-energy parameters) and in Fig. 3 (phase
shifts). The St potential gives rise to a binding energy of
2.225 MeV [experimental value Eb ——2.224579(9) MeV
(Ref. 23)].

I I I 1

$0 100 200 300 T„,(NeV).

FIG. 3. Nucleon-nucleon phase shift results of the separable
potentials for the 'Sp state ( —~ —- —.) and for the 'S» state
{ coupled channel calculation, —- uncoupled). The experi-
mental values are taken from the energy-dependent solution of
Amdt et al. (Ref. 20) ( S» state, 'Sp state).

reproduction of the above-mentioned data and complexity
of the potential, i.e., rank, structure of the form factors,
and number of parameters. Motivated by these considera-
tions we have taken over the form of the separable repre-
sentation of Ref. 18, namely the rank 3 potential Graz II:

~LL'(p p') = [goi (p),g02(p) g2(p)]~L

2. The Sq- Dq channel
~z goi(p')

X A, ) 1 A, 3 b,L, goy(p )

A3 1 g2(p')
This partial wave bears not only the difficulty of the

coupling of the S& to the D& state but also of the con-
nection to the only bound state of the two-nucleon system.
Therefore in addition to the scattering data (phase shifts
and effective range parameters) one has to also reproduce
the features of the deuteron like binding energy, quadru-
pole moment, and so on; furthermore recent experiments
on elastic electron-deuteron scattering have given some
constraints on the deuteron s-state wave function. In
building up a separable potential, especially for this chan-
nel, one has to find a compromise between quality of the

with

0
0

0
0
0

0 0
1 0
0 0

0 0
0 0
0

J,l 'C I0,2I (19)

- TABLE II. Effective range parameters {[a]=fm, [r]=fm)
for the 'Sp and S» (uncoupled and coupled) potentials. The ex-
perimental values are taken from Ref. 21 for the 'Sp case and
from Ref. 22 for the S» partial wave.

TABLE III. Potential parameters of the S»- D» nucleon-
nucleon potential.

»S
3S

(uncoupled)
S»

(coupled)

a exp pexp

5.41
5.423 +0.004

177.
1.76+0.005

—23.70 —23.721+0.017 2.65 2.658+0.062
5.41 1.76

'

k» ———0.841 108 fmP

A.2 ———2.005 440 fm
k3= 1.391032 fm
ap» =8.651 126 fm
~pa ——60.59593 fm
ag ——27.051 11 fm

yp ——1.255 738 fm. .

y2 ——2.495 738 fm
Pp, ——1.114786 fm
Ppg=2. 562780 fm
p2g ——3.983 242 fm
P2q ——0.877 584 fm
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FIG. 4. Mixing parameter ei and 'Di phase shift compared
with the values taken from the energy-dependent nucleon-
nucleon phase-shift analysis of Amdt et al. (Ref. 20).

FIG. 5. Nucleon-nucleon P-state phase shifts compared with
the results of the energy-dependent analysis of Amdt et al.
(Ref. 20) (the result for the 'I'] state is shown in squares).

and

aot(1+'Yop )
going»= P+ oi

2
&ozP

gozV»=
P + 02

g2V»=
a,'P'(I+y, p')

The parameters of this potential are given in Table III and
the results are very similar to the nonrelativistic case, i.e.,
bear the same merits and shortcomings: The S& phase
(see Fig. 3) and the effective range parameters (Table II)
are in sufficient agreement with the experimental data.
Figure 4 shows that the same holds for the Dt phase
shift. The mixing parameter ei, however, is much too
high even at low energies (although the experimental situ-
ation of e& is not satisfying '). The s-state wave function
fulfills the constraints of elastic e-d scattering, i.e., has a
node in momentum space at p =2.5 fm '. Further deute-
ron quantities are in fair agreement with experimental

data, namely the binding energy Eb ——2.224 MeV [experi-
ment, 2.224579(9) MeV (Ref. 23)], quadrupole moment
Qd ——0.294 fm [experiment, 0.285 90(30) fm (Ref. 27)],
the D state probability pD ——5.84% (experiment, 4—7%),
and D/S asymptotic ratio AD

——0.0252 [experiment,
0.0271(4) (Ref. 28)].

3. I' and D waves

We have found that rank-1 potentials [Eq. (1)] are suffi-
cient for a good reproduction of the 'P&, P&, P2, 'D2,
D2, and D3 phase shifts. The general structure of the

form factors can be written as

gib»=P' (Xi &2P
2

(P +2P2 ) +11
(P +2P2 )L +2+ (21)

The Pq phase, which is part of the coupled P2- F2 chan-
nel, is fitted in the uncoupled formalism; the arguments
which we have given for the uncoupled treatment of the
S& state hold much more for this case since the coupling
in the P2- F2 state is even weaker. The parameters for
these potentials are given in Table IV and the phases in
Figs. 5 and 6.

TABLE IV. Potential parameters of the nucleon-nucleon potentials in the 'P„P&, P2, 'Dz, Dz, and D3 states. ([A,]=fm,
[a;]=fm i ', [P;]=fm '.)

CXi

a2
Pi
P2

1p

1

104.810 1

96.685 22
2.485 827
2.956462

3p

1

4.393 864
139.975 5

0.936 789 8
2.089 377

3p

—1

15.142 28
158.854 3

1.707 357
2.857 207

—1

674.982 8
—179.267 5

2.524 152
1.655 343

—1

513.690 7
—156.741 7

2.108456
1.438 310

3g)

—1

357.476 6
—111.478 5

2.645 580
2.065 807
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TABLE VL Potential parameters ([A,]=fm, [u;]=fm
[P;]=fm ') for five different models of the pion-nucleon P33
state.

15- B
C
D

0.086 742 43
0.193035 5
0.229 146 3
0.232 170
0.209 892 7

36.805 16
74.863 41

133.829 3
193.675 2
395.078 1

0.476 406 4
0.842 826 1

1.015084
1.097 141
1.209 289

10.135 38
20.270 76
35.473 82
50.676 89

101.353 78

Because of the more complicated structure of the Po
phase (sign change at 210 MeV) we have to use a rank 2
potential [Eq. (17)J. The form factor g&(p) is given by Eq.
(21) and

( )= Cx3p
gee =( 2 p2)3

~ (22)

The parameters are stated in Table V and the phases can
be seen in Fig. 5.

B. The pion-nucleon system

For the pion-nucleon interaction we have also con-
sidered all S, P, and D waves; the fits are performed up to
E~,b&350 MeV, and the comparison of- our results is
made with the phase shifts given by Rowe et al. , if not
stated otherwise. The phases of most importance and in-
terest concern the P33 and P~~ states, wherefore we will
discuss these cases separately.

I. P33 state

Because of the b, resonance present in P33, this partial
wave is by far the most important one in the pion-nucleon
system; a great deal of three- and more-body calculations
including pions have been performed just taking into ac-
count this channel. This was also the reason why the au-
thors have constructed energy-independent separable pa-

200 T (g y)
300

FIG. 6. Nucleon-nucleon D-state phase shifts compared with
the results of the energy-dependent analysis of Amdt et al.
(Ref. 20).

rametrizations of the P33 wave. Since it was found to be
very fruitful to study three-body systems with different
parametrizations for the most important m-N channel, we
have given five potentials with the following form factor:

T

CX) CXp2+,P+ i P+ 2

but with varying range of the second term (P2). All of
these five parametrizations give essentially the same phase
shift up to E&,b

——300 MeV. For completeness we repeat
the parameters in Table VI; for a more detailed discussion
of the features of these potentials we refer to Ref. 9.

2. Pq& state

The P~& state is characterized by the nucleon pole at
~S =M (the residuum of the scattering matrix at this
point should yield the pion-nucleon coupling constant)
and by the small negative phase shift below T~,b=170
MeV. Among others Mizutani et al. have attributed
this latter feature to an almost cancellation of two parts,
namely the so-called pole and nonpole terms, and they
have built up a potential along this line.

As with the P33 channel most of the separable poten-
tials so far have been constructed with an energy-
dependent coupling constant. For the reasons discussed in

I

16I

14-

12-

10-

4-

TABLE V. Potential parameters of the Po nucleon-nucleon
state.

0
100 200

I

300

T(oh (MeV)

A, i =.—1 fHl
A.2

——1 fm'
a])——2.072365 fm
ai2=21 283 24

a2 ——459.259 6 fm
P)) =0.7931494 fm-'
P),=1.330105 fm '

p2 ——2.769283 fm

-4--

FIG. 7. Pion-nucleon P]~ phase shift compared with the re-
sults of the analyses of Zidell et al. (Ref. 33) (squares) and
Rome et al. (Ref. 29) (triangles).
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TABLE VII. Potential parameters of the pion-nucleon P~~

state and the resulting scattering volume (in units of the pion
mass) compared with experimental results.

20

k] ———1 fm'
A,2=-1 fm'
a[i= —2390 1474 fm
a» ——13592.536 fm '

a,=245.3575 fm-'
Pii=8. 845090 fm
pi3 ——7.731272 fm

p3 ——2.748 874 fm

10-

a =—0.114

' —0.047+0.004 {Ref. 29)
O'"P= —0. 133+0.004 (Ref. 33)

—0.108+0.004 (Ref. 33)

-10-

Ref. 31 we prefer an energy-independent potential, but be-
cause of the complexity of the phase we have to take it of
rank 2 [Eq. (17)]. The form factors are the same as for
the Po nucleon-nucleon case [Eqs. (21) and (22)].

Similar to Schwarz et al. and Mizutani et al. it was
not possible with our chosen form to fit simultaneously
the phase shifts of Rowe et al. (including the scattering
volume) and the pion-nucleon coupling constant: with
phases in agreement with lowe es al. the coupling con-
stant was too low at least by a factor of 2. All of these
model calculations favor a larger negative scattering
volume and consequently larger negative phase shifts at
low energies. This behavior is the outcome of a phase
shift analysis of Zidell et al. and thus we have used
these phases as the basis of our search.

The parameters of the final fit are given in Table VII,
together with the resulting scattering volume compared to
some experimental values. The phase shifts are shown in
Fig. 7 together with the phases given by Zidell et al. and
for comparison also with those given by Rowe et al.
The value f =0.079 of the calculated pion-nucleon cou-
pling constant is in agreement with the experimental value
(0.078 &f &0.08).

-30 l I

50 100 200 300 T„,(MeV)

FIG. 8. Pion-nucleon S- and P-state phase shifts compared
with the results given by Rowe et aI. (Ref. 29).

Q] CX2

g(p)= 2, +
P +Pi JP +Pi

(24)

whereas for S» one term was sufficient.
For the "small" P waves, P~3 and P3~, we have taken

the form given by Eq. (23), but for the Pii case, again the
first term alone already produced satisfactory results.

3. S, P~3, P3~, and D waves

For the S waves it was possible to reproduce the experi-
mental phases by simple Yamaguchi form factors. For
the S3~ wave two terms were needed,

TABLE VIII. ,Potential parameters ([A,]=fmo, [a]=fm 3 for S and D waves and [a]=fm ' for P
waves, [P]=fm ') for S, P, and D waves for pion-nucleon scattering. The resulting low energy param-
eters {in units of the pion mass) are compared with the results of Rowe et aI. {Ref.29) with the excep-
tion of the D33 and D35 waves [Zidell et al. (Ref 33)]. .

a&

Pi
a2

—1

14.645 36
3.500 613

1

95.425 19
5.560 206 6

—3.13741
1.355 239

—1

10.402 29
3.963 433

—2.311011
5.583 776

1

13.079
3.496

a
a exP

0.187
0.185+0.008

—0.094
—0.098+0.003

—0.014
—0.13+0.002

—0.032
—0.029+0.002

D[5 D35

—1

364.057 3
7.065 765

—1

10.891 93
2.607 608

—1

2.180775
1.790 54

1

7.525 454
2.280914

a
a~p

0.0014
0.0013+0.0005

0.0014
0.0012%0.0005

—0.0011
—0.0010+0.006

—0.0019
—0.011+0.002
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120-
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100
I
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T(ob(MeV)

FIG, 9. Pion-nucleon D-state phase shifts compared with the
results given by Rowe et al. (Ref. 29) (triangles) and by Carter
et al. (Ref. 35) (squares).

All D waves (Di3, Di5, D33 all'd D35) were fitted with
one term

apg(p) = (25)(p'+P')'
Since ihe D33 and D35 waves are not given by Rome
et a/. , we used the phase of Carter et a/. for these two
cases.

The parameters of the potentials are given in Table VIII
together with the resulting low-energy parameters and the
theoretical phases are compared to the experimental data
in Figs. 8 and 9.

C. The pion-pion system

In contrast to the nucleon-nucleon and to the pion-
nucleon system there exist just five partial waves with an-
gular momentum L &2 and the results of the phase shift
analyses are connected with larger error bars. Since the
phases do not show any complicated structure, we suc-
ceeded with separable potentials of rank 1 to reproduce
the experimental phases. The expression of the form fac-

20-

400 500 @+ 700 800 909 1000

lls (Mev)

0-29-

FIG. 11. Pion-pion S-state phase shifts compared with the
results given by Frogatt et al. (Ref. 39).

tors is given by Eq. (21) for L =0, Eq. (23) for L =1, and
Eq (25).for L =2.

1. Sq blaue

Like the dominant 833 wave with the b resonance in
the m.-N system, the 5i wave in the nmintera. c-tion is
governed by the existence of the p resonance at
v s =769+3 MeV. 3 Among the various phase shift anal-
yses, which differ just slightly, we have chosen the solu-
tion of Protopopescu since it reproduces the mass of the
p resonance better than the other solutions.

The result of our parameter search can be seen in Fig.
10, and the corresponding low energy parameter together
with the potential parameters are listed in Table IX. The
resonance is located at 770.6 MeV and the width at = 160
MeV, which is in accordance with experimental data.

15

140-

10-

100-

5-

I I I I

500 600 100 800 900 1000 ~s~eeV~

FIG. 10. Pion-pion P-state phase shift compared with the re-
sult given by Protopopescu (Ref. 37).

0

5
3 I 1

809 900 1000 Ps (NleV)

FIG. 12. Pion-pion D-state phase shifts compared with the
results given by Basdevant et al. (Ref. 40).
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TABLE IX. Potential parameters ([A]=fm, [a;]=fm, [P;]=fm ') of the S, P, and D states
of the pion-pion interaction, ' the resulting low energy parameters (in units of the pion mass) are com-
pared with the experimental data of Rosse1at et al. (Ref. 38).

Ai

Pi
CX2

Pz

—1

60.263 75
11.708 48

331.754 9
7.331 817

1

9.281 88
5.086 58

13.959 35
2.469 03

$2

—1

247.296 62
44.718 831

—31.789 013
13.017966

g0

—1

284.862 5
7.322 809

Q2

1

489.288 9
10.051 82

a
a cxP

(Ref. 38)

0.26
0.26JO. 05

—0.029
—0.028 +0.012

0.041
0.038+0.002

10X10-'
(17+4)~ 10-'

—1.3~10-4
(1.3+3)~ 10

2. 50 wave

The behavior of this wave at higher energies (see Fig.
11) is characterized by a steep increase of the phase shift
connected with the KK threshold. Since we stick to an
elastic treatment of the phases throughout this paper, it
was not possible to reproduce the behavior above
v S =900 MeV with our formalism. Below this energy
we could get satisfactory agreement with the phases given
by Frogatt and Petersen (see Fig. 11), and also the
scattering length is in accordance with the experimental
value (Table IX). The potential parameters are also given
in Table IX.

3. 5~ 52, and 52 waves

These phase shifts are smaller than the other
phases by a factor of 10 at least and do not show any spe-
cial structure below VS =900 MeV. for 52 and 5z a rank
1, single-term, separable potential yielded a sufficient
reproduction of the experimental data; for 6o, however, a
second term was needed. The basis of our parameter
search was the results of Frogatt and Petersen for 5o and
of Basdevant et a/. for 52 and 52, and the parameters of
the fits are given in Table IX, and the results are shown in
Figs. 11 and 12 and in Table IX.

V. CONCLUSION

Though the relativistic three-body formalism given by
Aaron, Amado, and Young was used with great success in
the scattering domain, it leads to an unrealistic behavior
below threshold and gives rise to spurious bound states.
To overcome this disadvantage the authors have proposed
modified equations which still satisfy relativistic three-
body unitarity and are Lorentz invariant. The spurious
bound-states disappeared, but —as in the case of the simi-
lar Vinogradov equations —the so-called clustering prop-
erty has been lost. However, we have shown in this paper
that the errors connected with the loss of the clustering
property are small in the energy range, where usual three-
body calculations are performed.

Contrary to the Aaron, Amado, and Young formalism,
where the two-body input is given by the Blankenbecler-
Sugar equation, in our case (as well as in Vinogradov's
theory) the two-particle subsystems have to be calculated
in the framework of the Kadyshevski equation. Therefore
we constructed separable potentials for the nucleon-
nucleon, pion-nucleon, and pion-pion systems. To facili-
tate the use of these potentials in three-body calculations
we kept the rank of the potentials as low as possible: rank
3 for the coupled S~ D~ NN chan-nel, rank 2 to permit
phase shifts to change sign, and rank 1 elsewhere. The ex-
perimental phase shifts and other properties of the specif-
ic states are reproduced in a satisfactory way, in general.

As a by-product of the parameter search we can
strengthen the finding of Schwarz et a1. and Mizutani
et ai. that in the m.-N P]~ channel small values of the
phase shift and of the scattering volume as given for ex-
ample by the solution of Rowe et al. are incompatible
with the experimental value of the pion-nucleon coupling
constant. This statement holds at least for the case of se-
parable interactions.

We emphasize that it is the first time that separable po-
tentials in a specific framework, namely the Kadyshevski
equation, are given for the three different systems involv-
ing nucleons and pions and for all S, P, and D partial
waves. Therefore it is now possible to perform three-body
calculations in the scattering as well as in the bound-state
domain in a relativistic manner for all systems consisting
of pions and nucleons. In a forthcoming paper' we shall
discuss the possible existence of bound states or reso-
nances in the ~NN channels, with isospin 0 and 2, but
also the m NN isospin 1 resonances (the so-called dibaryon
resonances) should be interesting to discuss in our formal-
ism. Last but not least, a study of possible resonances of
systems with more than one pion, namely. mm. N and mum,
also provided by our formalism and the given potentials,
could bring up new interesting features.
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