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Temperature dependence of collective states in hot nuclei
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Department ofPhysics, Ben Our-ion University, Beer She-va, Israel

(Received 11 February 1985)

The T=0 coordinate-space linear response random-phase approximation method is generalized to
finite temperatures. Continuum effects are included through the temperature single-particle Green s
functions. The method is utilized to investigate the temperature dependence of isovector electric di-

pole excitations in Ca. The experimentally observed downward shift of the giant resonance and
the spreading of the dipole strength as temperature increases are clearly reflected in the calculated
cross sections. The present approach to the temperature dependent random-phase approximation
method offers a remedy to some of the limitations inherent in other existing formulations of the
theory.

I. INTRODUCTION

Strong experimental evidence for the existence of giant
resonances in hot nuclei has been found recently in y ray
spectra associated with deep-inelastic nuclear colli-
sions. ' A broadening as well as a downward shift of the
giant dipole resonance (GDR) as excitation energy in-
creases, characterized the behavior of the measured E 1

strength.
The rapid equilibration of the transferred energy in

deep-inelastic collisions inferred from experiment justi-
fies the incorporation of statistical mechanics methods in
a theoretical model for the behavior of a hot nucleus. A
few theoretical investigations into the temperature depen-
dence of collective states in a hot nucleus have been re-
ported recently. ' Common to all these investigations is
the use of the temperature dependent random-phase ap-
proximation (TDRPA), which constitutes an extension of
the well-known zero temperature RPA equation to finite
temperatures. ""

The finite temperature RPA is usually formulated ei-
ther as an eigenvalue problem to be solved in a limited
configuration space or else as an integral equation satis-
fied by a temperature particle-hole Green's function,
whose poles and residues determine the response of the
nucleus to an external field. A sophisticated generaliza-
tion of the linear response method to include pairing and
rotational degrees of freedom as well as temperature is the
one recently reported by Ring et al.

Irrespective of the manner of formulation, in practice
the corresponding TDRPA equations are never used in
their full capacity. To avoid a large amount of numerical
work, the usual limitations such as a truncation of the
configuration space, oversimplification of the particle-
hole interaction, lack of self-consistency between the RPA
calculation and the underlying single-particle field, and
other limitations are quite crudely imposed. The end re-
sult of such a calculation is either a discrete set of states
for photonuclear strength distribution (even above the
particle threshold) or else a continuous spectrum which is
designed by an arbitrary choice for the width of the vari-
ous collective states. This approach seems to be quite suf-
ficient for a qualitative investigation of the temperature

dependence of collective states in a hot nucleus, and
indeed the general features characterizing this depen-
dence, such as downward shift of the GDR and its
broadening, have been reproduced by Vautherin and
Vinh-Mau and by Ring et al. However, the study of
temperature dependence implies a rapid increase of the
configuration space with temperature and an arbitrary
truncation may distort the final results. Moreover, the
lack of any consideration for the continuum prevents any
possibility for a reliable conclusion regarding the widths
of the various resonances.

The purpose of the present paper is to suggest an exten-
sion of the T =0 linear response method of Bertsch, Tsai,
and Shlomo' and the open-shell linear response method
(OSLRM) of Bar-Touv and Moalem' to finite tempera-
tures as a remedy for some of the limitations of the exist-
ing TDRPA method. The main new ingredients added to
the TDRPA approach will be a coordinate-space formula-
tion of the TDRPA integral equation and the inclusion of
the whole continuum. The TDRPA equations are thus
solved by inversion of a matrix, whose dimensions are
determined by the mesh in coordinate space rather than
by the number of configurations included in the collective
state. Moreover, the inclusion of the continuum through
the temperature single-particle Green's function leads in a
natural way to a continuous spectrum representing a de-
tailed temperature dependence of the nuclear response. In
Sec. II an outline of the present approach to continuum
TDRPA in r space is given. Application of the model to

Ca isovector GDR and comparison with other calcula-
tions are discussed in Sec. III. Conclusions are summa-
rized in Sec. IV.

II. AN OUTLINE OF CONTINUUM TDRPA METHOD
IN r SPACE REPRESENTATION

The T =0 RPA integral equation is given by'

GRPA G(0)( I y G(0))—1

where V~q is the particle-hole (ph) interaction, G the
perturbed ph Green's function, and G' ' the unperturbed
ph Green's function whose coordinate space spectral rep-
resentation is
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yh(r) and eh stand for Hartree-Fock (HF) single-hole wave function and energy and qp(r) and ep the HF single-particle
wave function and energy.

The temperature dependence may readily be carried through the RPA equations by the occupation numbers ni of the
Fermi distribution

ni(T) = I 1+exp[(ei: p)—lkT] J

ei is the single particle energy of the temperature dependent HF field and p the chemical potential. In such a generaliza-
tion of the RPA equations each of the individual states j has a dual nature of being simultaneously a hole state with frac-
tional occupation ni and a particle state with fractional vacancy (1—ni). Thus the thermal unperturbed ph Green s func-
tion is determined by

(4)

where the summations on j and j' run over all single-particle states. The double sum which goes with the product term
nJ"n~' is antisymmetric with respect to an interchange of j and j . Since the two indices run over the same range, this
double. sum vanishes identically and the thermal unperturbed Green's function reduces to

6"'(r, ,r„cd, T)= —gn, q,*(r() gqj (i2) + q,'(i'2, ) q, (r2, ) . (5)

This expression for 6' ' looks formally like the corre-
sponding expression of the OSLRM. ' However, the basic
difference between the two is in the nature of the occupa-
tion numbers. The OSLRM occupations Oj were single-
particle parameters chosen to represent effectively a com-
plex configuration mixing in the ground state wave func-
tion, while in the TDRPA they are the carriers of the
temperature dependence. Expression (5) for 6' ' may be
given a form which is closer to the existing formulations
of the TDRPA method simply by changing the dum-
my indices of the second term to arrive at

6' '(ri, r2, cd, T) = —g (ni ni')(pi (r, )q—j(r, )

where h [y;], the TDHF single-particle Hamiltonian, is a
functional of its own eigenstates. The temperature depen-
dence propagates in these self-consistency equations
through the Hamiltonian density out of which the equa-
tions are derived by the variational condition. This Ham-
iltonian density is expressed in terms of three local tem-
perature dependent densities: the nucleon density

p(r, T)—:gni(T)
~
pi(r, T)

~

the kinetic energy density

~(r, T)=—gn (T)
~
Vy (r, T)

~

(6)
and the spin density

It is important to bear in mind that the occupation num-
bers ni of Eq. (5) are not the only carriers of temperature
dependence. In fact, each factor in the expression for 6' '

has its own temperature dependence originating from the
temperature dependent HF equations (TDHF). The im-
plied self-consistency between the TDHF and TDRPA
equations is often neglected due to an assumed smooth
and weak dependence of the HF field on temperature. As
it turns out, a smooth dependence of the HF single-
particle energies is in opposing directions for energies
below and above the Fermi level, and with increasing tem-
perature the effect on the occupation numbers ni due to
these variations may be significant.

The relevant approach to the thermal HF self-
consistent field relies on the simplicity brought to the I"

space solution of the equations for zero-range Skyrme-
type forces. ' The TDHF equations are

~ [0'ilf'c= &if'i ~

J(r, T)= igni(T)qj(r, T—)[Vpi(r, T) X o ] .

The iterative process' used for solving Eq. (7) includes
the constraints on the number of protons and neutrons

X=+—2(1+F3,)&,
J

7 3j being the third component of the isospin of particle j.
These two constraints determine, as usual, the chemical
potentials p„and p„ for protons and neutrons.

Having the TDHF single-particle basis and occupation
numbers, one can proceed to the TDRPA equations. The
unperturbed ph Green's function 6' ' is calculated by Eq.
(5) and the perturbed Green's function 6 by Eq. (1).
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Vph ——6 E/6p (13)

In including all the continuum states in the TDRPA
equations we follow Shlomo and Bertsch' in replacing
the sum over j' in Eq (5. ) with the TDHF Green's func-
tion for a single particle propagating from r& to r2.

The ph interaction V~„ is identified according to Landau s
theory of Fermi liquids with the second derivative of the
energy functional with respect to the nuclear density

1 2m
gI (r), r2, E,T)= uij(r& )U~j(r) )/W'.

Ho E—
(14)

uij is the regular solution for the TDHF Hamiltonian Ho
for a wave lj, U~z is the irregular solution with the ap-
propriate boundary conditions, r( and r) in this equa-
tion denote the lesser and the greater of r

~ and r2, respec-
tively, and W is the Wronskian of the two solutions. Us-
ing (14), G will be determined by

(rl r2 ~ r) gnj 'pj (rl )tg (rl r2 ~j +~) g(rl "2 ~h ~)1%'j ("2)
J

S,(E,r) = lm(SGS') —.1
(17)

IH. TEMPERATURE DEPENDENCE
OF GDR IN Ca

We now turn to the application of the present approach
to continuum TDRPA in r space. In order to minimize a

The sum over j has still to cover all single-particle states.
However, due to the coefficients nj, this sum is automati-
cally limited to fully and partially occupied states of the
TDHF single-particle field. The number of partially oc-
cupied states having a significant value for nj obviously
increases with temperature. Still this number stays quite
limited if we choose to exclude states with nz smaller than
some value (e.g., nj ~ 10 ) and renormalizes other nj in
order to obey the constraints on the number of protons
and neutrons exactly.

Once G' ' and G are determined, the response of
the nucleus to an external field described by the single-
particle operator E is given by'

Rp.(E,T)= (FGF )
=f«,«~F(r, )I (r2)G(r„r2, E, ~)

and transition strength by

l

possible interplay between pairing and rotational degrees
of freedom and temperature, we choose to apply the
present model to the spherical nucleus Ca. The T =0
GDR in " Ca is experimentally well known; however, ex-
perimental data concerning GDR in a hot Ca are not
available. Yet Ca may serve as a relatively simple sys-
tem for comparing the present approach to TDRPA vvith
other formulations. For that purpose we find the analysis
of the temperature dependence of Ca GDR reported re-
cently by Vautherin and Vinh-Mau most useful.

A. TDHF fieM in Ca

The collective behavior of a hot nucleus is obviously in-
timately related to the changes in the underlying self-
consistent single-particle field with temperature. Thus, to
make the present discussion self-contained we describe the
main features of that field which are most relevant to a
GDR in Ca. A more general discussion of the TDHF
field in nuclear matter and in finite nuclei may be found
in the paper of Sauer, Chandra, and Mosel' and in refer-
ences therein. For that matter we solved Ca TDHF
equations for a Skyrme I force in a model space which in-
cluded the ls, lp, Zs ld, 2p lf, and 3s2d lg shells. The
temperature dependence of single-particle energies and oc-
cupations related to the dominant ph components of iso-
vector GDR in Ca are given in Tables I and II. The

TABLE I. Ca TDHF solutions for neutrons: ej" for single-particie energy {in MeV), n~ for occupa-
tion, p„ for chemical potential (in MeV), and b v for the number of neutrons lifted out of the T =0 core
at temperature T {in MeV).

T=0

1$1/2

1p3/2
1p 1/2

1 d5/p
2$ ~/2

1 d3/2

&f7n
2p3/z
2pi/z
1f5y2

40.95
31.83
27.94
21.54
15.22
14.35
10.39
4.05
1.80
0.66

nj

1.0
1.0
1.0
1.0
1.0
1.0
0
0
0
0

42.12
32.32
28.94
21.64
15.97
14.96
10.26
4.46
2.46
1.17

'

nj"

1.0
1.0
1.0
0.986
0.807
0.715
0.193
0.013
0.005
0.000

42.38
32.35
29.10
21.54
16.25
15.10
10.06
4.56
2.73
1 ~ 15

nj

1.0
0.991
0.979
0.878
0.656
0.589
0.289
0.093
0.061
0.042

42.07
31.95
28.64
21.05
15.99
14.71
9.49
4.42
2.68
0.99

0.991
0.951
0.918
0.759
0.575
0.523
0.315
0.165
0.129
0.100

13.11
1.608

13.65
3.146

14.16
4.581
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TABLE II. Ca TDHF solutions for protons: e~ for single-particle energy (in MeV), nj for occupa-
tion, p for chemical potential (in MeV), and 2 m for the number of protons lifted out of the T =0 core
at temperature T (in MeV}.

T=0

I s ~/2

1p3/2
lp&/2
1 d5/2
2$ i/2
1 d3/2

lf 7'
2p3/2
2p
lfsn

34.26
24.77
20.88
14.44
9.10
7.38
3.44

—2.00
—4.17
—5.92

1.0
1.0
1.0
1.0
1.0
1.0
0
0
0
0

34.76
24.82
21.37
14.28
9.47
7.72
3.18

—1.93
—3.88
—5.68

1.0
1.0
1.0
0.984
0.84S
0.695
0.191
0.018
0.007
0.003

35.10
24.99
21.68
14.39
9.88
8.06
3.21

—1.76
—3.55
—S.29

1.0
0.989
0.976
0.866
0.677
0.571
0.283
0.103
0.068
0.045

35.34
25.14
21.80
14.42
10.02
8.19
3.10

—1.57
—3.28
—5.03

0.989
0.944
0.907
0.740
0.578
0.502
0.302
0.165
0.130
0.100

6.07
1.628

6.90
3.257

8.14
4.882

number of neutrons Av and protons b.sr lifted out of the
7 =0 Ca core are also given in the table. The most con-
spicuous result regarding a GDR superimposed on a
single-particle field of Tables I and II is the increasing
number and weight of new ph dipole excitations between
the lp shell and the (2s ld) shell and between the (2p lf)
and the (3s2d lg) shells. These new ph components, to-
gether with a blocking effect for ph excitations between
the (2s ld) and (2p lf) states due to the particles lifted out
of the core, are expected to determine the spreading and
downward shift of the isovector GDR found in experi-
ment.

Since the present calculations extend over the wide
range of temperatures (from T =0 up to T =6 MeV), it is
necessary to examine the validity of the statistical as-
sumptions underlying the present model for the higher
temperature solutions. Some measure of confidence in the
physical significance in the numerical solutions may be es-
tablished if for T=6 MeV the nucleus is still far from the
boiling point of diminishing binding energy and if the rel-
ative particle-number fluctuation stays small. For a
Skyrme-type force in which a density dependent force re-
places the three-body interaction the energy of the system
at a temperature T is given by'

where X is the particle-number operator.
Table III shows the calculated values for rms radius,

binding energy, excitation energy

E*=&y(T) i
~

i
P(T) &

—&P(0)
i
If

i P(0) &,

Fermi gas model Ez determined by'

EF ——aT =0.127AT (20)

and the relative particle number of fluctuations hA /A at
the temperatures 0, 2, 4, and 6 MeV.

Examining the results of Table III we find that, even at
the temperature of 6 MeV, the nucleus has enough bind-
ing ( —5. 1 MeV per nucleon) and is thus far from its boil-
ing point. There is, however, a marked difference in the
temperature dependence of the self-consistent field at tem-
peratures up to 4 MeV compared to the behavior at 6
MeV. We find a significant change in the rate by which
the nuclear volume increases. While at T =4 the relative
increase of the volume (with respect to the T =0 one} is
17%%uo, the relative change of volume at T =6 is already
29%. We also find a significant moderation in the rate by
which the self-consistent excitation energy increases with
temperature. In terms of the temperature coefficient
a(T)=E*/T, the constant value 5.08 of the Fermi gas

where t; and e; are single-particle kinetic energy and HF
energy, p„, p and p are the proton, neutron, and nuclear
densities, and t3 is the strength parameter for the three-
body force. The relative particle-number fluctuation
b,A/A at a temperature T is defined as the rms fluctua-
tion per particle and is determined by'

(19)

R
&a)

EF*

4A/A (%)

3.298
—336.35

0
0
0

3.300
—312.86

23.49
20.32

7.93

3.380
—270.29

66.06
81.28
10.10

3.556
—203.88

132.46
182.87

12.70

TABLE III. 4 Ca TDHF solutions: R for root-mean-square

radius (in fm), (H ) for tota1 energy (in MeV), E* for excitation
energy (in MeV), EF for excitation energy for Fermi gas model,
and AA /3 for relative particle-number fluctuation for T =0, 2,
4, and 6 MeV.
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model is replaced in a self-consistent field by the decreas-
ing values 5.87, 4.13, and 3.68 at the temperatures 2, 4,
and 6 MeV, respectively. The marked change of volume
and excitation energy rate of change found at T =6 MeV
reflect the weakening of the restraining role of the internal
degrees of freedom of the nucleus. At T =6 shell effects
are expected to diminish, ' and the limit for a thermal
equilibrium regime seems to be reached. The calculated
values of 10% and 13% for the relative particle-number
fluctuations at T =4 and 6 MeV, respectively, are much
bigger than the corresponding values for heavier nuclei. '

However, a relative fluctuation of 10% for Ca still justi-
fies the reference to this nucleus as a grand canonical en-
semble with a rather well defined statistical distribution.
We find further support for the above counted observa-
tions in the calculated isovector GDR to be analyzed in
the next subsection.

r; Y',p(Q, () .
i =Z+i

(21)

B. Solution of continuum TDRPA equations for ~Ca

Using the TDHF single-particle fields of the preceding
subsection, we constructed and solved the r space
TDRPA equations relevant to the response of Ca to an
external electric dipole field represented by the operator

eXF(E l,p) = g r( l')p(Q;)P l

The calculated photonuclear cross sections for isovector
J=1 excitations at T =0, 2, 4, and 6 MeV are displayed
in Fig. 1 and Table IV. Figure 1 also includes (in dashed
lines) the experimental GDR cross sections for compar-
ison and as a reference spectrum for the calculated finite
temperature cross sections. The integrated cross section,

cr;„,(E)=j cr(E')dE', (22)

derived from the calculated cross sections, is displayed in
Fig. 2. Since there is not much dipole strength left at en-
ergies above 30 MeV, we may compare the integrated
cross section o.;„, (30 MeV) with the classical energy
weighted sum rule (CEWS) for dipole excitations '

(o;„,),(„,——60 MeV mb-XZ
A

(23)

We refer first to the T =0 results. We notice satisfactory
agreement between the overall distribution of calculated
dipole strength and experiment. In particular, good agree-
ment is found between the energies of the main GDR
peak and between the integrated cross sections

[o';„,(30)],„~=580+60 MeV mb

(Ref. 20) as compared to [a;„,(30)],h ——534. We believe
that this agreement at T =0 gives some measure of confi-
dence in the calculated GDR cross sections at finite tem-
perature, and the T =0 results may be used as a reference
spectrum to the changes in the collective behavior of the
nucleus with increasing temperature.

OOCo 6 I Ahl T DIPOLE.

'
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FIG. 1. Ca isovector electric dipole cross sections for T =0, 2, 4, and 6 MeV. T =0 experimental cross sections are by Bezic
et al. (Ref. 20).



1374 J. SAR-TOUV

TABLE IV. Ca TDRPA solution for isovector electric dipole excitations: E for energy at the
maximum of the main GRD peak, E, for energy of the second GDR peak, E, for GDR centroid en-
ergy, o;„,(30 MeV), o.;„,=o.;„,(E), o.,"„=o.;„,(30)—o.;„„and a for interaction correction to dipole sum rule.
Energies are given in MeV. Cross sections are given in MeV mb.

Em

19.0
18.6
18.6
18.0

E,

22.2
22.0
21.6
21.0

19.0
14.8
9.5
6.9

o.;„, (30)

534
550
563
720

Lo tnt

-234
207
272
446

Ro int

300
343
291
274

0.09
0.12
0.14
0.46

T=6

640

560

480)
400

~ &20

C.

b 240

l60

T=4
T=2
T=O

The most conspicuous and nontrivial result of the cal-
culated temperature dependence of the GDR cross sec-
tions is the sustained existence of well defined giant reso-
nance through the whole range of temperatures used in
the present calculations. In agreement with the experi-
ment, we find a downward shift of the resonance energy
as well as a large spreading of the dipole strength at the
expense of the main peak when temperature increases. In
complete agreement with Vautherin and Vinh-Mau, we
also find a weak temperature dependence of the energy of
the main GDR peak. The downward shift of the peak is
from 19.0 MeV at T=0 to 18.0 MeV at T=6 MeV.
However, contrary to Vautherin and Vinh-Mau, we do not
find a big increase in the dipole strength in the energy re-
gion above the main peak. In Table IV we give the calcu-
lated energy E~ at which the maximum of the main peak
occurs, and the integrated cross sections o;„,=0;„,(E~ ) for
the whole region left to E~ and o;„,=cr;„,(30)—o;„, right
to E . At T=4 MeV we find a decrease of -3% in cr;„,
with respect to the T =0 value and at T =6 MeV, a de-
crease of —10%. o;„„, on the other hand, increases by
—10%%uo at T=4 and increases abruptly by -90% at
T =6. The combined effect of the downward shift of E
and the spreading of the dipole strength may be given a
quantitative measure by the values of the centeroid energy
E, This energy is defined by the ratio of the energy
weighted strength to the total strength

E, =I E'dE'Im(FGF)/ I dE'Im(FGF) .

(&4)

Oint=(1+~)(oint)class . (25)

The temperature dependence of the calculated EWS may
be viewed as a temperature dependence of the parameter
a. The corresponding values of a at each temperature are
included in Table IV.

The calculated values of E, at each temperature are in-
cluded in Table IV. These values reflect a strong tem-
perature dependence and seem to be compatible with what
the experiment indicates. Despite the significant spread-
ing and downward shift of dipole strength there is a rela-
tively small reduction of strength in the main peak itself.
Thus, collectivity of the dipole vibration in the GDR re-
gion is sustained in a wide range of temperatures.

We now turn to analyze the temperature dependence of
the energy weighted sum (EWS) associated with electric
dipole excitations. In the absence of a velocity dependent
component in the nuclear interaction this sum is expected
to be independent of temperature. ' In the present calcu-
lation we have used a particle-hole force which is derived
from Skyrme I force. Since this force carries some veloci-
ty dependence (through the parameters t& and t2 of the
force), a small increase in the calculated total cross section
with temperature is expected. The calculated total dipole
cross sections displayed in Fig. 2 and Table IV do reflect
an approximate independence of the EWS in temperatures
ranging from 0 to 4 MeV. However, the small increase of
5.4%%uo that occurs at T =4 MeV turns abruptly to a 35%
increase at T =6 MeV. This drastically different
behavior of the integrated cross section at 6 MeV is com-
patible with the different nature of the underlying self-
consistent field, as stressed in Sec. III A. It may either re-
flect a violation of some of the basic assumptions of the
TDRPA model or else a prediction for the nature of nu-
clear collective vibration at higher temperatures. Refer-
ring to the classical energy weighted sum rule of Eq. (23),
an overestimation of this sum by the calculated cross sec-
tions due to a velocity dependent component of the force
is expected regardless of temperature. ' This interaction
correction to the dipole sum rule is usually expressed in
terms of a parameter a defined by

80

0
IO l5 20

e (Mev}

25
I

50

FIG. 2. TDRPA-integrated cross sections o.;„,(E) for isovec-
tor electric dipole excitations in Ca.

IV. CONCLUSIONS

We have demonstrated above that the r space continu-
um linear response formulation of the finite. temperature
random-phase approximation is a most powerful method
to investigate the nature of collective vibrations in
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thermally equilibrated hot nuclei. Unlike other TDRPA
formulations, our method is exactly solvable in the sense
that one may include as many particle-hole configurations
as required for an adequate description of the temperature
dependence. One can concentrate on the details .of a nar-
row segment of the energy spectrum rather than dealing
with the entire spectrum. Above all, the inclusion of the
continuum through the temperature single-particle
Green's function enables, in a natural and transparent

way, a detailed description of the broadening of particular
states as a function of temperature.

Application of the present method to isovector GDR in
Ca explains in a consistent manner the spreading and

downward shifting of the GDR observed in experiment.
The present calculation suggests a possible violation of the
thermal equilibrium regime at the temperature of 6 MeV.
The rather weak temperature dependence of the GDR
seems to take an abrupt turn at T=6 MeV.
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