
PHYSICAL REVIEW C VOLUME 32, NUMBER 4 OCTOBER 1985

U(5) )& SU(2) limits of the interacting boson fermion model,
their associated supersymmetries, and their application to 76Se and 75As

J. Vervier
Institut de Physique Nucleaire, B-1348Louvain-la-Neuve, Belgium

P. Van Isacker and J. Jolie
Instituut voor Nucleaire 8'etenschappen, B-9000 Gent, Belgium

V. K. B. Kota
Physical Research Laboratory, Ahmedabad 380009, India

R. Bijker*
Kernfysisch Versneller Instituut, Rjiksuniuersiteit Groningen, XI. 9747A-A Groningen, The Ãetherlands

(Received 22 April 1985)

Boson-fermion symmetries and supersymmetries associated with the V(5))&SV(2) limits in the in-

teracting boson fermion model with j= 2, 2 and j= 2, 2, 2 are developed in detail. Their

relevance for the description of the available experimental data on the low-energy spectra of the nu-
clei Se and 'As is examined.

I. INTRODUCTION

In recent years, it has been shown that algebraic models
provide a powerful tool to study the spectroscopy of low-

lying states in medium and heavy mass nuclei. In the in-
teracting boson model (IBM), rotational and vibrational
degrees of freedom in even-even nuclei are united in a sin-

gle framework. ' Similarly, the extension of the IBM to
odd-mass nuclei, called the interacting boson fermion
model (IBFM), provides a unified description of the col-
lective properties in these nuclei. In addition, a set of
closed analytic formulae for the energies and other observ-
ables of the levels can be obtained whenever the IBM
(IBFM) Hamiltonian possesses a dynamical symmetry.
Since, in the IBFM, both collective (boson) and single par-
ticle (fermion) degrees of freedom are present, the dynam-
ical symmetries of the IBFM are called boson-fermion
(BF) symmetries. The concept of dynamical symmetries
can be extended further to supersymmetries, in which
both even-even and odd-mass nuclei are described in a sin-
gle framework. Many different examples of BF sym-
metries and supersymmetries have been studied. The sim-
plest cases are those in which the odd particle only occu-
pies one shell model orbit with spin j= —,

' or —,. More
recently, these symmetries have been extended to include
several orbits, e.g., j= —,', —,

' (Ref. 8) or j= —,, —,
' (Ref. 7) or

j=—,', —,, —', (Refs. 8—12).
In the present paper, we first describe three BF sym-

metries and their associated supersymmetries, wherein the
boson part corresponds to the U(5) dynamical symmetry
of the IBM, ' and the odd-fermion occupies two orbits
with j=—,

' and —,', or three orbits with j=—,, —,', —,'. We
I

stress, in particular, the relations between these various
cases. We next examine to what extent the low-energy
spectra of the nuclei Se and As can be described by
these symmetries, for what concerns the excitation ener-
gies and the other observables of their levels, electromag-
netic moments and transition probabilities, and one- and
two-nucleon transfer amplitudes.

II. THEORETICAL ANALYSIS
OF U(5) &SU(2) BF SYMMETRIES

In this section, we present an overview of the properties
of three U(5)XSU(2) BF symmetries in odd-A nuclei,
which occur when the bosons have a U(5) symmetry and
for several combinations of the dominant single-particle
(s.p. ) orbits available to the odd fermion in the odd-A nu-
clei. In Ref. 7, a detailed description was given of the
U(5)XSU(2) symmetries with s.p. orbits j=—,

' or j=—,'.
The possibility of a U(5) XSU(2) symmetry based on the
s.p. orbits j=—,

' and —,
'

was also mentioned in Ref. 7, and
the properties of the U(5) XSU(2) symmetry with j=—,',
—,', and —, were discussed in some detail in Refs. 8 and 10.
In this section, we analyze in more detail one U(5) X SU(2)
symmetry with the s.p. orbits j=—, and —,', and two
U(5) X SU(2) symmetries with the s.p. orbits j=—,', —', , and

This analysis includes a discussion of the energy spec-
tra and a classification of the states in the three sym-
metries, as well as the calculation of B(E2) values and
one- and two-nucleon transfer intensities.

We start by indicating the group chain in each of the
above-mentioned symmetries. For the U(5)XSU(2) sym-
metry based on the s.p. orbits j=—', and —,', this group
chain (I) reads:

U' '(6)XU' '(1O)&U' '(5)XU' '(5)XSU' '(2)DU' + '(5)XSU'"'(2)

DO' +~'(5)XSU' '(2)DO' + '(3)XSU' '(2lD Spin(3)& Spin(2),
(

(2.1a)
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1 3 Swhere the superscripts (B) or (F) refer to bosons or fermions, respectively. With the s.p. orbits j=—,, —,, and —,, the fol-
lowing two chains can be considered:

U"'(» XU'F'(5) XSU'F'(2)
U"'(6) XU'"'(12) «U'"(6) XU'"'(6) XSU' '(2) « U' + '(6) XSU'"'(2) «U" + '(S) XSU'"(2)

«0 ~+F (5)XSU F~(2) «0 + (3)XSU F (2) «Spin(3) «Spin(2),
(2.11)

where the upper (lower) group chain between parentheses corresponds to limit II (II').
In Eqs. (2.la) and (2.1b), we have used the group reduction

U'"'(m)«U' '( —'m)XSU'"'(2)

with m =10 and m =12, respectively. This corresponds to a decomposition of the fermion angular momenta into a
pseudo-orbital part, k =2 (2.1a) or 0 and 2 (2.1b), and a pseudo-spin part, s = —,

' . We note that the pseudo-orbital angular
momentum does not necessarily coincide with the physical orbital angular momentum. The chains (2.1a) and (2.1b) will
be referred to hereafter as chains I, II, and II', respectively.

Neglecting terms which only contribute to the binding energy, the Hamiltonians corresponding to the group chains
(2.1a) and (2.lb) are given by:

II"~=AC, [U'"(S)]+A'C,[U' '(S)]+A "C,[U"'(S)]C,[U' '(S)]

+BC&[U' +"'(5)]+B'C2[U' +"'(5)]+CC2[0' +"'(5)]+DC2[0' + '(3)]+EC2[Spin(3)],
~(II) ~(I)

II' ''=AoC2[U' + '(6)]+BoC&[U' +"'(5)]+B'C2[U' +F'(5)]

+CC2[0' + '(5)]+DC2[0' + '(3)]+EC2[Spin(3)],

(2.2a)

(2.21)

(2.2c)

U' '(6) [1] Spin(3) J
U' '(5):InF J, S i p(2n): zM,

SU'F'(2):s =-,' . (2.3)

Omitting the unnecessary labels, the basis states in each of
the chains of Eq. (2.1) can be characterized by:

I
N I n~ I I nF I Ini, n21(v1 v2)aLJMJ ) (2 4a)

where n&+ n2 n~+nF with nF ——1 for chain I an——d
nF ——0, 1 for chain II;

where C„[G] denotes the linear (n =1) or quadratic
(n =2) Casimir operator of the group G. With Eq. (2.21),
we only imply that Casimir operators of the same groups
appear in both H" '. However, the realization of the
Casimir operators in terms of fermion creation and an-
nihilation operators may be different in the two cases.
For the explicit form of the Casimir operators appearing
in Eqs. (2.2a)—(2.2c), we refer to Ref. 10.

States can be classified by associating the appropriate
quantum numbers to the various groups appearing in the
chains I, II, and II'. In the one-fermion case (M= 1),
these quantum numbers are

U' '(6) [N] U' + '(6) [N),N2],
U' '(5):In I, U' + '(5):In„n I,
U' '(12):[M=1], 0' +F'(5) ~(v v )

U{ '(10):[M=1], 0' + '(3):L,

(II')
i N[N&, N2] I n &,n2 I (v„v2)aLJMz ) . (2Ab)

+B(n]+n2}+B'[n$(n/+4)+n2(n2+2)]

+C[v&(v~+ 3)+v2( v2+ 1)]
+DL (L + 1)+EJ(J+1), (2.5a)

E(II) E(I)

E'"'=A, [N, (N, +5)+N, (N, +3)]
(2.51)

+Bo(n~+n2)+B'[n ~(n&+4)+n2(n2+2)]

+C[v)(v(+ 3)+v2(v2+ 1)]
+DL{L+1)+EJ(J'+1). (2.5c)

The energy eigenvalues (2.5a)—(2.5c), together with the
reduction roles, ' ' enable one to construct typical energy
spectra for each of the limits. The states of limit II can
be divided into two groups, which are characterized by the
quantum number nF ——0 (j=—,') and nF 1(j=2, —,'), —
and whose relative energy is given by a linear combination
of the coefficients A", B, and B'. We note that the states
of limit I are equivalent to a subset of those of limit II
with nF ——1. This is illustrated in Fig. 1, where the addi-

In Eq. (2.4), an extra label a has been introduced, since
the decomposition of the representations of 0'~+ '(5) into
those of 0' + '(3) is not unique. The eigenvalues of the
Hamiltonians (2.2a)—(2.2c) in the states (2.4a) and (2.4b)
are given by:

E' '=An~+A'n~(n~+4)+A "ngnF
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FIG. 1. Calculated energy spectrum in the limit II or II'. In the limit II, the expression (2.5b) is used, with A =240, A'=A"=0,
8=60, B'= —C=10, and D=E=5. In the limit II', the expression (2.5c) is used, with Ap=20 B0=300 B'=—C=10, and
D =E=5. All parameters are given in keV. The boson number is %=5. The nonstarred states also occur in limit I.

tional states of limit II with nF ——0 are marked with a
star. The third limit II' represents a different coupling
scheme. Again, the eigenstates can be divided into two
groups, which are now labeled by the quantum numbers
[N1,N2] =[N+ 1,0] and [N 1,N2] = [N, 1], and whose rel-
ative energy is determined by the first term in the Hamil-
tonian H' ' ' of Eq. (2.2c), i.e., depends on Ap. The spec-
tra of limits II and II' become almost identical through
the following choice of parameters appearing in Eqs.
(2 5b) and (2 5c): A'=A"=0; A = —2(N+ 1)Ap,
8 =Bp —2(N+ 1)Ap' eqllal vallles of 8 C D alld E 111

both limits. This is illustrated in Fig. 1, where the states
in limit II with n~ ——0 and n~ ——1 have the same excita-
tion energies as the corresponding states in limit II' with
[N„N2]=[N+1,0] and [Nl, N2]=[N, 1], respectively.
However, the excitation energies of the states with

(nl, n2 j = IN+1,0j, which have nF ——1 in limit II and

[Nl, N2] =[N+1,0] in limit II, will be different in this
case. Thus, except for the states with ( n 1,n 2 j= (N+ 1,0 j, the most general spectrum of limit II' can be
made to coincide with the spectrum of limit II for a par-
ticular choice of the parameters A, A', A", and 8.

An advantage of a group-theoretical classification of
the eigenstates is that it enables one to calculate closed an-
alytic expressions for all matrix elements of interest. In
the present case, it is convenient to expand the coupled
basis states of Eq. (2 4) into the direct product of the bo-
son and fermion states. The matrix elements of a transi-
tion or transfer operator can then be reduced to a matrix
element in the boson space, which has already been de-
rived in Ref. 13, and a matrix element in the fermion
space, which is trivial to calculate since we only consider
states with one fermion. The basis state in Eq. (2.4a) for
the limits I and II can be expanded as:

(nB j (nF j (nl n2 j (vB)(vF) (vl v2)

~
N(nB j (nF j (n „n2 j(v, ,v2)aLZm, ) =

vgcxgLg

vFLF

Lg I~ L
X g( —1) Lj, . ( ~

[N](nB j(vB)aBLB) Xa~ jMq ',
J 2

(2.6a)

where j=V2j+ I and, furthermore, '~ [N](nB j(vB)aBLB ) denotes a "vibrational" state of a neighboring even-even nu-
cleus. ' The relation between the wave functions in limits II and II' is



32 U{5)&SU{2) LIMITS OF,THE INTERACTING BOSON. . .

[N][1] [Ni»zl
I N[N&»z]{n»nz j(vi»z)aLJMJ &= g {„j{„j{„„j~ N{ng j {nFj {n~,nz j(v&,vz)aLJMJ)

lip, ltd

(2.6b)

Eq. (2.6a), the isoscalar factors appear, denoted by (::~:), associated with the reductions U(5)~O(5)
O(5) &O(3), and in Eq. (2.6b), the U(6) &U(5) isoscalar factor appears. The U(6) DU(5) and U(5) ~O(5) isoscalar fac-
tors are known in general. ' The O(5) DO(3) isoscalar factor, which, for vz ——0, is related to the d-boson coefficient of
fractional parentage, is known for high L values contained in (v&, vz). In Ref. 10, the method of their calculation was
outhned, and a few cases were calculated explicitly. Additional O(5) DO(3) isoscalar factors, which can be derived from
the results given in Refs. 13 and 14 and from orthonormality properties, have been calculated, and are available on re-
quest.

From Eq. (2.6a), we conclude that the structure of the states in limit I is identical to that of the corresponding states in
hmit II. Thus, we may henceforth restrict our analysis to the limits II and II, since all the properties of hmit I are con-
tained in limit II. On the other hand, Eq. (2.6b) shows that, although the low-energy spectra may be identical in limits II
and II, the structure of the corresponding states is different, and, as a consequence, the two limits will have different
M1, E2, etc, properties.

To discuss the properties of limits II and II, we introduce a notation with starred and nonstarred states, i.e.,

and

I N{n& Oj(vi, O)aLJ) =—
I N{ns j {Oj{n~ n~——,Oj(v„O)aLJ) in limit II,

=
~
N[N+1, 0]{n~,Oj(v~, O)aLJ) in limit II',

~
N{n~,nzj(v~, vz)aLJ) =

~
N{nz j {1 j {n~,nz j(v&, vz)aLJ) in limit II,

=
~
N[N, 1]{n~,n jz( ~v, v)zaLJ) in limit II'.

(2.7a)

(2.7b)

This notation corresponds to the one used in Fig. 1 and al-
lows for a simultaneous discussion of limits II and II'.

It is now straightforward to calculate, with the help of
the expressions (2.6a) and (2.6b) for the wave functions,
8(E2) values as well as one- and two-nucleon transfer
strengths for the lowest states. First, we specify the form
of the electromagnetic and transfer operators. As E2
operator, we take:

T(E2)=ef[A '(02)+A' '(20)]

+eb(std+dts) +ej A~ ~(22)

+e,'(dtd)"'. (2.8)

In limit II, the selection rules of the four terms in the E2
operator (2.8) are the following: b (n~, n~) =(0,+1),
(+1,0), (0,0), and (0,0), respectively. In limit II', if we
take eb ——ef and e& ——ef in Eq. (2.8), T(E2) is the sum of
two U' +F'(6) generators, and therefore cannot connect
states with different values of [N~,Nz]. The one-nucleon
transfer operator is of the form:

i =&1'J+X&JJ''+ 4 f ~ (j)

iJ'

+ HJ (aj s )'J'+ g 8/z (aJ' d )'J', (2.9)

for the reaction from an even-even to an odd-even nu-
cleus, and the Hermitian conjugate of (2.9) for the inverse
reaction. The first two terms in Eq. (2.9) describe the
one-nucleon transfer from an even-even to an odd-even
nucleus in which the number of bosons, N, is conserved,
whereas the last two terms describe the transfer in which
the number of bosons is changed by one unit. Finally, as
a two-nucleon transfer operator, we use s or dt (or the
Hermitian conjugates).

In Table I, we give 8(E2) values obeying the selection
rule b, (n &, + n z ) =+ 1, and, in Table II, those with
h(n&+nz)=0 The .following quantities have also been
calculated, and are available on request: the electric quad-
rupole moments; the spectroscopic factors for one-nucleon
transfer reactions; and the intensities for two-nucleon
transfer reactions.

III. EXTENSION
TO DYNAMICAL SUPERSYMMETRIES

An interesting extension of dynamical boson-fermion
symmetries is that to dynamical supersymmetries in
which states in both even-even and odd-mass nuclei are
treated in a single framework. In the previous section, we
have discussed dynamical symmetries in a mixed system
of boson and fermion degrees of freedom for a fixed num-
ber of bosons, N, and one fermion, M =1 [see Eq. (2.3)].
Since the operators that generate the Lie algebra of the
symmetry group U' '(6) && U'"'(m ) can only transform bo-
sons into bosons and fermions into fermions, the numbers
of bosons, N, and fermions, M, are both conserved quan-
tities. If in addition to these operators, we introduce
operators that can transform a boson into a fermion and
vice versa, the enlarged set of operators forms a graded
Lie algebra, which can be identified with the algebra of
U(6/m). The supergroup U(6/m) can then be decom-
posed into a chain of subgroups:

U(6/m)DU' '(6)XU' '(m)& & Spin(3)D Spin(2),

(3.1)

where m = 10 for chain I and m = 12 for chains II and II'
of Eq. (2.1). All states of a supermultiplet can be labeled
by the totally supersymmetric representation [~j of
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TABLE I. 8(E2 ) values for transitions with 5(n ~ +n 2 )=+ 1 between the lowest states in the limits
II and II'.

L;
Fz =F2(LfJfi LiJi ) ( —1 ) Li JiJf f Lf 2

Initial state Final state $(E2 J ~Jf )~ (2Jj+ 1 )

Limit II Limit II'

~
N[1,0j(1,0)2J, &'

i
N f2, 0j(v;,0)L;J;)*

i
N [2,0j(v;,0)LiJi )*

i N[1,oj(1,0)2J;)

N[ 2, oj(;v, 0)Li J)

f 1, 1 j(1,1)L~J; )

i
N f 2,0j (v;,0)LiJ; )

i
N f 1, 1 j(l, 1)LiJi)

i N[o, oj(0,0)01/2)

~
N[ 1,oj(1,0)2Jf )

~
N [ l,oj(1,0)2Jf )

i
N [o,0j (0,0)01/2) *

~
N f 1,0j(1,0)2Jf )'

[N f l,oj(1,0)2Jf )

i Nf l,oj(1,0)2Jf )

~
N[1,Oj(1,O)2Jf &

ebF2

2(X—1 )ebF2

efFz2 2

efFz2 2

efFz2 2

Neb Fz

Neb Fz

N+ 1
(ef +Neb ) Fz

2N 2 2

(N+ 1 )' (ef +Neb ) Fz

2 2 2
2 ef —eb ) Fz

(N+ 1 )'
2 2

N+ 1
(ef eb ) Fz

(N —1 )N
( )2F2

(N+1)2 f b 2

2 2

N+ 1
(ef—eb ) Fz

[ef {N+2)eg—] Fg
(X+ 1 )'

N+1 (ef +2Veb ) Fz

TABLE II. 8(E2) values for transitions with h(n ~ +nz ) =0 between the lowest states in the limits II and II

L; J; 1

Lf +J.+ 1/2 w
Fz =Fz(Lf f) j i )—( ) j j f Jf f

2 2 2
Eg=Eg(LfJf&L(J()=—V5Lf 'L L 2 Fg{LfJf L;J;) .

i f

Initial state Final state

Limit II
8(E2;Ji~Jf ) 0& ( 2J, + 1 )

Limit II'

~
N f 1,0j (1,0)2J; ) *

i
N [ l, oj(1,0)2J; ) *

i N [2,0j(v, ,O)L,J, )*

i N [2,0j (v;, 0)LiJi )"

i N[2, 0j(v;,0)L;J;)

~
N f l, oj (1,0)2J; )

i N[2, 0j(v;,0)L;J;)

i N[2, 0j(v;,0)L;J;)

i N[1, 1 j(1,1)L;Ji )

~

N [ l, oj(1,0)2Jf )

i
N f l, oj(1,0)2Jf )

2,0j(vf 0)LfJf )*

~
N [2,0 j (vf, 0)LfJf )

~

N f 1, 1 j (1,1)LfJf )

i Nfl, oj(1,0)2Jf )

~

N [2,0j (vf, o)LfJf )

~
N[1, 1 j(1,1)LfJf )

)
N f 1, 1 j(1,1)LfJf )

~2 2
eb Fz

4eb Ez

~ 2F2

(ef +eb )'Ez

{ef—eb ) Ez

(ef +eb ) Ez

(N+ 1 )' (ef +Net ) Fz

(N+ 1)2 (ef eb ) F2

(N+ 1)
(ef +Neb ) E2

2(x —1)
(

I I )2E2
(%+1)

(ef —eb ) EzN+1

(X+ 1 )'2 (Ref +eb ) Fz

(X+1 )', [(N —1)ef +(N+3)ea ] E~

N —1 2 z

N+1 (ef —eb ) Ez

(ef +eb )'Ez
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+(N=~ m, M— =m), m &~
+(N=O, M=M), m &~ . (3.2)

The terms on the right-hand side of Eq. (3.2) correspond
to the co11ective states in an even-even nucleus with
N =~, M =0, the one quasiparticle states in an odd-mass
nucleus with N =~—1, M = I, the two quasiparticle
states in an even-even nucleus with X=~—Z, M =Z,
etc, Whenever the Hamiltonian is written in terms of
Casimir invariants of the group chains (3.1), a dynamical
supersymmetry arises. We note that, in the present case,
the first term in Eq. (3.2) corresponds to the U(5) limit of
the IBM (Ref. 13), while the second term corresponds to
the U( 5 ) XSU(2) limit of the IBFM, Sec. II.

The excitation energies of the states in the even-even
nucleus with N =~, M =0 are given explicitly, as func-
tions of the parameters of Eq. (2.5), by:

E' '=r(3+8)n, +(2'+8')ni(ni+4)+Cvi(vi+3)
+(D+E)L(L + 1 ),

E(II) E(&)

E'" ' =Bpn i +8'n i (n i +4)+Cvi(vi +3 )

(3.3a)

(3.3b)

+ (D +E )L (L + 1 ) . (3.3c)
Those of the states in the odd-mass nucleus with
N =~ 1, M = 1 are—given by Eq. (2.5). Furthermore, in
a supersymmetric scheme, al1 nuclei belonging to the same
supermultiplet [~j are described by the corresponding
energy formulae with the same values of the parameters
for all members of the supermultiplet. Similarly, the elec-
tromagnetic transition rates are described by one transi-
tion operator with the same values of the coefficients for
all members of the supermultiplet [~j .

IV. POSSIBLE EXAMPLES
OF U( 5 ) XSU( 2 ) BF SYMMETRIES

AND THEIR ASSOCIATED SUPERSYMMETRIES:
THE NUCLEI Se AND As

In this section, we examine to what extent the available
experimental data on the nuclei Se and As—and, to
some extent, 7"Se and As, as reached by the (p,t) reaction
on Se and As- "an be reproduced by the U( 5 ) X SU( 2 )
BF symmetries and associated supersymmetries described
in Secs. II and III. The data have been taken from the
Nuclear Data Sheets, ' ' supp 1emented by more recent
results 197 227 23

In the BF symmetries of the IBFM, the odd-proton nu-
clei ' As are described by coupling the odd proton to
even-even cores . In a supersymmetric scheme the nuclei
34Se42 (N =7, M =0) and 33As4q (N =6, M = 1 ) belong to

U(6/m ) (Ref. 5), where ~=N+M is the total number of
bosons and fermions. Subsequently, these states can be di-
vided into several groups of states which are labeled by a
fixed value of the number of bosons, N, and the number
of fermions, M. The allowed values of N, and M are
given by the branching rule:

(N, M)= (N=~,M=0)+ (N=~ 1,M—= 1)+

the same supermultiylet with ~=7, and so do 34Sezp

(N=6, M=0) and 33As4p (N=5, M= 1 ) with M=6.
This follows from the rules of supersymmetry, wherein
the creation of a (proton) fermion is associated with the
annihilation of a (proton) boson, both with respect to the
(Z = ) 28 magic number. The nuclei 32Ge42 (N 6,
M =0) and 3zGe4p (N =5, M =0) belong to different su-

permultip 1ets, with ~=6 and 5, respectively .
The approximate validity of these BF symmetries and

supersymmetries depends on the extent with which (i) the
even-even nuclei can be described by the U(5) dynamical
symmetry of the IBM, ' and (ii) the odd nucleon of the
odd- A nuclei can be confined to s.p. orbits with j
and —,

' . We shal 1 show that the nucleus Se approximate-
ly fulfills the first condition, for what concerns the ener-
gies of its excited states (Fig. 2) and the 8(E2 )'s between
its low-lying levels (Fig. 3). The Ge( He, d) As and
7 Se(d, He) As data' ' indicate that the lowest-lying or-
bits available to the 3rd proton of As are Zp —,

'
(mainly

concentrated in the ground state), lf—,
' (the 279.5 keV

level), and 2p —, (the 468.8 keV level); the lg —,
' orbit (the

303.9 keV level) has opposite parity, and the lf—,

proton-hole orbit (partly the 82 1 .6 keV level) plays a
minor role at low excitation energy.

As pointed out in Sec. II, there are many similarities be-
tween the three U( 5 ) X SU( 2 ) symmetries considered in
the present paper: the levels of limit I coincide with part
of the spectrum in limit II; their properties are identical in
1imits I and II; the energy spectra predicted by limits II
and II' may be identical in the low energy region by ap-
propriate choices of the parameters; and many of their
electromagnetic properties have the same geometrical
dependence (i.e., the factors F2 and E2 ) in limits II and
II' (Tables I and II), and only differ by factors which de-
pend on N, eb, ef, eb and ef . There are some differences,
however: the existence of other (starred) levels in limit II
with respect to limit I (Fig. 1); the larger number of pa-
rameters in the energy formulae for limits I and II [eight
in Eqs. (2.5a) and (2.5b)] than for limit II [six in Eq.
(2.5c)]; and the existence of transitions which are forbid-
den in limit II and allowed in limit II' (Tables I and II) ~

We comparein ,Fig. 2, the experimental spectra of 7 Se
and As (Refs. 15 and 16) with those calculated for the
following cases: the symmetry U(5) for Se alone [pa-
rameters A +8,A '+8', C,D +E for limits I and II in
Eqs. (3.3a) and (3.3b) or, equivalently, 8p,B', C,D +E for
limit II' in Eq. (3.3c)]; limits II and II' of U( 5 ) XSU(2)
for As alone [only the nonstarred levels with n i +n z (2
and the lowest —,

' state in Fig. 1; parameters
+5A ' +A ",8,8 ', C,D,E for limit II in Eq (2.5b), .or,
equivalently, A p, Bp,B',C,D,E for limit II' in Eq. (2.5c)];
and the supersymmetry U( 6/ 12 ) with limits II or II' for

Se and As together [parameters A, A ', A ",8,8 ', C,D,E
for limit II in Eqs. (2.5b) and (3.3b), parameters
Ap Bp B,C,D,E for limit II' in Eqs. (2.5c) and (3.3c)].
We have assumed that the experimental levels at 585,
6 17.7, 865, and 886.0 keV in As correspond to the calcu-
lated —, I2 Oj(0 0)0, 2 I2 Oj(2 0)2, 2 I 1 1 j(1 1)3,
and —, I 2,0 j ( 2,0)2 states, respectively; this is compatible
with the experimental data on these levels, ' but not im-
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posed by them. The quality of the fits is quantified by the
values of P and o:

4=[X I &- . —&-. I /g&-, . ] «),
o =[+(E...t. —&„i,)'/(n —k)]'~' (keV),

predicted above 1 MeV. The symmetries U(5) and limits
1»nd II' of U(5)XSU(2) are thus able to reproduce
reasonably well, with p-2% to 9% and p-'73 to 109
keV, the low-lying spectra of 76Se and 7~As, considered
separately On th.e other hand, the fits to 76Se and 75As,

considered separately and together, display comparable
values of P and o, a fact which suggests that these two
nuclei can be associated together in a supermultiplet of
the U(6/12) supersymmetry, at least for what concerns
the excitation energies of their low-lying levels. There are
no striking differences between the fits obtained for limits
II and II'.

It should be noticed, at this point, that the number of
parameters entering into the calculated energies [Eqs. (2.5)
and (3.3)] is rather large (between four and eight for the
fits of Fig. 2). This is in contrast with the U(6/4) super-
symmetry, and is inherent to the U(5) dynamical symme-
try of the IBM (Ref. 13) and its associated boson-fermion
symmetries and supersymmetries. ' ' Consequently, the
reasonable agreement obtained for the energies could just
be the result of a parameter game. It is thus very impor-
tant to compare the experimental data and the theoretical
predictions for other observables than the energies alone,
such as the reduced E2 transition probabilities and the

(4.1)

(4.2)

where n is the number of levels included in the fit, k the
number of parameters, and n —k the number of degrees of
freedom.

The comparison performed in Fig. 2 for Se alone first
justifies the above-mentioned statement on the approxi-
mate validity of the U(5) symmetry for the description of
this nucleus. It further shows that all the experimental
levels in As below I MeV excitation energy, which do
not have an experimentally established positive parity, can
approximately be described by limits II and II' of the
U(5))&SU(2) symmetries. All of them, except the
state at 468.8 keV, correspond to the nonstarred levels
below 0.6 MeV and with n&+n2 &2 in Fig. 1; as to the
468.8 keV state, it can be associated with the lowest
starred —,

' level in Fig. 1, which can be brought higher in
the calculated spectrum than shown in Fig. 1 by an ap-
propriate choice o'f the parameters in Eqs. (2.5b) and
(2.5c). There is just one missing level, the first —, state,

FIG. 2. Comparison between the experimental (Refs. 15 and 16) and calculated spectra of Se and As. The hypotheses underly-

ing the calculations and the significance of the corresponding quantum numbers are outlined in Secs. II to IV. The parameters used
in Eqs. (2.5b) and (3.3b} are the following (in keV): for U(5), 2+B=494, 2'+B'= ll, C= —6, D+E=15; for U(5)/SU(2) (limit
II) c4 + 52 '+3 "=940, B= —823, B'=69, C= —8 D = —21, E=56, fol U(5) &SU(2) (limit II') Ap =67, Bp = 1 17, B'=69
C= —8, D= —21, E=56; for U(6/12) (limit II), 3 =1381, A'= —79, 2"=—63, B=—768, B'=69, C= —6, D= —26, E=44,
for U(6/12) (limit II'), Ap ——66, Bp ——357, B'=31, C= —4, D = —25, E=38. The experimental energies in 'As are given in keV.
The quantities P (%), o (keV), and n —k, defined in Sec. IV [Eqs. (4.1) and (4.2)], have the following values: for U(5), 2%, 73 keV,
10-4; for U(5) &SU(2) (limits II and II'), 9%, 109 keV, 10-6; for U(6/12) (limit II), 6%, 117 keV, 20-8; for U(6/12) (limit II'), 7%,
135 keV, 20-6. Only the calculated levels which are included in the fits are shown in the figure, with the exception of the calculated

state in As.7S
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FIG. 3. Comparison between the experimental (Refs, 15 and
16) and calculated [limits II and II' of U(5) XSU(2}] values of
the B(E2)'s in Se and As. The latter are given to the left of
each transition, and the former, to the right, with the experi-
mental uncertainties indicated into parentheses as affecting the
last digit(s). The upper (lower) calculated value for As corre-
sponds to limit II (II'). The experimental ${E2)'s are given in
10 e b . The normalizations of the calculated B(E2)'s are de-
fined in Sec. IV and correspond to eb ——0.110 and 0.087 e b for
7 Se and 7'As, respectively. , The assignments of experimental to
calculated levels is the one suggested in Fig. 2, and the assumed
spins are indicated in parentheses.

one- and two-nucleon transfer intensities, which are more
sensitive probes of the wave functions than the energies.

The situation with respect to the 8(E2)'s is shown in
Fig. 3 for Se and As separately. The calculated
8(E2)'s with the E2 operator given in Eq. (2.8) have
been normalized in the following way. The calculated
B(E2,2i+~0i+) in Se is equal to ¹bfor U(5); it has
been made identical to the experimental value'
0.084e b . The sum of the calculated B(E2)'s from the
first and second —,', —', , and —,

' nonstarred levels with

n~+n2 ——2 in Fig. 1, to the —,
' ground state in As, is

equal to 3Neb for limit II, and also for limit II' if one
takes ef ——es (Table I); it has been normalized to the ex-
perimental value 0.136 e b as measured in Coulomb exci-
tation, ' with the above-mentioned assignments of experi-
mental levels to calculated states. The comparison per-

formed in Fig. 3 for Se strengthens the argument for the
approximate applicability of the U(5) dynamical symme-
try of the IBM to this nucleus, with the exception of the
second 4+ experimental level which is probably not the
4+ (nii ——3) calculated state. Concerning As, limits II
and II' of the U(5) XSU(2) symmetries predict "strong"
8(E2}'s between the —,

'
[ 1,11(1, 1)1, —, [2,0I (2,0)2,

[1,1I (1,1)3, —, [2,01 (2,0)4 levels and the

[1,0I(1,0}2 ground state, and "weak" 8(E2)'s
between the —,

' [2,0) (2,0)0, —,
' [1,11(1,1)1,

[2,0](2,0}2, —', [1,1](1,1}3levels and the —', ground
state (Table I). The experimental data on the —,

'

and —', levels shown in Fig. 3 roughly confirm this pre-
diction: there is a semiquantitative agreement for the
"strong" —, , —, , and —', levels, at 198.6, 572.3, and
821.6 keV, respectively, and only a qualitative agreement
for the -weak- 2i, 25, and 27 levels, at 585, 886.0, and
865 keV, respectively. On the other hand, the first and
second excited —,

'
levels, at 264.7 and 617.7 keV, respec-

tively, are much less populated in Coulomb excitation
from the —', ground state than predicted. It should be
pointed out that the 8(E2)'s for the transitions shown in
Fig. 3, as calculated in limits II and II', only involve one
parameter, the effective boson charge ei, (if ef ——eb in lim-
it II'). As a consequence, the comparison between the ex-
perimental and calculated 8(E2) ratios in Fig. 3 is pa-
rameter free.

The normalizations adopted in Fig. 3 allow one to
determine the quantity ¹b(Table II) for As (N=6)
and Se (N =7) separately, yielding 0.045(2) and 0.084(2)
e b, respectively, which correspond to eb ——0.087(2) and
0.110(1) e b, respectively. These results are in approxi-
mate agreement with the prediction of the U(6/12) super-
symmetry that the effective boson charge eb should be the
same for the two members of the same supermultiplet Se
and "As, but that the number N of bosons in As (6) is
one unit smaller than in Se (7). This remark fits into the
general trend of B(E2)'s in odd-A and even-even nuclei
pertaining to the same supermultiplet, as pointed out re-
cently. "

The calculated quadrupole moment of the —,
' ground

state of As and the value of 8(E2}between the first —,
'

level and the ground state, both characterized by
[1,01(1,0)2, only depend on the effective fermion charge
ef for limit II, and for limit II' if one takes ef =eb (Table
II). With ef ——0.273 eb, the calculated values of these
two quantities are the following: Q ( —', ) =0.324 e b,
8(E2, —, —

~ )=0.0149 e b, in good agreement with
the experimental values 0.29 e b, 0.0183(24) e b . This
means that they can both be reproduced with one parame-
ter, ef . The experimental value of

8(E2, —, ——, , )=0.66(8)X10 e b

(Ref. 16) is very small. It can be exactly predicted in limit
II by a suitable choice of the parameter ef (Table I}, i.e.,
ef ——0.00091(6) e b, and it is predicted to vanish in limit
II' if one takes ef eb (Table I), as ——chosen above.

The above discussion of the electric quadrupole proper-
ties in Se and As does not allow a distinction between
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limits II and II' of the U(5) XSU(2) and U(6/12) sym-
metries.

In the (p,t) reaction on Se and As, the L =0
transfers to the 0+ and —,

'
ground states of Se and

, As, respectively, are the only ones allowed if ' Se and
As can be described by the U(5) and U(5)XSU(2)

(limits I and II) symmetries, respectively. Experimental-
ly, ' they are indeed much stronger than to the other 0+
and —,

'
levels, by factors between 17 and 67 (Table III).

The L =2 transfers are only allowed to the first 2+ level
in Se, forbidden to the —,

'
t 1,0) (1,0)2 level and allowed

to the first and second nonstarred —,', —,', and —,
' levels

in " As for limits I and II. This is roughly confirmed by
the experimental data ' (Table III), if the —', state at
67.0 keV in As is assigned to the above-mentioned —,

level, as suggested by the Ge( He, d) As and
Se(d, He) As results ' '
The comparison between the experimental data and the

theoretical predictions in limits II and II' (nonstarred lev-
els with ni+n2 &2 and lowest —,

' state in Fig. 1) for the
one-proton transfer reactions ( He, d) and (d, He) between

Se, As, and Ge is shown in Fig. 4. For these limits
and these levels, the only allowed transitions are to the

and —,
'

I 1,0I(1,0)2, and —,
'

tO, OI(0,0)0 levels of
As in the Se(d, He) As and Ge( He.,d) As reac-

tions; to the 0+ ground state (limit II) and also to the first
excited 2+ level (limit II') of Ge in the As(d, He) Ge
reaction; to the 0+ ground state and first excited 2+ level
(limit II) and also to the first excited 0+ and 4+ and
second excited 2+ levels (limit II') of Se in the

As( He, d) Se reaction. In the experimental data on the
former two reactions, ' ' the —, ground state, the —,

level at 279.5 keV, and the —,
' level at 468.8 keV (associ-

ated to —, ) in As are indeed favored with respect to
most other —, , —, , and —, states. There are, however,
strong transitions to the —,

'
level at 264.7 keV (about

60 lo of the ground state transitions), which should be for-
bidden, and indications that the —, level at 821.6 keV
contains part of the lf—,

' proton-hole orbit. In the
As( He, d) Se reaction, ' the lz ——1 transition to the 0+

ground state of Se is strong. Moreover, the first excited
2+ level is mainly populated by a strong lz

——3 transfer
with some l~ =1 contribution, the first excited 0+ level,
by an I» =1 transition with half the strength of the one to
the 0+ ground state, the second excited 2+ level, by a
mixed lz ——1 and 3 transfer, and the first excited 4+ level,
by a sizable lz ——3 transfer. The latter features are unex-
plained by limit II, but are in qualitative agreement with
the predictions of limit II'. The strong lz ——1 and 3
transfers to the third 2+ level do not agree with either
limits II or II'. There are no experimental data available
on the As(d, He) Ge reaction.

V. DISCUSSION AND CONCLUSION

In the present paper, we have investigated in detail the
properties of three U(5) X SU(2) boson-fermion sym-
metries in the IBFM and their associated supersym-
metries, which involve a U(S) even-even core, and two or
three single-particle orbits, with j=—,

' and —,
' or j=—,', —,',

and —,. We have shown, in particular, that there are many
features common to these three symmetries, concerning
both the excitation energies and the level properties. As a
consequence, a "simpler" symmetry with 2 s.p. orbits
(liniit I) may, to some extent, be considered as a particular
case of a "more involved" one with 3 s.p. orbits (limit II),
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Fits. 4. Comparison between the experimental (Refs. 15, 16, and 19) and calculated [limits II and II' of U(5) XSU(2)] one-proton

transfer intensities between Se, As, and Ge. The experimental data given in the Se decay scheme deal with the As( He, d) Se
reaction, with an orbital angular momentum transfer l~; those in the As decay scheme deal with the Se(d, He) 'As (left) and
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Se(p, t) Se (Ref. 23)

+

0+

0+(0)
0+(2129)
0+(2713)
0+(2920)
2+{634)
2+(1260)
2+{3630)

202.3

9.7
11.8
52.0
10.5

75As(p, t) As (Ref. 22)

3
2

3
2

(0)

(396)

(656)

(1595}

(67.0)

(84.5)

(256)

(579)

{859)

( —, )(995)

100

2.4

1.5

NO

NO

20

13.5

TABLE III. Experimental data (Refs. 22 and 23) on the (p,t)
reaction on Se and As. L is the orbital angular momentum
of the transferred neutron pair. The energies of the final levels
are given in keV. The cross sections o are given in the papers
(Refs. 22 and 33) and only indicate the qualitative behavior.
The notation (NO) means not observed.

and the results obtained in the former have a more general
validity in the framework of the latter. The same remark
holds for other boson-fermion symmetries and supersym-
metries.

When comparing these theoretical results with the ex-
perimental data on the nuclei Se and As, an approxi-
mate agreement is obtained, with, however, some
discrepancies. The general structure of the negative parity
levels in As below 1 MeV resembles the one predicted by
the U(5) )& SU(2) symmetries, with, however, a large
number of parameters in the energy formulae. The
"collectivelike"properties, i.e., the quadrupole moments
and B(E2)'s and the two-nucleon transfer reactions,
display an agreement which is generally satisfactory, and
which involves few parameters. The "single-particlelike"
properties, i.e., the one-nucleon transfer reactions, face
more problems, and some "forbidden" transfers are com-
parable to the "allowed" ones. The experimental data do
not allow a clear-cut distinction between limits II and II'
of the U(5)XSU(2) symmetries, although the results of
the As( He, d) Se reaction slightly favor limit II'. Con-
cerning supersymmetries, the excitation energies and elec-
tric quadrupole properties of Se and As can satisfac-
torily be described together by placing these nuclei in the
same supermultiplet. . These general conclusions are also
valid for other boson-fermion symmetries and supersym-
metries.
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