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Optical model plus resonance analysis of ' C + ' C elastic scattering
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Elastic scattering excitation functions for the ' C + ' C system have been measured at 12 selected
center of mass angles between 30.0' and 90.0 over the center of mass energy range 17.5 to 21.5 MeV
in 100 keV steps. The elastic scattering excitation function data have been analyzed with an optical
model plus multilevel resonance calculation. The extracted spins for the intermediate structure reso-
nances at 18.3 and 19.2 MeV are 12+ and 12+. The structure at 20.2 MeV is due to at least two lev-
els which we have assigned spins of 12+ and 14+.

INTRODUCTION

Elastic scattering measurements for the ' C+ ' C sys-
tem have been made over a wide range of bombarding en-
ergies. ' ' The usual technique used to extract J values
for the intermediate structures observed in the elastic
channel has been to apply a phase shift analysis to elastic
scattering angular distribution data.

The total reaction cross section" for the ' C + ' C sys-
tem exhibits three prominent peaks at E, =?8.4, 19.3,
and 20.3 MeV, which correlate well with peaks observed
in the 90.0 degree elastic scattering excitation function
data. ' In Fig. 1 our 90.0 degree elastic scattering data are
compared to the total reaction cross section data of Ref.
11.

Recently, Ledoux et a/. have measured extensive angu-
lar distribution data at 100 keV intervals for energies be-
tween E, =17.8 and 21.4 MeV. After applying a
phase shift analysis to their elastic scattering angular dis-
tribution data Ledoux et al. concluded that the reso-
nances at 18.4 and 19.3 MeV were spin 12+, while the
third resonance at 20.3 MeV was given an ambiguous as-
signment of 12+ or 14+. To obtain these spin assign-
ments it was necessary that they ignore the elastic scatter-
ing data at angles forward of 40.0 degrees, since they
could not simultaneously fit the forward and backward
angle data.

Using a modified phase shift analysis and the same an-
gular distribution data, Lee et al. arrived at spin assign-
ments of 14+ for the resonances at 19.3 and 20.3 MeV. s

The main difference between this analysis and the analysis
of Ledoux et al. is that Lee et al. obtained their non-
resonant phase shift parameters from an optical model,
using a double-folded real potential.

A phase shift analysis of heavy ion elastic scattering an-
gular distribution data has a number of problems. A ma-
jor concern is the strength of the resonances, Heavy ion
resonances typically have I,~/I &0.25, which means that
a given resonance does not have as large an effect on the
angular distribution as one would like. Another problem
is the fact that a large number of parameters (phases and
amplitudes for a large number of partial waves) are need-
ed to fit each angular distribution at each energy. Good
fits can be obtained with very different sets of parameters,
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FICx. 1. Total reaction cross section (Ref. 11), together with
90' elastic scattering excitation function data from this study.
The curve is to guide the eye.

and therefore some assumptions must be made when
. choosing between solutions.

The aim of the present work is to investigate the possi-
bility of obtaining more definitive spin assignments for
resonances in the ' C+ ' C system from the analysis of
elastic scattering excitation function data. Application of
the R-matrix theory results in an optical model back-
ground plus multilevel resonance (OMMR} description of
the elastic scattering excitation function data. The major
assumption of this description is that the nonresonant
background is described by the optical model. An
OMMR analysis has a number of problems of its own. It
is difficult to judge whether the background description is
adequate; also as the number of resonances of the same
spin becomes large, so does the number of parameters
needed to describe the data. An attractive feature of exci-
tation function data is that the contribution of certain res-
onances can be eliminated by measuring the excitation
functions at the zeros of the appropriate Legendre polyno-
mials, thereby obtaining simplified subsets of data. Also
the effects of a relatively weak resonance in an excitation
function are often obvious, where they might be unnoticed
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in angular distribution data.
In this paper we report on the measurements and

analysis of elastic scattering excitation function cross sec-
tions spanning the energy range E, =17.5—21.5 MeV
for angles between 8, =30.0' and 90.0'. The excitation
functions were measured at 12 angles, including angles
which correspond to zeros of Legendre polynomials,
PI(cos8) =0, for /=10, 12,14,16. The analysis of the data
with an OMMR code is presented. The region of energy
17.5—21.5 MeV was chosen for this study because of the
three large, reasonably well isolated peaks observed in the
total reaction cross section (see Fig. 1). This suggested to
us that the elastic scattering data in this energy range
might be described by a calculation which contained as
few as three resonances.
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EXPERIMENTAL PROCEDURE

The Florida State University FN tandem accelerator
provided ' C beams at energies from E~,b ——35 to 43 MeV
for elastic scattering excitation function and angular dis-
tribution measurements on ' C targets. The excitation
function data were recorded in 200 keV intervals from 35
to 43 MeV, using natural self-supporting ' C targets hav-
ing an areal density of =30 pg/cm (AE, m =50 keV).
The angular distribution measurements were recorded us-
ing thicker targets of =150 pg/cm (hE, ~ =300 keV) at
energies of 35 and 43 MeV.

The elastically scattered ' C nuclei were stopped in a
surface barrier detector located 22 cm from the target.
The absolute detector angle must be known very accurate-
ly because the magnitude and energy dependence of the
elastic scattering differential cross sections change rapidly
with angle, particularly near the zeros of I'I for any of the
resonant / values. Placement of the detector was very
carefully checked by elastically scattering 20 MeV ' 0
ions from ' Au targets and comparing the yield at nine
angles between 8, =30.0' and 110.0 to Rutherford
scattering calculations. The angle placement was found to
be accurate to +0.1 degree.

The 1 mm by 5 mm rectangular detector collimator
limited the acceptance angle in the reaction plane to 0.25'
for excitation function measurements at angles corre-
sponding to zeros of P~. The angular acceptance of the
detector was limited to 0.5' at all other angles. The col-
limation of the beam at the entrance to the scattering
chamber was provided by two circular coBimators 1.6 mm
and 0.8 mm in diameter. The smaller collimator was
nearest the target and separated from the entrance colli-
mator by 30 cm. Each of the defining collimators was
followed by an antiscatter slit. This arrangement gave a
beam spot on target of approximately 1 mm diameter.
The small beam spot size, combined with the small angu-
lar acceptance of the detector, led to a sufficiently small
value for the angle averaging in the detector so that the
measured energy dependence of the excitation functions
was not affected by it, even near the zeros of I'I for
resonant values of /.

A fixed-angle monitor with an acceptance angle of 0.9
(laboratory) was placed about 20 cm from the target. The
monitor laboratory angle was either 20.0' or 15.0'. The
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FIG. 2. In the upper panel, monitor excitation function yield
curves are compared for seven excitation function measure-
ments. The monitor angle was 0, =40.0'. The lower panel
shows a comparison of two excitation function measurements
with the detector at 50.0'.

beam line collimation proved to be adequate for the pur-
pose of minimizing changes in the beam spot position on
target, and minimizing changes in the effective beam an-
gle due to focusing. The effectiveness of this arrangement
is largely due to the fact that the quadrupole lens nearest
to the scattering chamber is located 6 m upstream. In the
case where the beam is displaced 1 cm off axis at the
quadrupole, the resulting change in beam angle is about
0. 1'. The effectiveness of the beam line collimation is
demonstrated by the reproducibility of the monitor and
detector excitation function yield curves displayed in Fig.
2.

Repeat measurements were performed at widely spaced
energy intervals for each excitation function in order to
obtain the relative rates of carbon deposition on the tar-
gets. The rate of carbon buildup was usually between 1.5
and 3 pg/cm over the course of a single excitation func-
tion measurement. All data presented in this paper have
been corrected for target thickness increase due to carbon
deposition on the targets. Angular distribution cross sec-
tions were measured at the beam energies E~,b ——35 and 43
MeV. The angle range of these measurements spanned
8~,b ——5' to 45' in 1' increments. The acceptance angle of
the detector was 0.46', and the accuracy of the angle set-
ting was determined to be +0.2 by comparing the calcu-
lated Rutherford scattering cross section to the elastic
yield for 20 MeV ' 0 projectiles scattered from a ' Au
target.
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The absolute cross section normalizations were obtained
by scattering 20 MeV ' 0 nuclei from the carbon targets
and comparing the elastic scattering yield at forward an-
gles to Rutherford scattering calculations. The absolute
cross sections are believed to be accurate to + 10%.

THEORETICAL CONSIDERATIONS

The differential elastic scattering cross section for spin
zero identical particles is given by'

f„(8)+f„(~—8)= —g (2l+1)2

1=even

Sg —1

2l

Xe '&~(cos8),

where the P](cos8) are the Legendre polynomials, the
co](E) are the Coulomb phase shifts, k is the wave num-
ber, and the S1(E) are the elastic scattering matrix ele-
ments.

Following the suggestions of Lane and Thomas' the
scattering matrix S](E) is divided into an optical model
term which describes the average energy dependence and a
second term which describes the resonance. Using the
treatment of Robson and Lane' ' the elastic scattering
amplitude is written as

~]=~]+ e ' '
&3.„(I'u,! 11,!,)"~3! . (2)

Here SI represents the energy averaged backgroundb

scattering amplitude. In the formula for the resonant am-
plitude, P~ is the resonance mixing phase, g'! is the real
part of the background phase shift, and the elastic partial
width for a particular level A, is given by I q], !. The level
matrix A is given for the one- and two-level cases by Lane
and Thomas. ' The three-level formula given by Lane
and Thomas is incorrect. Using the notation of Lane and
Thomas the correct formula is

D =E]6263—E]423—62113—63412
—21]2413523,

2 2 2

2D/I ]] —e2E3 $23

2
DA22 =6]63—$13 ~

2

D~ 12 D~21 412&3+f]3123

d~
=

I fc(8)+fc(~ 8)+—f.(8)+f.(~ 8)
I

'—,

where fc(8) is the Coulomb scattering amplitude and
f„(8) is the nuclear scattering amplitude. The sym-
metrized nuclear elastic scattering amplitude is expressed
as

E

hy, = —~3.p+ I 3,p2

E]„represents the resonance energy for level A, ,
represents the elements of the shift matrix, I 3„represents
the total widths, and E represents the energy.

To reduce the complexity of this expression the mixing
phase and widths I' are assumed to be independent of en-
ergy, and the shift matrix 5 is set to zero.

The background scattering amplitude is given by

b 2i5(
S) ——e

where

~l El+4! .

The complex phase shift 5! is obtained from an optical
model. Both g'! and g! are real.

The initial values of the background scattering ampli-
tude of Eq. (2) were obtained from optical model fits to
the angular distribution data measured at the energies
E],b ——35 and 43 MeV (E, =17.5 and 21.5 MeV). Since
the optical potential needed is one which describes the en-
ergy averaged behavior of the ' C + ' C elastic scattering,
the angular distribution measurements were performed
with thicker targets to provide some averaging over the
beam energy. The targets were =150]Mg/cm thick, pro-
viding AE, =300 keV.

Because it is not known what the correct energy aver-
aged background should be, several different optical po-
tentials were used in conjunction with the resonance
analysis. The elastic scattering angular distribution data
were fitted with a variety of potential forms, given in
Table I.

The best fit which could be obtained with potential
form 1 gave an unphysical result for the imaginary dif-
fuseness. The problem was avoided by adding angular-
momentum-dependent absorption. ' However, the only
way the data could be fitted simultaneously at 17.5 and
21.5 MeV was to allow for an energy dependence in the
depths of the real and imaginary potentials. A linear en-

ergy dependence was assumed. Similarly, energy depen-
dences were also needed for potential forms 2, 3, and 4.

The angular distribution data were best described by
potential form 5. Phenomenologically, the Woods-Saxon

TABLE I. A list of the background potentials which have
been used. The numbers are referred to in the text. WS
represents the Wood-Saxon form factor, WS' represents the
Wood-Saxon derivative form factor, WS~ represents the squared
Wood-Saxon form factor, and df represents the double folding
potential (Ref. 30).

D~ 13 —D~ 31 —413~2+412k23 t

D~23 D~32 k23~1+412413 ~

where

Potential
number

I
2
3
4,

5
6

Real
potential

WS
WS
WS
WS
WS
df

Imaginary
potential

WS
WS'
WS
WS'
WS
WS

l dependence

no
no
yes
yes
no
no
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FIG. 3. The elastic scattering angular distribution for
E, =17.5 and 21.5 MeV is plotted. The solid curve is from an

optical model calculation using potential form 5 {Table IV). The
optical potential parameters are obtained from the best fit to the
elastic scattering excitation function data.

O. I

squared real potential is similar to the real potential ob-
tained from a folding model. ' Potential 5 was found to
require no energy dependence of the potential parameters
over the 4 MeV energy span of the calculations. The an-

gular distribution data are plotted in Fig. 3. The solid
curve is due to an optical potential of form 5 (Table IV).
This potential is the one obtained by fitting the full set of
elastic scattering excitation function data with the full'

OMMR calculation.
In the next section we discuss the analysis of the excita-

tion function data with the OMMR formulation. The
computer code written to aid in this analysis allows
searching on the background potential parameters as well

as the resonance parameters. The parameters for the vari-
ous optical potentials, obtained by fitting the angular dis-
tribution data, were used as starting parameters in the fit-
ting procedure. The calculation time of the OMMR code
was reduced significantly by taking advantage of the fact
that the optical model phase shifts and amplitudes are at
worst quadratically energy dependent over the 4 MeV en-

ergy interval of this study. Rather than calculate the opti-
cal model S matrix at every energy for an excitation func-
tion, the optical model S-matrix elements were calculated
at five evenly spaced energies and then interpolated for
other energies as needed, reducing the calculation time by
an order of magnitude.

RESULTS AND DISCUSSION

In the energy region 17.5 to 21.5 MeV, three large
(=100 mb) peaks are observed in the total reaction cross

Table II. Resonances obtained from the literature for the
' C+ ' C system between the energies of 17.5 and 21.5 MeV

(c.m. ).

&..m.

(MeV)

17.78
17.9
18.4
18.4
18.4
18.5
18.5
18.6
18.6
18.8
19.0
19.1
19.2
19.3
19.3
19.3
19.3
19.3
19.4
19.6
19.8
20.4

500
340+60
400+30

450

375+100
300
500

310+60

300+30
230

12+
12+

12+
10+
12+

' 12+, 14+

12+

12+
14+

12+, 14+

Exit
channel

a
12C

'Be

'Be
'Be

a
12C

12C+

p
d

'Be
12C

12C

Reference

23
29

29,25
7

23
26
28
29
23
23

27,29
20
22
7,8
20

18,19,21
21
24
29
23

8
7,8

section. " The peaks are observed to correlate with peaks
in the 90.0' excitation function in the elastic channel. ' It
is tempting to assume that each of these bumps is due to a
single resonant state. However, reaction data in this ener-

gy range show many resonances, so this assumption is not
a safe one. In Table II a compilation ' ' of resonance
spins, energies, and widths from previous work for the en-

ergy interval 17.5—21.5 MeV is presented. The reported
resonances are listed by energy and exit channel in which

they were observed. Where more than one reference is
given, the resonance was observed in the same channel by
different authors. Clearly, some of the structures reported
at or near the same energy in different exit channels must
be due to the same resonance. Even so, there appear to be
about a dozen different resonances reported in this energy
range. The complexity of the analysis required in the
present work will lie between two extremes. In one ex-
treme, only three of the resonances in Table II might con-
tribute significantly to the total reaction cross section. In
the other extreme, many of the resonances in Table II
might have a significant effect on the total reaction cross
section. In the former case it should be possible to
analyze the elastic scattering data with an optical model

plus resonance calculation. In the latter case such an
analysis will not be tractable.

A natural simplification of the elastic scattering excita-
tion function data occurs when the scattering angle corre-
sponds to a zero of the Legendre polynomial for one of
the resonant partial waves. Excitation function data mea-
sured at these angles will have no contributions from that
partial wave [see Eq. (1)]. In this work, excitation func-
t1ons have been measured at six angles corresponding to
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the zeros of P&2 and P,4, since the reported resonances are
predominantly spin 12 and 14. An excitation function
was also measured at a single angle which corresponds to
a zero of both P~p and P,6. These data are shown in Fig.
4

Pto, )6=0 30.0-
200-

E
tt tl

100-
bo

0 I I I I I

17.5 185 19.5 20.5 21.5
E., (Mev)

FIG. 4. The ' C+ ' C elastic scattering excitation functions
are displayed for angles corresponding to zeros of P~(cos8), with
I= 10,12,14,16.

three excitation functions were obtained for resonances
having l =10 or 14 with a resonance energy of 20.2 MeV.
The fits were almost identical for these two spins. It hap-
pens that the value of (21+1)

1
Pi(cos8)

l
is approximately

the same (within 15%) for 1=10 and 14 at the angles
40.0', 54.0', and 68.4'. When all of the data are con-
sidered, the /=10 assignment is eliminated because the
calculation gives poor fits at most other angles. In partic-
ular, the calculation for 8, =90.0 gives a dip, when
l =10 is assumed, where the data clearly indicate a peak.
With a 14+ resonance assumed, the best fit obtained to
the data at the zeros of P&z is shown as a solid line in Fig.
5. The calculation reproduces the structure at 20.2 MeV
for the angles 8, =40.0' and 68.4', but the calculated
shape for the angle 8, =54.0' does not reproduce the
data as well. To check if this problem is due to angle
averaging of the elastic scattering excitation function data
(because of the finite size of the detector collimator and
beam spot), the calculated differential elastic scattering
cross section was integrated over the experimenta1 angle
spread (b,8, =0.9'). Assuming unit weighted contribu-
tions from all angles inside the limits of the experimental
angle spread resulted in negligible changes in the calculat-
ed excitation function.

.Another candidate for the cause of the discrepancy be-
tween the calculation and the data at 8, =54.0 is the
optical model description of the energy averaged back-
ground. For the calculations which have been discussed
so far, the background was described by potential form 5

The excitation function data displayed in Fig. 4 for the
angles 8, =40, 54.0', and 68.4' are measured at zeros
of P~q. The data show rather smooth behavior near 18.3
and. 19.3 MeV, yet at 20.3 MeV a strong anomaly is still
present. Since the excitation function data at all other an-
gles exhibit strong resonant behavior near the energies of
18.3 and 19.3 MeV, it is appropriate to start by assuming
that there are 12+ resonances near 18.3 and 19.3 MeV,
just as I edoux et ar. ' reported.

Structure is observed near 20.3 MeV for angles which
correspond to zeros of P,z, P&4 and the zero of P~p ~6. Be-
cause structure appears at these angles, and in fact at all
measured angles, it appears that there are at least two res-
onances with different spins near 20.3 MeV. A less likely
alternative is that the structure at 20.3 MeV is due to a
single level with I &8 or 1~16. This latter alternative
was eliminated by corriparing the data near 20.3 MeV
with calculations assuming single resonances of very low
or very high spin.
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ANALYSIS OF DATA
AT THE ZEROS OF Pi2

In an effort to obtain the spins of the resonances contri-
buting to the anomaly at 20.3 MeV, an optical model plus
single level analysis was performed on the data measured
at the zeros of P&2. Using potential form 5 as the back-
ground, several different mixing phases were chosen for
the initial set of resonance parameters and spins between
l =6 and 18 were tried. The only acceptable fits to these

o

I I0
l8 i9 20 2i

(MeV)
FIG. 5. Elastic scattering excitation functions for three zeros

of P» are displayed. The solid curve is an optical model plus
single-level resonance calculation using a WS +i(WS) optical
model background (potential 5 of Table I). The dashed curve is
the result of the calculation using a double-folding background
(potential 6 of Table I). The single level was located at 20.2
MeV with i=14.
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because this potential best fit the angular distribution data
at 17.5 and 21.5 MeV, and also because the potential pa-
rameters were found to be energy independent over the 4
MeV energy interval of the excitation function data. To
see if the choice of background potential form makes a
difference in the calculation, several other optical model
potentials were used in the fitting of the data at the zeros
of Pi2.

Using potential form 6, which has a double-folding real
potential, data measured at the zeros of Pi2 were fitted
with the optical model plus a single level. The starting
resonance parameters for this analysis were obtained from
the earlier calculation using potential 5. The fit to the
data at the zeros of Pi2 with the double-folding back-
ground potential is displayed as a dashed line in Fig. 5.
The calculations with potential forms 5 and 6 are similar.
The only significant difference between the calculations is
in the shape of the resonance around 20.2 MeV for
8, =54.0'. The folding potential results in a fit which
better describes the behavior of the data at the resonance.
It appears that some differences in the calculated reso-
nance shapes can be caused by differences in the back-
ground description.

ANALYSIS OF DATA
AT THE ZEROS OF P(4

The data at the zeros of P~4 were analyzed with an op-
tical model plus three-level formula, using potential form
5. Resonances with /=12 were assumed to exist near
18.3, 19.3, and 20.3 MeV. The I =12 assignments for the
resonances at 18.3 and 19.3 MeV follow from the earlier
discussion of the data measured at zeros of Piz. The
structure near 20.3 MeV was assumed to have spin 12+
because this structure behaves much like the resonances at
18.3 and 19.3 MeV for the three zeros of Pi4. These as-
sumptions were tested by trying other spin assignments
for the resonances. The initial values of the total widths
were obtained from peak width estimates from the total
reaction cross section data. Initially, calculations were
done with the interference widths set to zero, effectively
reducing the three level formula to the sum of three
single-level formulae, with all resonances having the same
mixing phase. Once the fit converged, all of the reso-
nance parameters were allowed to vary. The best fit to
this subset of data is displayed as a solid line in Fig. 6.
The data are described rather well around the resonance
energies of 18.3 and 19.3 MeV, but the calculation fails at
the higher energies. Assuming the structure near 20.3
MeV to have spin 10+ or 16+ gave poorer fits to this sub-
set of data and led to severe inconsistencies between the
calculation and data at other angles.

The resonant mixing phase for the three-level formula
was allowed to vary linearly with energy. The best fit ob-
tained with the variable mixing phase was not better than
the previous calculation with a constant mixing phase.

Checking the effects of changing the background
description, the data at the zeros of P&4 were fitted again
using potential form 6 and three 12+ resonances. The re-
sults, shown as a dashed line in Fig. 6, were encouraging
because the shape and sense of' this calculation reproduced
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10—

0

e
t

I
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FIG. 6. Elastic scattering excitation functions measured at

angles corresponding to zeros of P~4. The curves are from opti-
cal model plus resonance calculations assuming three i=12+
resonances at 18.3, 19.2, and 20.2 MeV. The solid curve was ob-
tained with potential 5 of Table I as background, the dashed
curve with potential 6 of Table I.

the earlier calculations with potential form 5 as the back-
ground. However, the folding potential calculation did
not reproduce the average magnitude of the data at all
three angles. For 8, =59.0' the folding calculation gave
an average cross section which was about a factor of 3
smaller than the data.

ANALYSIS OF THE FULL DATA SET

Having concluded the analysis of these special subsets
of the data, we went to an analysis of the full data set
with the OMMR code. Again potential form 5 was used
and the initial parameters for the resonances were ob-
tained from the previous analyses of the data at the zeros
of P, z and P,4 The hest .fit is displayed in Fig. 7; the
corresponding level parameters and background potential
are summarized in Tables III and IV. As was the case in
the analysis of the data at the zeros of Pi4, the calculation
appears to describe the resonances near 18.3 and 19.3
MeV reasonably well; however, there is a marked
discrepancy between the calculation and the data at the
extreme low energies and high energies. This effect is
particularly noticeable at the forward angles. If the for-
ward angle data (8, & 50.0 degrees) is excluded from the
analysis, then an optical model plus resonance calculation
which includes three /=12 levels and one i=14 level is
adequate to describe the remaining data. Changing the
background potential from potential form 5 to form 6 did
not improve the situation. Qualitatively the fit was simi-
lar to that obtained with potential form 5, however, at
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TABLE III. Resonance parameters used in the calculation displayed in Fig. 7.

(Mev)
r„,
(keV)

r„
(keV)

I 12

(keV) (keV)
r23

(keV)

18.3
19.2
20.2

20.2

14
41
'2l

30

Parameters for 1=12 resonances
336 —157' 629
319 —157'
423 —157'

Parameters for i=14 resonance
250 74'

—238

some angles the magnitude of the data was underpredict-
ed. The use of potentials 1—4 (Table I) also gave fits to
the data which were similar to the calculation using po-
tential 5. However, since these potential forms did a
much poorer job of describing the angular distribution
data it is not surprising that they severely overpredicted or
underpredicted the excitation function data at a few an-
gles. In all cases the spin assignments deduced earlier
were supported.

We conclude that more than four resonances are needed
to describe the elastic scattering data. Weak single reso-
nances with spins of 10+, 12+, 14+, or 16+ were placed
at selected energies (using Table II as a guide) near the
lower and upper energy regions of the excitation function.
Minor improvements to the fits were possible, but no
dramatic improvement was achieved.
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The level parameters quoted by Ledoux et al. for the
resonances whi. ch they reported at 18.4, 19.3, and 20.3
MeV are based on single-level (Breit-Wigner) fits to the
extracted phase shifts. The 12+ parameters given in
Table III are formal parameters obtained from a three-
level R matrix formulation of the resonant elastic scatter-
ing. The use of the three-level formula is necessary be-
cause the three /=12 resonances overlap significantly.
The connection between these formal widths and the
widths which one would obtain if this were a single-level
problem is difficult to ascertain. Therefore, for the 12+
resonances, a comparison to the widths given by Ledoux
et al. is difficult. One could transform the level matrix A
into a diagonal form resembling the sum of single levels
by using a complex orthogonal transformation matrix, but
the newly transformed widths would be complex func-
tions, and also could be strongly energy dependent. '

A simpler connection between the formal parameters of
this work and the level parameters of Ledoux et al. can
be obtained by comparing plots of the energy dependence
of the S matrix in the complex plane. As a function of
energy the nonresonant S matrix for a particular I value
describes a smooth curve in the complex plane. The addi-
tion of a single level resonance formula to the background
S matrix

b . 2i(/I+pl )
SI ——S) +ie

IQ- Io-
I I 1

l8 19 20 2l I8 l9 20 2I

Ec ~( MeV)

FICx. 7. Elastic scattering excitation function data for the 12
angles measured in this experiment. Curves are from an optical
model plus resonance calculation using three l =12 resonances
located at 18.3, 19.2, and 20.2 MeV, and a resonance with /=14
located at 20.2 MeV. The background potential had a
WS +i(WS) form (potential 5 of Table I).

U(r)=-
r —E.,1+exp

ar

i8'0

r —R;1+exp
a;

Vo

(MeV)
R,

(fm)
a,

(fm)
6'0

(MeV)
R;

(fm)
a;

(fm)

301 3.36 2.80 7.09 0.25

TABLE IV. Optical potential (potential 5 of Table I) used in
the calculation displayed in Fig. 7.
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The analysis of Fig. 8 results in a ratio of elastic to to-
tal widths for the / =12 resonances at 19.2 and 20.2 MeV
of approximately 0.12 and 0.04, respectively, and a ratio
of 0.12 for the 1=14 resonance at 20.2 MeV. The first
(zero phase) solution of Ledoux et a/. resulted in ratios
I",i/I' equal to 0.20 and 0.16 for / = 12 resonances at 19.3
and 20.3 MeV, respectively. The second (large phase)
solution of Ledoux et a/. resulted in ratios I,&/I =0.18
for an 1 =12 resonance at 19.3 MeV and I,&/I =0.14 for
an 1 = 14 resonance at 20.3 MeV.

In the paper of Ledoux et a/. , for the second solution,
a total width of 300 keV is reported for the /=14 reso-
nance at 20.3 MeV. We obtain (see Table III) a total
width of 250 keV for our 14+ resonance at 20.2 MeV. So
there is quite good agreement between our results and the
second solution of Ledoux et a/. regarding both the
strength and width of the 14+ resonance near 20.2 MeV.

-0.04—

I I I

O. l I 0,24 O.57 0.50
Re (S~q}

FIG. 8. In (a) the S matrix for the i=14 resonance is plotted
(points) in the complex plane; the parameters come from Tables
III and IV. The background S matrix is the heavy solid curve.
The circle is used to obtain the ratio of the elastic width over the
total width (I,~/I =r ) described in the text. In (b) the S matrix
for three 1=12 resonances included in a three-level formulation
is plotted (points). The background S matrix is represented by
the heavy solid curve. The light curve through the points is to
guide the eye.

-O. I 5

causes the trajectory of the sum to describe a loop in the
complex plane as the energy passes through the resonance
energy. If the background is independent of energy, this
loop will describe a circle and the radius of the circle, lim-
ited by unitarity to be less than one, will be equal to the
ratio of the elastic width to the total width. In Fig. 8(a)
the calculated 1=14 background (solid curve} and the
background plus single-level S matrix elements (points)
are plotted as functions of energy. The resonance loop is
open-ended because the background is changing slowly
with energy. Extracting the radius of the loop from Fig.
8(a), one obtains l,i/I =0.12. As expected, this is also
the value calculated from the resonance parameters for
/ =14 given in Table III.

In Fig. 8(b) the S matrix calculated for /=12 using the
parameters of Table III and IV is plotted. Note that there
are only. two loops rather than three. Apparently, the off
diagonal terms in the three-level calculation are strong
enough to destroy the loop that would otherwise result
from the diagonal term in the level matrix for the 18.3
MeV resonance. The radius of each loop in Fig. 8(b) was
measured to obtain a quantity analogous to the ratio of
the elastic width to the total width that one would obtain
from a Breit-Wigner single level analysis.

Analysis of excitation function data between the ener-
gies of 17.5 and 21.5 MeV leads us to conclude that the
peaks observed near 18.4 and 19.3 MeV in the total reac-
tion cross section are due to single resonances with spin
12+ at the energies of 18.3 and 19.2 MeV, confirming the
findings of Ledoux et a/. Analysis of data at the zeros of
P~q and P~4 sho~s that the third structure near 20.3 MeV
is not due to a single resonance as reported by I.edoux
et al. , but is due to at least two resonances near 20.2
MeV, one with spin 14+. The other we have assigned
spin 12+. The fact that our optical model plus resonance
calculation, with three l =12 levels at 18.3, 19.2, and 20.2
MeV and one i=14 level at 20.2 MeV, does not give a
good fit to the data over the entire energy range indicates
that the elastic scattering at this energy is influenced by
more than the four levels which we have included in our
calculations. Considerable effort was devoted to finding
single additional levels which would resolve the discrepan-
cy between the data and calculation at the lower and
upper extremes of the excitation function data; however,
without success.

Resonance strengths have been extracted for the /=12
resonances at 19.2 and 20.2 MeV and the 1=14 resonance
at 20.2 MeV from an analysis of the plotted S matrix
curve in the complex plane. The strengths for the /=12
resonance at 19.2 and the /=14 resonance at 20.2 MeV.

are in good agreement with the second solution of Ledoux
et a/. No comparison is possible for the /=12 resonance
at 18.3 MeV since the effects of the interference terms in
the three-level formula of this work overpower the diago-
nal term for the 18.3 MeV resonance.

ACKNO%'I. EDGMENTS

We would like to acknowledge the assistance of S. J.
Padalino in taking the data and to thank R. J. Philpott for
many useful discussions about resonance theory. This
work was supported in part by the National Science Foun-
dation.



32 OPTICAL MODEL PLUS RESONANCE ANALYSIS OF '2C+ ' C. . . 1571

ID. A. Bromley, J. A. Keuhner, and E. Almqvist, Phys. Rev.
Lett. 4, 365 (1960).

~W. Reilly, R. Wieland, A. Gobbi, M. W. Sachs, and D. A.
Bromley, Nuovo Cimento 13A, 897 {1973).

W. Reilly, R. Wieland, A. Gobbi, M. W. Sachs, J. Maher, R.
H. Siemssen, D. Mingay, and D. A. Bromley, Nuovo Cimento
13A, 913 (1973).

4S. K. Korotky, K. A. Erb, S. J. Willet, and D. A. Bromley,
Phys. Rev. C 20, 1014 (1979).

5H. Emling, R. Nowotny, D. Pelte, and G. Schreider, Nucl.
Phys. A211, 600 (1973).

D. Shapira, R. G. Stokstad, and D. A. Bromley, Phys. Rev. C
10, 1063 (1974).

7R. J. Ledoux, M. J. Bechara, C. E. Ordonez, H. A. Al-Juwair,
and E. R. Cosman, Phys. Rev. C 27, 1103 (1983).

S. Y. Lee, H. W. Wilschut, and R. J. Ledoux, Phys. Rev. C 25,
2844 (1982).

R. G. Stokstad, R. M. Wieland, G. R. Satchler, C. B. Fulmer,
D. C. Hensley, S. Raman, L, D. Richertsen, A. H. Snell, and
P. H. Stelson, Phys. Rev. C 20, 655 (1979).
R. M. Wieland, R. G. Stokstad, G. R. Satchler, and L. D.
Rickertsen, Phys. Rev. Lett. 37„1458(1976).

~J. J. Kolata, R. M. Freeman, F. Hass, B. Heusch, and A.
Gallmann, Phys. Rev. C 21, 579 (1980).
E. R. Cosman, R. J. Ledoux, and A. J. Lazzarini, Phys. Rev.
C 21, 2111 (1980).
L. I. Shiff, Quantum Mechanics (Mcoraw-Hill, New York,
1949).

~4A. M. Lane and R. G. Thomas, Rev. Mod. Phys. 30, 257
(1958).
D. Robson and A. M. Lane, Phys. Rev. 161,982 (1967).
W. J. Thompson, J. L. Adams, and D. Robson, Phys. Rev.
173, 975 (1968).

R. A. Chatwin, J. S. Eck, D. Robson, and A. Richter, Phys.
Rev. C 1, 1795 (1970).

E. R. Cosman, T. M. Cormier, K. Van Bibber, A. Sperduto,
G. Young, J. Erskine, L. R. Greenwood, and O. Hansen,
Phys. Rev. Lett. 35, 265 (1975).
K. Van Bibber, E. R. Cosman, A. Sperduto, T. M. Cormier, T.
N. Chin, and O. Hansen, Phys. Rev. Lett. 32, 687 {1974).
T. M. Cormier, J. Applegate, G. M. Berkowitz, P. Braun-
Munzinger, P. M. Cormier, J. W. Harris, C. M. Jachcinski, L.
L. Lee, Jr., J. Barrette, and H. E. Wegner, Phys. Rev. Lett.
38, 940 (1977); T. M. Cormier, C. M. Jachcinski, G. M. Ber-
kowitz, P. Braun-Munzinger, P. M. Cormj. er, M. Gai, J. W.
Harris, J. Barrette, and H. E. Wegner, Phys. Rev. Lett. 40,
924 (1978).
G. Kekelis and J. D. Fox, Phys. Rev. C 10, 2613 (1974).

2~L. R. Greenwood, R. E. Segel, K. Raghunathan, M. A. Lee,
H. T. Fortune, and J. R. Erskine, Phys. Rev. C 12, 156 (1975).
N. R. Fletcher, J. D. Fox, G. J. KeKelis, G. R. Morgan, and
G. A. Norton, Phys. Rev. C 13, 1173 (1978);D. R. James and
N. R. Fletcher, ibid. 17, 2248 (1978).

~P. Sperr, D. Evers, K. Rudolph, W. Assmann, E. Spindler, P.
Konrad, and G. Denhofer, Phys. Lett. 49B, 345 (1974).

~5R. J. Ledoux, C. E. Ordonez, M. J.-Bechara, H. A. Al-Juwair,
G. Lavelle, and E. R. Cosman, Phys. Rev. C 30, 866 {1984).
K. A. Eberhard, E. Mathiak, J. Stettmeir, W. Trombik, A.
Weidinger, L. N. Wustefeld, and K. G. Bernhardt, Phys. Lett.
56B, 445 (1975); K. A. Eberhard and K. G. Bernhardt, Phys.
Rev. C 13, 440 (1976).

~7H. T. Fortune, T. H. Braid, R. E. Segel, and K. Raghunathan,
Phys. Lett. 63B, 403 (1976).

~ H. T. Fortune, S. C. Headley, L. R. Medsker, T. H. Braid, R.
E. Segel, and K. Raghunathan, Phys. Rev. C 14, 1271 (1976).
H. T. Fortune, L. R. Greenwood, R. E. Segel, and J. R.
Erskine, Phys. Rev. C 15, 439 (1977).
G. R. Satchler and W. G. Love, Phys. Rep. 55, 183 (1979);J.
Cook, Comput. Phys. Commun. 25, 125 (1982).


