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The properties of several hybrid mass relations are examined through the study of (i) statistical
tests, (ii) systematic effects, and (iii) the structure of the solutions of partial difference equations.
The usefulness of the relations is discussed. Mass relations based on the effective neutron-proton in-

teraction and on derivatives thereof have particularly small relation inaccuracies.

I. INTRODUCTION

Mass relations are difference equations for the binding
energies or masses of atomic nuclei. Hybrid mass rela-
tions explicitly include features inherent to mass equa-
tions. Mass relations can be used to determine unknown
masses of neutron-rich and proton-rich nuclei if only one
mass in the relation is unknown; they can usually be ap-
plied recursively. When viewed as partial difference equa-
tions, (hybrid) mass relations may have unique solutions
which represent mass equations. Hybrid mass relations
are particularly suited to investigating special aspects of
nuclear binding energies, including nucleon interaction en-
ergies, curvature terms, the isospin dependence, and pair-
ing effects.

The present study was motivated by the observation
that the repeated application of the well-known Garvey-
Kelson relation' (or the equivalent use of the solution of
the partial difference equation) leads to difficulties with
long-range extrapolations. Introducing an inhomogeneous
source term, hence a hybrid mass relation, becomes neces-
sary. Also, it was considered desirable to further exam-
ine a new hybrid mass relation derived recently by em-
ploying single-particle properties of a Fermi gas.

II. HYBRID BINDING ENERGY RELATIONS

A binding energy equation B,q(N, Z) is expected to
have the property

B,„p(N,Z) =B,q(N, Z)

for all experimentally known energies B„~(N,Z). Given
an analytical expression for B,q(N, Z), the parameters
contained in the equation are usually obtained by best
satisfying Eq. (1) for all known energies B,„~(N,Z). In-
troducing a difference operator D, it follows that

DB,„p(N,Z) =DB,q(N, Z) .

Equation (1) is contained in Eq. (2) in the limit D= l.
The right-hand side of the hybrid binding energy relation
(2) is a function f(N, Z) which can easily be obtained in
analytical form from any B,q(N, Z). Depending on D, the
function f(N, Z) reflects only upon certain properties of

B,q(N, Z). The function f(N, Z) can also be introduced
without explicitly invoking an equation B,q(N, Z). A spe-
cial situation arises if DB,q(N, Z) =0. This is the case for
the transverse and longitudinal Garvey-Kelson relations, '

at least on a local level. In this limit, the description of
the experimental binding energies B,„z(N,Z) has shifted
completely from the mass equation B,q(N, Z) with its in-
herent parameters, Eq. (1), to the difference equation
DB,„p(N,Z) =0.

Difference operators D are easy to construct, but only
few are of practical or physical interest. Binding energy
relations serve two strongly connected objectives. They
make it possible to predict unknown masses of neutron-
rich and proton-rich nuclei. This can be achieved by sin-
gle or by repeated applications of suitable binding energy
relations, or by employing a binding energy equation, if it
exists, which is the solution of a binding energy relation
(partial difference equation). Conversely, the comparison
between predicted (extrapolated) and measured binding
energies provides a sensitive test for special aspects of nu-
clear binding energies. For example, the influence of an
inhomogeneous source term in the Garvey-Kelson rela-
tions' has been studied, ' and it was concluded that the
effective neutron-proton interaction and the symmetry en-
ergy are shell dependent and must contain higher-order
terms in isospin. Other difference operators emphasize
discontinuous and periodic aspects of the experimental
binding energies, such as shell effects or pairing energies.
The study of these operators led to a better understanding
of pairing and clustering phenomena in nuclear ground
states.

Partial difference operators D can be constructed on the
basis of mathematical or physical considerations. They
are best introduced by defining the partial difference
operators

4'Jf(N, Z) =f(N, Z) —f(N i,Z j) . — —

The simplest first-order difference operators 6', b, ',
b,",and 5' ' have the characteristics of the partial dif-
ferential operators 8!BN, c)/BZ, 2c)/BA, and 28/BE with
A =N+Z and E =X—Z. The most basic quantities de-
rived from the binding energies with the use of these
operators are
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B„(N,Z) =b ' B(N,Z) =8 (N, Z) —8 (N —1,Z),
Bp(N, Z) = iP'B(N, Z) =8 (N, Z) B—(N, Z —1),
82„(N,Z) =b, ' B(N,Z) =8 (N, Z) —8 (N —2,Z),
82@(N,Z):b'—B(N,Z) =8 (N, Z) 8(—N, Z —2),
I~(N, Z)=h' b, ' B(N Z}

=8 (N, Z) 28 —(N —1,Z)+8 (N —2,Z),
I (N Z):b'b—'8(N Z)

=8 (N, Z) 28 (N—,Z —1)+8(N, Z —2),
I„,(N, Z) =—S"S"8(N, Z)

=8 (N, Z) B(N ——1,Z) 8(N,—Z —1)

+8(N —1,Z —1) .

(4)

III. SELECTED RELATIONS

Equations (4) represent the operational definitions for the
neutron and proton binding energies, the two-neutron and
two-proton binding energies, and the effective neutron-
neutron, proton-proton, and neutron-proton interaction
energies. Particularly the effective neutron-proton in-
teraction plays an important role in mass relations as it
represents a quantity related to the curvatures with
respect to A and E of the binding energy surface (for odd
A). Many hybrid mass relations follow from the opera-
tors introduced in Eqs. (4) and from additional higher-
order differences with regard to N, Z, A, and/or E.

Another partial difference operator introduced on
physical grounds is

Ds~B(N, Z) = (1—Nb. ' Z—h ')B(N,Z)—
=8(N, Z) NB„(N, Z) —ZBp(N, Z) —(5)

=(1 A)8 (N, Z)—+NB(N 1,Z)—
+ZB(N, Z —1} .

It has the property D+~8(N, Z) =0 for infinite nuclear
matter.

(B) +1 -2 +}

(o) ~

-2

(I) 5' '5"5' b, '8(N Z) —f (N Z)

The difference operators are schematically displayed in
Fig. 1. The functions f~(N, Z)=D;8(N, Z) represent in-
homogeneous source terms. They may be obtained from
any binding energy equation. The relations (A), (B), (C),
and (D) are simple first- and second-order differences
with regard to the number of neutrons and protons T. he
functions fi(N, Z) to f4(N, Z) represent theoretical ex-
pressions for the quantities B„(N,Z), I (N, Z), 8„(N,Z),
and I~~(N, Z), respectively. The equation lettered (E) is
that of Satpathy and Nayak. It has been derived employ-
ing single-particle properties of a Fermi gas with two
kinds of particles. The difference operator accounts for
the nucleon binding energies in infinite nuclear matter.
The function f5(N, Z) describes the influence of the finite
nuclear size. An analytical expression for fz(N, Z) has
been derived by the authors assuming X=Z. When used
as a recursion relation for one of the three nuclei [see Eq.
(5} and Fig. 1], the equation must be divided by (1 —A),
X, or Z, respectively, depending on whether the binding
energy of the nucleon-rich, proton-rich, or neutron-rich
nucleus in the relation is to be calculated. Results will be
given for all three cases. The second-order difference
equation lettered (F) represents the effective neutron-
proton interaction I„~. ' It is a hyperbolic partial differ-
ence equation. An analytical expression for
f6(N, Z)=I„~(N,Z) has also been reported. The third-
and fourth-order difference equations lettered (G), (H),
and (I) represent inhomogeneous extensions of the trans-
verse and longitudinal Garvey-Kelson relations' and of
the relation of Monahan and Serduke. The former two
relations are obtained by considering the dependence on
neutron excess and on nucleon number of the effective

About 30 hybrid binding energy relations have been
considered in this work, but results will only be reported
for a few characteristic examples. These include all rela-
tions based on simple first- and second-order difference
operators and several relations reported in the litera-
ture. ' ' The following relations will be discussed:

(A) b ' 8 (N, Z) =fi(N, Z),
(S) Si On "8(N,Z) f,(N, Z),
(C) 6 '8(N, Z)=f (N, Z),
(D) bo'bo'8(N, Z) ~f (N, Z),
(E) (1 Nh' Zb. ')B(N, Z) =—f5(N, Z—),

(G) +1

7 Ji

+Il

-1 +t

+1

(F) b, ' 6 'B(N, Z)=f6(N, Z),
(G) 6' 'b, ' 6 '8(N, Z)=f7(N, Z),
(H) b,"6' b, '8 (N, Z)=f8(N, Z),

FIG. 1. Difference operators for the hybrid binding energy
relations of Eq. (6).
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neutron-proton interaction I„z, and the latter is obtained
by considering their combined dependence. The homo-
geneous relations (G), (H), and (I) with f;(N, Z)=0 are
essentially equivalent to the inhomogeneous relations.
Only long-range extrapolations from the repeated applica-
tion of these relations seem to require certain inhomo-
geneous source terms.

The hybrid binding energy relations of Eqs. (6) are not
independent of each other. Relation (E) is a linear com-
bination of the first-order relations (A) and (C). The
second-order relations (8), (D), and (F) are obtained by
operating with the difference operators b' or b, ' on the
first-order relations (A) and (C). The third- and fourth-
order relations (G), (H), and (I) are obtained by operating
with the difference operators 6' ' or 6"or both on the
second-order relation (F). Possible implications of these
connections will be discussed below.

IV. STATISTICAL CONSIDERATIONS

The usefulness of a difference operator D in conjunc-
tion with an associated binding energy equation B,q(N, Z)
as a predictive tool for unknown binding energies can be
tested by determining the means and standard deviations
of the residuals

R(N, Z) =D[B,„p(N,Z) —B,q(N, Z)]

for all experimentally known binding energies. Useful re-'

lations are characterized by smal1 means and standard de-
viations. A simple liquid-drop-model binding energy
equation (BW1 of Ref. 7) has been used in the present
work. The results based on recent mass data are listed in
Table I in the second to fifth columns. The mean values
are smaller than the standard deviations, reaching about
30% only for relations (E) and (F). The standard devia-
tions with regard to zero are therefore taken as a measure
for the relation inaccuracies. They are displayed in the
table. Results are given for different ranges of mass num-
bers A to establish general trends. The number of residu-
als used for each case is given in parentheses. As men-

tioned before, results for relation (E) are listed in three
variations. The standard deviations range from about 200
keV for relations (F), (G), and (H) to about 1000 keV for
relation (E-3), and they generally decrease with increasing

The standard deviations listed in the last column will
be discussed below.

V. SYSTEMATIC EFFECTS

The residuals R (N, Z) of Eq. (7) may display systemat-
ic effects. The possible presence of such effects is best re-
vealed in a two-dimensional display. Such displays have
been obtained for all hybrid relations considered original-
ly. A few of the results are shown in Fig. 2. The display
is limited to the region near A =130 which includes the
shell crossings at Z =50 and %=82. This region is
characteristic for 'the entire region of nuclei. The various
symbols represent residuals, with the small dot assigned to
the range from —200 to + 200 keV. Systematic effects
can indeed be recognized. A significant discontinuity at
the shell crossing at Z =50 can be seen for relations (A)
and (E-l), and a similar step at N =82 can be seen for re-
lations (8) and (E-l).

VI. SOLUTIONS OF
PARTIAL DIFFERENCE EQUATIONS

Additional insight into the usefulness of a binding ener-
gy relation may be gained if a solution of the partial
difference equation

DB,„p(N,Z) =f (N, Z)

can be derived. The inhomogeneous equations with
f(N, Z)&0 will always have B,q(N, Z) as a special solu-
tion, even though certain terms contained in it may suf-
fice (such as the symmetry energy). The most general
solutions of the respective homogeneous equations must
be added. Neglecting the less important discontinuous
pairing contributions, the above (hybrid) binding energy
relations have the following solutions:

TABLE I. Standard deviations of the residuals for the hybrid binding energy relations Eqs. (6).

Relation
A =40—260

Standard deviation (keV)
A =40—110 A =111—180 A =181—260 Z&82, E)126'

(A)
(B)
(C)
(D)

(E-1)
(E-2)
(E-3)
(F)

(G)b

(I)b

718 (1171)'
602 (1067)
811 (1137)
635 (996}
436 (1015}
749 (1015)

1044 (1006)
196 (980)
191 (770)
194 (883)
273 (673)

829 (391)
831 (356)
913 (387)
663 (349)
441 (352)
787 (357)
984 (348)
262 (346)
239 (277)
249 (316)
338 (247)

610 (437)
480 (402)
674 (436)
674 (381)
393 (386)
653 (384)
930 (384}
157 (377)
162 (307)
163 (342)
231 (276)

703 (343)
374 (309)
843 (314)
535 (266)
485 (277)
815 (274)

1246 (274)
128 (257)
144 (186)
133 (255)
203 (150)

627 (151)
986 (151)

1718 (151)
255 (151)
297 (116)
371 (123)
548 (90)

'The number of residuals used in the calculations is given in parenthesis.
Results for the homogeneous relations are given. The inhomogeneous relations yield practically identi-

cal results.
'Mostly predicted mass values (Ref. 13) were used as input for these neutron-rich nuclei.
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results from the statistical and systematic analyses and the
solutions of the partial difference equations.

A. Relations (A), (8), (C), and (D)

These relations are only of limited value as predictive
tools. Similar conclusions have been arrived at by Comay
and Kelson. The partial differences with regard to N
and Z can only be used, if at all, to predict binding ener-
gies for sequences of isotopes and isotones, respectively.
The standard deviations of Table I are higher than for
other relations, and the individual residuals display pro-
nounced shell effects. The first-order differences of Fig. 2
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(A) B„)(N,Z)=B,q(N, Z)+a(Z),
(B) B...(N, Z) =B„(N,Z)+ a(Z)+p(Z)N,

(C) B„)(N,Z) =B,q(N, Z)+a(N),
(D) B )(N Z)=B q(N, Z)+a(N)+p(N)Z

(E) B„,(N, Z) =B,q(N, Z)+aN+ pZ,
(F) Bgg(N Z) B q(N Z)+F)(N)+F2(Z)

(G) Bsoi(N~Z)=[Boq(N&Z))+Fi(N)+F2(Z)

+F,(N+Z},
(H) B,g(N Z)=[B,q(N, Z))+F)(N)+Fg(Z)

+F4(N —Z),
(I) B4o)(N, Z) =[B,q(N, Z)]+F)(N)+F2(Z)

+F3(N +Z) +F4(N —Z) ~

(9)

Equations (9) demonstrate how the load for describing the
experimental data shifts from the underlying binding en-
ergy equation B~(N,Z) to the solution B„&(N,Z) of a
homogeneous difference equation.

VII. DISCUSSION

To assess the usefulness and range of applicability of a
particular binding energy relation one has to consider the

FIG. 2. Residuals for the binding energy relations Eq. (7) for
nuclei near A =130. Experimental mass values {Ref. 8) and an
associated liquid-drop-model mass equation (Ref. 7) are used.
The various symbols denote residuals in the indicated energy
ranges.

display discontinuities at X =82 or Z =50. Similarly,
the second- and third-order differences generate a "delta
function" and a "double layer, " respectively. Pairing ef-
fects are also visible in Fig. 2 for (A) and (C), but are even
more pronounced for the higher-order partial differences.
This behavior is caused by the use of simple liquid-drop-
model expressions for the binding energies B„and B~ and
the effective interaction energies I and Izz More. so-
phisticated expressions could be used, but the usefulness
of these hybrid relations lies more in the possibility of es-
tablishing shell and pairing effects. They are therefore re-
lated to the class of partial difference operators intro-
duced by Jensen et al. to extract discontinuous and
periodic components of nuclear binding energies.

B. Relation (E)

The standard deviations for the binding energy relation
of Satpathy and Nayak are significantly higher than for
other relations. This is particularly true for the relations
(E-2) and (E-3). The individual residuals displayed for
(E-l) in Fig. 2 show discontinuities at neutron and proton
magic numbers. This is not surprising as the relation
represents essentially an average of the relations (A) and
(C). The discontinuities of (E-1) are further amplified by
factors of essentially A/N and A/Z for the relations
(E-2) and (E-3), which must be used for predicting
proton-rich and neutron-rich nuclei, respectively. Equa-
tion (9) shows that only the volume term of the liquid-
drop-model equation (and a term proportional to N —Z)
are regenerated by the solution of the inhomogeneous par-
tial difference equation. One has to conclude that relation
(E) has only limited applicability.

The binding energy relation (E-1} has previously been
compared to the Garvey-Kelson relation (G), particularly
for certain neutron-rich nuclei. The conclusions are at
variance with those from the present work because the au-
thors compare predictions from a single application of re-
lation (E-1) to predictions from the Garvey-Kelson equa-
tion. ' The latter are essentially identical to predictions
from the vepeated application of relation (G) with up to
15 steps (cf. Refs. 7 and 10).

C. Relation (I')

While relations (B) and (D) compare experimental and
calculated effective interaction energies I and I~~, rela-
tion (F) compares experimental and calculated effective
neutron-proton interaction energies I„~. Surprisingly,
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despite the simple model used to calculate I„z, excellent
agreement is observed for relation (F) contrary to relations
(8) and (D), and the individual residuals of Fig 2. do not
display shell effects. The shell dependence of I„~ seems to
be weaker than that of I and Ipp Also, the operational
definition of I„z, Eq. (4), favors averaging of shell effects
at shell crossings. Furthermore, pairing contributions for
the valence neutrons and protons in the ground states of
odd-odd nuclei are much less than those for J=0 coupled
neutron-neutron or proton-proton pairs in the ground
states of even-even nuclei. The standard deviations for re-
lation (F) are comparable to those of the transverse and
longitudinal Garvey-Kelson relations (G) and (H). Rela-
tion (F) appears to be the first known hybrid mass relation
with this property, and its use as recursion relation is jus-
tified. The structure of the binding energy equation
which is obtained as solution of the partial difference
equation suggests that it could become a useful binding
energy equation. This has to be done with caution,
though, because small residuals observed for a relation do
not necessarily refiect upon the long-range characteristics
of the associated binding energy equation. In fact, shell
effects for the two components of the effective neutron-
proton interaction have been observed on a very low en-
ergy level and would probably have to be included in the
solutions of the difference equation.

D. Relations (6), (H), and (I)

As noted above, results for the hybrid [f;(X,Z)&0] and
homogeneous [f;(X,Z) =0] relations are essentially
equivalent, and the results for the latter are presented in
Table I and Fig. 2. The standard deviations are very
small, particularly for (G) and (H). Properties and appli-
cations of these relations have been reported in the litera-
ture' and will not be repeated here. The slightly in-
creased standard deviation for (I) is probably due to the
fact that the relation contains eight binding energies, in-
stead of only six for (G) and (H). Relation (G) is known
to be better than (H} in repeated applications, and the
equality of the standard deviations for (G) and (H) shows
that relation inaccuracies do not necessarily reflect upon
the long-range behavior. Only recently with the availabil-
ity of new very neutron-rich and proton-rich data have
the long-range characteristics of the systematic behavior
of (G) been investigated.

E. Other considerations

(1), Several of the hybrid binding energy relations in-
cluded in Eqs. (6) are derived from each other by operat-
ing with a difference operator 6'J on both sides of a
lower-order relation (see Sec. III). This leads to certain
connections between the relations but does not translate
into general statements about the usefulness of a relation
and its relation inaccuracies.

"Random" contributions to the relation inaccuracies in
the absence of obvious systematic effects are expected to
increase approximately as ~n where n is the number of
nuclei contained in a relation. This increase can be seen,
for example, for relation (I). Another increase observed
for higher-order relations is in the number of adjustable

parameters of the solutions of the partial difference equa-
tions. The number of parameters for the solutions (F},
(G), (H), and (I) of Eqs. (9), for example, increases signifi-
cantly with increasing order and may exceed reasonable
limits.

Systematic effects and the ensuing relation inaccuracies
do not seem to display a predictable pattern, and each re-
lation must be studied on its own merits. Systematic ef-
fects may become more pronounced for higher-order
differences (derivatives) as observed, for example, for the
pairing energy contributions [compare relation (8) with
(A) or relation (D) with (C)]. Systematic effects may
remain essentially constant when higher-order differences
are constructed from a relatively smooth quantity, such as
I„~ [compare relations (G), (H), and (I) with (F)]. Sys-
tematic effects may also decrease, as observed unexpected-
ly for the second-order relation representing the effective
interaction I„~ [compare relation (F) with (A) and (C)].
This behavior is very different from that of the other
second-order relations representing I~ and Izz [compare
relation (8) with (A) or relation (D) with (C)], presumably
because relation (F) connects differences with regard to
the number of neutrons and protons.

The characteristics of long-range extrapolations from
repeated applications of binding energy relations, such as
relations (F), (G), (H), and (I), are very difficult to predict
and require individual studies. Here again, there does not
seem to exist a predictable pattern related to the structure
of the difference operators.

(2) Hybrid mass relations are applicable to both
neutron-rich and proton-rich nuclei. The reliability for
proton-rich nuclei depends on the accuracies of the
Coulomb energy term and the symmetry energy term for
small T which are used in the associated binding energy
equation Bq(X,Z). Homogeneous relations cannot usual-
ly be used to cross the N =Z line. However, other pro-
cedures, such as the charge-symmetric Kelson-Garvey re-
lation' or the isobaric multiplet mass equation (IMME), '

may be used instead.
(3) Most binding energy equations B„~(X,Z) of Eq. (9)

are multiparameter equations with more parameters than
the majority of binding energy equations from the litera-
ture. The reason for this is that the solutions of (hybrid)
binding energy relations make extended use of the known
data (and the physics implicitly contained in them), and
only special aspects of nuclear binding energies (e.g., the
shell dependence of the effective nn, pp, and/or np in-
teractions, higher-order effects in isospin, etc )must b. e
treated theoretically or by using models. However, the
stability of extrapolations for such multiparameter equa-
tions requires attention.

The functions F~(N) and F2(Z) in the solutions (F),
(G), (H), and (I) of Eqs. (9) may be considered as shell-
correction terms if B,q(N, Z) is taken as a liquid-drop-
model-type equation. They will also account for neutron
and for proton pairing effects if these are not already in-
cluded in B,q(K, Z}. Shell correction terms with the
above structure are occasionally introduced phenomeno-
logically into mass equations to better account for the nn
and pp interactions.

For some of the solutions B„i(N,Z) of Eq. (9) the mul-
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tiparameter terms have the character of expansion coeffi-
cients of a local Taylor expansion of the atomic mass sur-
face as a function of neutron and proton number. This
has been studied, for example, for the solutions of the
homogeneous relation (G), and it was found that the
leading correction term not included in the solutions is
proportional to (N —Z) . Long-range extrapolations of
the data do indeed support the conclusion that higher-
order effects in isospin are important.

The functions F&(N) and Fz(Z) in the homogeneous
solution (G) account for the Coulomb energy difference
between isobaric analog states. ' If, on the other hand,
B,q(N, Z) in the inhomogeneous solution includes a
Coulomb energy term, then F&(k) and Fz(k) must be
equal. This provides a test for the goodness of the
Coulomb term. Similarly, if 8 &(X,Z) of Eqs. (9) is valid
for neutron-rich and proton-rich nuclei, charge symmetry
of nuclear forces imposes another condition on the func-
tions F;(k) which must be satisfied and can be used as a
test.

(4) Useful information about binding energy systemat-
ics may also be obtained if in some of the relations of Eqs.
(6) the nucleon binding energies B„and B~ are replaced
by two-nucleon binding energies Bq„and B2~ as defined
in Eq. (4).

(5) A simple liquid-drop-model mass equation has been
used in this work as the associated mass equation for the
hybrid relations. More sophisticated equations could be
used, presumably leading to improved results. However,
greatly improved results would reflect the influence of the
improved equation and not necessarily that of a more use-
ful hybrid relation.

(6) Comay and Kelson "have studied extensively the
propagation of errors in the repeated application of mass
relations. This leads to an additional criterion, not con-
sidered in the present work, for the usefulness of a mass
relation. The authors introduced a procedure which tests
the stability or instability encountered in the repeated ap-
plication of a relation. An inaccuracy for one nucleus will
propagate linearly for (G), but will increase exponentially
with fluctuating sign for (E-2) and (E-3). Significantly, an
inaccuracy for one nucleus will not increase in the repeat-
ed application of (F).

(7) Predicted masses have been used for comparing and
testing mass relations. This is not entirely unreasonable.
In fact, using the mostly predicted masses for very
neutron-rich nuclei of Viola et al. ' with Z (82 and
Ã & 126 (to avoid shell effects), one obtains the standard
deviations shown in the last column of Table I. The rela-
tive values are in reasonable agreement with other results,
giving the largest standard deviations for Eqs. (E-l), (E-2),
and (E-3). However, the absolute values are increased.
This reflects upon problems with the underlying predicted
mass values, not with the relations. Individual residuals
are displayed in Fig. 3 for two examples. Besides the in-
creased residuals of (E-1) relative to those of (G), sys-
tematic variations of a-decay energies and pairing ener-
gies are clearly present. Similar effects are observed for
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FIG. 3. Residuals for two binding energy relations for nuclei
near Pb. Predicted mass values (Ref. 13) and an associated
hquid-drop-model mass equation (Ref. 7) are used. The symbols
of Fig. 2 are used for the energy ranges of the residuals.

most of the other relations. Binding energy relations could
actually be used to decrease the "roughness" of a predict-
ed mass surface. Another related problem arises in the
comparison between binding energies which are calculat-
ed from equations" and binding energies which are de-
rived from nuclear energy systematics. ' No conclusion
can be drawn about the overall preference of one over the
other.

VIII. CONCLUSIONS
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Statistical properties and systematic effects of several
hybrid binding energy relations have been studied, and the
respective solutions of the partial difference equations are
given. A recently published hybrid relation3 is found to
have significant relation inaccuracies, particularly at ma-
jor shel1 crossings. A simple hybrid relation involving the
effective neutron-proton interaction is found to have rela-
tion inaccuracies as smal1 as the transverse and longitudi-
nal Garvey-Kelson relations, which justifies its use as re-
cursion relation.
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