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The five response functions which characterize the {e, e'p) reaction are calculated in the distorted
wave impulse approximation using a Dirac equation formulation of the nuclear bound and scatter-
ing wave functions and the usual free Dirac current operator. By evaluating the current matrix ele-
ments in momentum space, it is possible to recover the traditional Schrodinger dynamics and thus to
study off-shell effects from the proton-nucleus final state interaction in both the relativistic and the
nonrelativistic approaches. The longitudinal response function with relativistic effects included is
reduced by about 20 percent relative to the nonrelativistic results. This is shown to be due to the
Dirac final state interaction. Relativistic nuclear bound-state effects are found to be small in this re-
action. The other four response functions show relativistic effects on the order of 5 to 10 percent.
Off-shell effects are shown to be especially important in the interference response functions. A
rough measure of the violation of current conservation in such calculations is presented and its im-
plications for the calculations are discussed.

I. INTRODUCTION

Analyses of (e,e'p) reactions have been made in at-
tempts to learn about spectroscopic factors, spectral func-
tions, and momentum-space wave functions. ' Generally,
the analyses are carried out in a nonrelativistic frame-
work using a reduction of the relativistic current operator
appropriate to nonrelativistic Schrodinger wave functions
for the bound state and the ejected proton. The reduction
of the relativistic current operator is obtained by trunca-
tion of an expansion in plm. Moreover, the models gen-
erally used involve the impulse approximation, i.e., the use
of free one-body current operators, and distorted waves
for the ejected proton which are based on a simple optical
potential. These approximations reduce the calculation to
manageable form, however, it is clear that a treatment in-
volving considerably more complexity is ultimately need-
ed.

In this paper, we consider ( e,e'p) reactions using a rel-
ativistic format. Both the bound state and the final state
distorted wave are based on the Dirac equation, which im-
plicitly includes pair effects. The electromagnetic current
operator for one-photon exchange is used in its elementary
form without a plm expansion. Therefore, the analysis
has essentially the same ingredients as the traditional
Schrodinger approach with the exception that everything
is done in the framework of relativistic dynamics. Recent
developments have given substantial credence to a relativ-
istic nuclear dynamics in which the nucleon-nucleus in-
teraction is characterized by large scalar and vector poten-
tials in the Dirac equation. The Dirac approach pro-
vides improved descriptions of spin observables in
proton-nucleus elastic scattering. Moreover, simple
Hartree-approximation calculations provide nuclear densi-

ties which are in good accord with electron scattering
data. s' The Dirac scalar and vector potentials are of op-
posite sign and they provide a natural explanation of the
spin-orbit splitting in nuclear shells. ' Since the scalar
and vector potentials are large, the usual reduction of the
electromagnetic current matrix element to an effective
nonrelativistic form using free Dirac spinors may omit
significant effects. " We test this possibility by perform-
ing a straightforward relativistic analysis of the (e,e'p)
reaction.

Currently, one of the important issues in electromagnet-
ic physics is the explanation of the observed quenching of
the longitudinal response function relative to the trans-
verse response function in (e,e') inclusive scattering. ' '
Various authors have identified the quenching as a natural
consequence of the relativistic approach, at least in
part. ' ' However, these analyses were based on crude
modes such as infinite nuclear matter or they employed
phenomenological parameters. ' One of our objectives is
to examine the extent to which the quenching is present in
microscopically calculated (e,e'p) reactions and to ex-
plore the possibility that the three new response func-
tions'7 '9 of this reaction may shed new light on possible
relativistic effects. The five response functions of the
(e,e p) reaction are calculated using relativistic Hartree
wave functions ' for the bound state and microscopic
Dirac optical model wave functions for the knockout pro-
ton. The final state optical potential is based on free
nucleon-nucleon amplitudes and a nuclear density which
is obtained from elastic electron scattering data. There
are no adjustable parameters. The analysis is done com-
pletely in momentum space. This procedure permits a
clean separation of relativistic versus nonrelativistic dis-
tortion and bound-state effects and also a clean separation
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of on-shell versus off-shell final state scattering effects.
Substantial quenching of the longitudinal response func-
tion is found in our ( e, e'p) analysis, however, very little
of it arises from the use of relativistic bound state wave
functions. Rather, the relativistic final state interaction
seems to provide the dominant quenching mechanism.

However, some caution should be exercised in compar-
ing our calculated results with experimental data [this is
true of all distorted wave impulse approximation (DWIA)
calculations]. A consistent treatment of the hadronic
current operator and the hadronic wave functions is need-
ed in order to conserve the electromagnetic current,
whereas the present analysis omits correlation contribu-
tions and meson exchange currents consistent with the in-
teraction potential. Further investigations are planned to
extend the analysis at least to the 2p-2h level, however,
the scope of the present work is limited to an exploration
of relativistic and other dynamical effects in DWIA. In
addition, Coulomb distortion of the ejected proton is
omitted in the present work in order to simplify the
dynamical investigations which are the focal point of this
paper. This omission is not expected to lead to significant
alteration of our results. It will be removed in subsequent
investigations.

In Sec. II of this paper, the basic formalism of the
( e,e'p) reaction is reviewed. A brief outline of the deriva-
tion of the cross section for this reaction is presented and
the response functions' ' are defined in terms of matrix
elements of the nuclear electromagnetic current operator.
The analysis in this section incorporates the helicity
dependent response function first pointed out by Donnel-
ly. ' This analysis serves mainly to define the notation
and conventions which are used throughout this paper.

Section III contains a discussion of theoretical aspects
of the (e,e'p) reaction and our calculational approach.
The independent particle, D%'IA approximation to the
nuclear current matrix elements is discussed and the im-
plications of this approximation for electromagnetic
current conservation are examined. The Dirac shell-
model wave functions used in this calculation are dis-
cussed and the choice of a one-body Dirac electromagnet-
ic current operator is described. The construction of the
relativistic distorted proton waves is then described. We
discuss various approximations and limiting cases which
elucidate the important physical mechanisms in the
(e,e'p) reaction and which can be obtained from our
momentum-space calculations.

Section IV contains a presentation of the numerical re-
sults. Calculations of the five response functions for the
ejection of 135 MeV protons from the lpi/2 and ip3/2
shells of ' 0 are presented. Comparisons of relativistic,

S

FIG. 1. Schematic diagram of the (e,e'p) reaction.

nonrelativistic, on-shell, and plane wave calculations are
made for each response function. Relativistic effects and
possible off-shell sensitivities are discussed. A measure of
the violation of current conservation is presented.

In Sec. V, conclusions reached as a result of our investi-
gations are presented.

II. ELECTRON SCATTERING FORMALISM

The one-photon exchange mechanism provides a good
approximation to elastic and inelastic electron scattering
from light and medium sized nuclei. With this approxi-
mation a general form of the ( e, e'p) cross section can be
determined by means of fairly simple and straightforward
arguments. In order to present some of the notation
which will be used throughout this paper, it is useful to
present a brief outline of the derivation of ( e,e'p) cross
section.

In the one-photon exchange approximation, the ( e,e'p)
reaction is schematically represented by Fig. 1. In this
figure, k and k' represent the initial and final electron
four-momenta and s, and s,' represent the initial and final
electron spin. The four-momentum transferred to the nu-
clear system by the absorption of the virtual photon is
represented by q. P and P' represent the four-momenta
of the target and residual nucleus, while the quantum
numbers of the intrinsic states, g;z and /fan, are labeled
by i and f, respectively. The four-momentum and spin of
the ejected proton are labeled by p' and s'. In terms of
these quantities, the ( e,e'p) differential cross section (fi-
nal spins unobserved) in the target rest frame can be writ-
ten as

vlcc/ k pyg j'3p' d P'
do=, y y y y f, ef(P')(2m. )45~(k —k'+P —P' —p')

(2~) ek (2~) Z~, f, r (2~)s'

2 2

u(k's, '
)y„u (ks, ) z

(p's'( —),gfp'
~

J i'(g)
~ f&p }

q
(2.1)

where m, and m are the electron and nucleon masses, ek =(k' +m, )'/, and E~ =(p' +m )'/ . The electron spinors
and gamma matrices follow the standard conventions. @f(P') is a density of states factor appropriate for the intrinsic



1314 A. PICKLESIMER, J. %. VAN ORDEN, AND S. J. WALLACE 32

spin of the residual nucleus. In our case, since the recoil momentum is nonrelativistic, Nj(P )= 1. The electron charge is
e and J'"(q) is the electromagnetic current operator for the nuclear system appropriate to the particular choice of dynam-
ics and basis states for the nuclear system. The incoming (spherical) wave boundary condition is appropriate for the con-
tinuum part of the final state and this is indicated by the ( —) in (2.1). The notation g indicates an average over al-
lowed states.

It is conventional to separate the electron and nuclear components of the cross section by defining an electron tensor

g„„=m,g u(ks, )y„u (k's,' )u(k's, '
)y„u (ks, ) (2.2)

and a nuclear tensor

d I"fP'&"= g g g f @f(P')(2n.) 5 (k k'+—P P' —p')—
f g' l (277)

X (Ap I
~"'(q)

I

p's'( »4j~ &
—&p's'( »Pyp' I

—~ (q) I
4'p'& . (2.3)

8 jMV

2 4g~VR'
pj ~q

(2.4)

The electron tensor can be explicitly calculated using
the spin projection operator for the incident electron and
simple trace theorems. In the extreme relativistic limit
(ERL), which is appropriate for electrons with energies in
the region of interest for this work, this gives '

——,
' tr[y~k"'y—„(1~hy5)k],

(2.5)
=(k„'k„+k„'k„k'.kg„„+—hie„„gP' " )/2,

where h is + 1 for positive electron helicity and —1 for
negative electron helicity. The sum of the first three
terms of (2.5) is symmetric with respect to the interchange
of p and v and is independent of the electron helicity.
This sum is identical to the electron tensor obtained for
the case of unpolarized incident electrons. The last term
is antisymmetric under interchange of p and v, and de-
pends linearly on the electron helicity. The electron ten-
sor can therefore be written as the sum of a symmetric
and an antisymmetric tensor, where only the antisym-
metric tensor depends on the initial electron helicity.

These two second-rank tensors are determined by bilinear
combinations of the electron and nuclear electromagnetic
currents, respectively. In terms of these tensors, the con-
tribution of the absolute square of the matrix elements in
(2.1) is contained in

current. Scalars and tensors bilinear in e are not linearly
independent of the indicated set. Electromagnetic current
conservation requires, in addition, that

qp8'" =q 8'&"=O. (2.7)

This constraint is most easily satisfied by constructing
W"" from a complete set of four-vectors and second-rank
tensors which individually satisfy the same constraint.
These "gauge invariant forms" are

P V
GPV PV

q

pp 1 pp P q p (2.8)

The nuclear tensor can then be written as
IV""=IV, G~"+ IV VI'VI"+ 8' Vj"Vj+ W' (VI'Vj"+ Vj"V;")

+ 8's( V{'Vj Vj"V;"—), (2.9)
where the 8' are functions of the available Lorentz sca-
lars. As in the case of the electron tensor, this can be
written as the sum of a symmetric part consisting of the
first four terms and an antisymmetric part consisting of
the last term,

S A
9@V 9@V+9@V (2.6)

A general form for the nuclear tensor can be construct-
ed using simple invariance arguments. In the case where
the spins of the final nucleon and nucleus are not ob-
served, this tensor must be constructed from the three
linearly independent four vectors q, p', and P, the scalars
that can be constructed from them, q, q P, q.p', and
p' P, and the second-rank tensor g&„. The fact that only
three independent four-vectors are available precludes a
scalar constructed from, and linear in, the completely an-
tisymmetric tensor e&„~, while second-rank tensors con-
structed from the available four-vectors and linear in e„„z
are inconsistent with a parity conserving electromagnetic FICx. 2. Coordinate axes used to define the angles a and p.
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Wi'"= Wi'" + Wi'"" (2.10)

Since the contraction of a symmetric and an antisym-
metric tensor yields zero, the contraction of the electron
and nucleon tensors can be written as

(2.11)

The cross section for unpolarized electrons is thus deter-

mined by only the symmetric part of the nuclear tensor.
The antisymmetric part of the nuclear tensor can be
"seen" only with polarized electrons.

Choosing the coordinate system shown in Fig. 2 and us-
ing the kinematics of the scattered electron, the differen-
tial cross section for the creation of a proton hole state by
an incident electron with helicity h can be written as,

d CT

d eked Qk~d Q&~
J

(2m ) ~ RL + tan ——
2 Rz 2—cos2PRrT+ 2

q
q' 2 2q' 2q' q

2 1/2

tan —,—
q2

slnPRL, T +Ii tan cosPRL z
q 8
q2 2

(2.12)

where q =co —q and co=qo is the energy transfer. The
Mott cross section, which is the cross section for electron
scattering from an infinitely massive point "nucleon" is
defined in the ERL by

do a cos 8/2
41k

I

'sin 8/2
' (2.13)

where here a is the fine structure constant. The quantities
RL, , Rz, RTT, RI T, and RI.T are the longitudinal, trans-
verse, transverse-transverse, longitudinal-transverse, and
polarized longitudinal-transverse response functions,
respectively. These five response functions are defined in
terms of the components of the nuclear tensor integrated
over a line width in the missing mass spectrum as follows:

RL ——f, dE~ W

pf 11++722 E p7++ +
hne

sinPRL, z
——fdE~ ( ,W + W )

dE .2'" Im( W'++ W'-),
line

cosPR~T —— dE i(W' —W ')
line

dE 2' Im(W —W +),
line

(2.14)

where the response functions have been expressed in terms
of a spherical basis, '7 defined by the basis vectors
e —+=+2 '~ (e '+ie ), as well as the Cartesian basis shown
in Fig. 2. The response functions are defined so as to be
independent of the azimuthal angle P.

Current conservation, which in momentum space can
be expressed as coJ =q J, can be used to eliminate the
component of the three-vector current parallel to the
momentum transfer in favor of the charge density. This
has been used in deriving (2.12). Thus, longitudinally po-
larized virtual photons couple to the nuclear transition
charge density J, while virtualyhotons with helicity +1
couple to the two components J—of the three-vector tran-
sition current density transverse to the direction of the

I

photon. Since all three independent components of the
four-vector current can exist for a given transition,
response functions which involve the interference of the
various current components are present. Remembering
the definition of W"", the response function R~ is deter-
mined entirely by the transition charge density. The
response function Rz. is given by the sum of the squares
of the two transverse components of the transition current
density. This corresponds to summing over the photon
helicities 1. The response function RTT is the result of
interference between the two different transverse com-
ponents of the nuclear electromagnetic current. The
response functions RL,T and RL,T are the result of in-
terference between the transition charge density and the
two transverse components of the current. The azimuthal
angular dependence in (2.12) arises as a result of the heli-
city of the absorbed virtual photon. In inclusive scatter-
ing, where terms involving P do not appear due to the az-
imuthal angle integration, it is only possible to differen-
tiate between the transverse and longitudinal polarizations
of the virtual photon, not between the +1 helicity states
of the photon. Since the last three response functions are
the result of interference between various components of
the nuclear electromagnetic current, they may be expected
to be especially sensitive to relative phase differences in-
troduced by the interaction of the ejected nucleon with the
rest of the nuclear system. These response functions may,
therefore, provide a relatively sensitive test of the
nucleon-nucleus final state interaction. Indeed, it is easy
to show within the context of a one particle DWIA model
that the response function RL,T- is identically zero unless
there is a final state interaction.

In the coordinate system shown in Fig. 2, the ejected
proton is in the scattering plane of the electrons when
P=+n/2. From the expression for the cross section
(2.12), it is clear that, in the scattering plane, all teiiris
contribute, except the term proportional to RLT. This
contribution can be detected only with a polarized elec-
tron beam and with a spectrometer capable of detecting
protons not in the electron scattering plane. Because this
term is proportional to the electron helicity, it can be
separated from the rest of the cross section by taking the
difference between cross sections for each of the two pos-
sible incident electron helicities. The term proportional to
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EL~, on the other hand, changes sign upon changing the
azimuthal angle from P=m./2 to P= —n./2. All of the
other terms in (2.11) which contribute in the scattering
plane retain the same sign under this change of angle.
RLr can therefore be separated by measuring the two
cross sections which have the proton in the scattering
plane and on either side of the momentum transfer vector
q and then taking the difference between the two cross
sections. The term proportional to Rzz can be separated
only by measuring the cross section at several values of P.
The separation of Rr and Rr requires a Rosenbluth
separation.

From the discussion presented above, it is clear that the
cross section for ( e,e'p) can be determined if the matrix
elements of the components of the electromagnetic four-
vector current operator are known. In principle, calcula-
tion of these matrix elements requires the complete solu-
tion of the nuclear many-body problem together with the
use of the exact nuclear electromagnetic current operator.
These aspects, taken together, represent an exceedingly
difficult problem. In practice, it is clearly necessary to in-
troduce severe approximations. In the fo11owing section
we discuss the approximation of the nuclear current ma-
trix elements using an independent particle DWIA ap-
proach.

III. THE NUCLEAR
CURRENT MATRIX ELEMENT

The considerations of the previous section resulted in
the identification of a set of nuclear response functions
which contain the information of central interest in the
( e,e'p) reaction. In order to obtain theoretical predictions
of these response functions, it is necessary to compute the
matrix elements of the hadronic electromagnetic current
operator J~:

(3.1)

where
~ f;r ) represents the intrinsic initial A-body nu-

clear ground state vector together with its barycentric
momentum P, and

~

p's'( —), /fr ) represents the final
(stationary state) scattering state vector of the A-body nu-
clear Hamiltonian with incoming (spherical) wave boun-
dary conditions [denoted by the ( —)] and target recoil
momentum P'. From a time-dependent viewpoint, the fi-
nal state corresponds to a complicated initial superposi-
tion of incoming waves which evolves to an asymptotical-
ly simple wave consisting of the relative plane-wave
motion of a proton with momentum p' and spin-
projection s' and the final (A-1)-body nuclear bound state

For calculational purposes, we follow the usual pro-
cedure of approximating ~P's'( —), /fr ) by its single-
channel optical model wave function

~ g~, ',fP') which is
the product of the final nuclear bound state, a "distorted
wave" of relative motion and the barycentric motion of
the whole system. Relevant aspects of the relativistic op-
tical model approach are discussed in Sec. IIIA. For the
initial bound state, a single-particle shell-model (SM) wave
function

~ g;,P ) is employed. Formally, the exact wave

functions can be written in terms of the model wave func-
tions as

and

) ~ ~ysM P)

(3.2)

(3.3)

where Qq and Q~ are Moiler-type wave operators which
"evolve" the exact states from the model scattering and
bound states. Therefore (3.1) can be rewritten as

J"= & gp, ',f ~
QsJ"Qii

( P; ) (3 4)

which is still exact. From (3.4) on, we suppress the initial
and final nuclear momenta for the sake of notational can-
venience. Their implicit presence should, however, not be
forgotten. The complexity associated with the exact wave
functions has been eliminated at the expense of creating
an effective current operator

J",g ——QgJ"Qg (3.5)

which is an extremely complicated object. The usual
D%'IA approach corresponds to replacing the operators
Qq and Qz by unit operators and the exact nuclear elec-

tromagnetic current operator I" by a one-body current

operator J'"&. Following this approach, we approximate
(3.1) as

JP P ( —) J(1)P SMdS' ( —)

(2m )

(3.6)

The shortcomirigs of omitting the many-body components
of the current (3.5) are potentially severe, particularly in
regard to electromagnetic current conservation. Estimates
of the importance of this problem are presented together
with our results in Sec. IV. No existing DWIA calcula-
tion of this process conserves current.

In evaluating (3.6), it is necessary to choose a represen-
tation. Our calculations are performed entirely in
momentum space (k space), for the following three
reasons. First, the isolation and determination of the
physical sources of differences between the relativistic and
nonrelativistic approaches examined herein, for both the
distorted waves and bound states, is most easily accom-
plished in k space where the Dirac wave functions can be
readily decomposed into positive and negative energy
components. Second, the final state scattering of the
ejected proton by the residual nucleus can be easily
separated into an on-shell part and an off-shell part. The
on-shell part is closely constrained by proton-nucleus elas-
tic scattering experiments and therefore ( e,e'p) results in
the DWIA should be particularly reliable when final state
interaction effects are dominated by the on-shell part.
Correspondingly, the importance of the off-shell ampli-
tude can be determined. Third, we intend to extend our
studies to other reactions [e.g., (p, y)] and to the incor-
poration of meson-exchange currents, the natural setting
for which is k space. In momentum space, neglecting tar-
get recoil, (3.6) can be written as
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In writing (3.7), it has been assumed that the single par-
ticle wave functions are four-component Dirac wave func-
tions where g denotes the usual Dirac conjugate g y .
The current operator is the usual free Dirac current opera-
tor

J' 'i'{q)=y J' 'i'(q)=E, (q )y"+ iver""q1 0 1 2 z q ~ v

2p?l
(3.8)

where I" i and Iiz are the electromagnetic form factors of
the nucleon. The momentum-space Dirac-Hartree wave
functions are obtained by Fourier transformation of the
coordinate space wave functions of Ref. 8. Following the
conventions of Ref. 8, consider a typical bound state solu-
tion of the Dirac equation (o„=o' r),

pi, ( )

4nii(r) =
Gr —lcrr nlj r (3.9)

P;(p)= f d re 'i''P„ij(r)

Yi„(p)

Az{p) ~P„(p)
(3.11)

where

g; i(p) =( i) 4' —f dr rjt (pr)F»i(r),
(3.12)

l2 00

z(p) =i ( —'1) '4n. dr rj irz(pr)G ii(r) .

Here Ii ——1 and lz ——2j —1. The normalization of the
momentum space wave function is thus

I=f,p;(p)g;(p),
(2m. )

(3.13)

, f, dPP'I IAi{P) I'+
I Az{P) I'j .

Equations (3.11)—(3.13) follow straightforwardly from the
two basic identities

f dr e '~'Yii (r) =4m( i )j'i(pr) Yi (p)— .

~ rYi,q(r)= —Yi,~(r) .

The Dirac optical potential wave function used in (3.7)
is discussed in detail in Sec. III A below.

The relationship between the Dirac matrix element
represented by (3.7) and the usual DWIA matrix element
calculated with Schrodinger wave functions can be seen

where n is the principle quantum number, I is the orbital
angular momentum, j is the total angular momentum, m
is the z projection of the total angular momentum, and

Yii (r) is a spin spherical harmonic. These states are nor-
malized as follows

i= f d'r[q„„(r)] y„,)(.r),
(3.10)

0
r F.IJ r+6.1) r

The momentum-space wave function is

by recalling a simple derivation of the usual one-body
Schrodinger current operator. This operator is often de-
rived through the following steps:

(i) Evaluate the Dirac current operator (3.8) between
free positive energy Dirac spinors u(p', s') and u (p,s).

(ii) Remove the Pauli spinors contained in the Dirac
spinors and multiply the remnants of the Dirac spinors
and gamma matrices together to obtain the equivalent
operator in Pauli spin space.

(iii) Expand the operator in powers of the momenta di-
vided by the nucleon mass, keeping only the leading or-
ders.

(iv) Fourier transform to obtain an operator in coordi-
nate space.

(v) Evaluate this operator between Schrodinger wave
functions.

With the exception of steps (iii) and (iv), this is
equivalent to our nonrelativistic calculations which are
performed by using Dirac wave functions in {3.7) which
have the ratio of upper to lower components fixed at the
positive energy plane wave value for each value of the
momentum. For the distorted waves, the Fourier ampli-
tudes of the positive energy Dirac spinors are obtained
from a microscopic, nonrelativistic calculation, '

whereas for the bound states we project the Dirac wave
functions onto the positive-energy space and renormalize
to obtain our nonrelativistic limit. It is in this sense that
some of the calculations presented below are nonrelativis-
tic.

A. Optical model considerations

The matrix element of (3.7) is addressed in k space.
The necessary k-space distorted waves for the ejected pro-
ton are generated from the elastic proton-nucleus half-
shell T matrices produced by the computer code rvIZAR. D
of Refs. 6, 7, 23, and 24. Both nonrelativistic ' and rel-
ativistic ' distorted waves are considered. Construction
of the distorted waves and their resolution into separate
positive and negative energy parts (in the Dirac approach)
follows the methods detailed in Ref. 25. In the following,
we explicitly describe these methods for the Dirac ap-
proach and for the usual case of outgoing wave boundary
conditions for scattering. The modifications necessary for
the nonrelativistic approach are indicated, while the case
of incoming wave boundary conditions, needed in (3.7), is
obtained further on from symmetry considerations. We
employ the positive and negative energy Dirac plane-wave
basis states of momentum k and spin-projection s defined
by

Ik +&= Ik+& I&.&=u'-{k) Ik& I&. &

where

u+(k) =Xk, u (k) =Xk
Ek+m

(3.15)

In (3.14), o is the usual Pauli operator,
I X, & is a Pauli
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spinor of spin-projection s,

1/2
Ek ~m

2E,
(3.16)

where Ek ——(k /I ) . Therefore u (k)u (k)=5,b,
where a, b =+, and g, +u'(k)u' (k)=1. The Dirac
kets

I
k) satisfy (k'

I
k) =(2m) 5 (k' —k). These basis

states follow the conventions of Ref. 25 except for the
choice of normalization of

I
k). Our choice of

I
k) is

(2n. ) ~ times the corresponding basis states of Ref. 25 so
that we may uniformly follow the convention where phase
space for plane wave states is d k/(2m) .

WIXARD1 (Refs. 6 and 7) solves the coupled k-space
linear integral equations for the Dirac elastic proton-
nucleus transition operators T++(+) and T +(+):

T++((+);k,k)
T +((+);k',k)

U++(( ~);k', k) d 3k- U++(( ~);k', k")U+-(( ~ );k',k")
+((+);k',k) I

( 77)' U +((+);k',k")U ((+);k',k")

T++((+);k",k)
X Gg)(( + ),k")

T ~(( ) k, g k) (3.17)

which are obtained by taking matrix elements of the
I.ippmann-Schwinger form of the Dirac equation, written
in operator form as

T((+))= U((+))+ U((+)}G&((+))T((+)),
= U((~))~T((~))G~((~))U((~)),

(3.18)

between the basis states defined above and by resolving
the propagator GL)((+)) with the complete set of basis
states, as described in Ref. 7. In (3.17), T(k', k) and
U(k', k) denote transition operators and optical potentials,
respectively, for scattering from an initial Dirac plane-
wave basis state of momentum k to a final basis state of
momentum k'. The superscripts + determine whether the
initial and final basis states are of positive or negative en-
ergy, e.g., T +((+);k',k} is the scattering operator for
the transition from a positive energy state of momentum
k to a negative energy state of momentum k'. Of course,
T++ is the physical asymptotic transition operator which
connects observable states of experimental interest. The
operator T + connects positive energy states to negative
energy intermediate states only. wIXARD1 actually solves
(3.17) in partial wave form and for the case of outgoing
wave boundary conditions, hence the (+ ) argument of
the operators in (3.17)—(3.19). In general we use + or-
to denote Dirac positive or negative energy, and (+ ) or
( —) to denote outgoing or incoming (spherical) wave
boundary conditions. Thus

(Ek Ek- ~ie)—0

I
@p+" f &

=
I
@p"& I &'&

I Wy & (3.21)

where IX, ) is a Pauli spinor and
I gy) is the final nu-

clear state vector. If we now take

I
y(+)) Il(+)

I

p~ ~ ) (3.22)

where Qd
—' is the Moiler operator which produces the dis-

torted wave when it acts on the plane wave, then, since we
always start from a positive energy basis state asymptoti-
cally, Qd can be orthogonally decomposed as

n,d ——nd++ q nd +, (3.23)

in the two-dimensional Pauli spin space of the ejected par-
ticle. In the example of T +((+);,k', k} above, the am-
plitude for a transition from spin projection s to spin pro-
jection s' is just (X,

I
T +((+ );k', k)

I X, ). It should
also be noted that the nonrelativistic transition operator
satisfies an equation of the form of (3.18) and that it can
be recovered from (3.17} by simply setting U+ =0 and
then calculating only the top row. This connection of rel-
ativistic and nonrelativistic approaches is only so simple
in the momentum space approach of Refs. 6, 7, 23, and
24. This is the manner in which we recover the nonrela-
tivistic dynamics.

Given the on-shell and half-shell transition operators
T++(+) and T +(+) for outgoing wave boundary con-
ditions, we can easily construct the corresponding distort-
ed wave

I gp, ',f) in k space. First, we suppress the spin
and final nuclear state indices by defining

Gg)((+ );k")=

g() ((+),k")
«k+Ek-)
0

with

&g + =1+g() ((+ ))T++((+ )) (3.24)
(3.20)

gp ((+),k")

where we have indicated that the go act only in the posi-
tive and negative energy spaces. It should be noted that
spin indices have been suppressed in (3.17). Each of the
elements of the matrices of (3.17) is actually an operator

I

&g + =g() ((+ ))T +((+)), (3.25)

where we have suppressed the (+ ) superscript.
Employing (3.23)—(3.25) in (3.22), and noting that

l@p+'&=I,l Ik+&&k+ I+ I» —&&» —
I j l@p+'&

(2m. )

one finds that

(3.26)
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k
~@,'+'&= f ', [~k, +&@,'+'(k, +)+ [k, —&@,'+'(k, —)], (3.27)

where the Fourier amplitudes on the positive and negative energy spaces are

y'+'(k +)=&k +
~

y'+'&

=(2~)'[&'(k—p')+go ((+);k)&++((+);k,p')]

=(2m. ) [5 (k —p') —in5(E~ —Ek)T++((+ );k,p')+go "(k)T++((+);k,p')]

and

g~+'(k, )=(—2~)'go ((+),k)7' +((+);k,p'),

(3.28a)

(3.28b)

(3.29)

respectively. In (3.28b) we have separated go+ into its del-
ta function and principal parts. Some of the advantages
of k space are evident in (3.27)—(3.29). First, one can
easily examine the importance of the negative energy
components of the distorted wave for the ( e,e'p) calcula-
tion by simply comparing the full ( e, e'p, ) calculation with
one for which T + is artificially set equal to zero in
(3.29). Similarly, one can determine the significance of
off-shell information in the distorted wave by simply
omitting the g~o' term of (3.28b). One can also examine
the influence on the ( e, e'p) results of different off-shell
and nonlocal extrapolations of the optical potential by us-
ing the various options available ' in wIZARD1 to pro-
duce different half-shell T matrices. Finally, by limiting
(3.27) to its first term and using (3.28b) as described ear-
lier, one can compare the nonrelativistic ( e,e'p) predic-
tions with their relativistic counterparts both with and
without a negative energy component present in the dis-
torted wave. Similar options are available in the study of
the bound state portion of the current matrix element of
(3.7).

For convenience and accuracy, we have described the
treatment of the distorted wave in terms of the outgoing
scattered wave boundary condition case. To completely
describe our approach and the manner in which it is actu-
ally performed, it is necessary to relate the construction of
&p's'( —), /fan ~

to the preceding discussion. Now,
~ fz '&

is given in operator form by (3.22) where

Qg '=[I+GD(( —))7"((—))] (3.30)

is the desired Moiler wave operator. Given the T matrix,
the wave operator can be easily calculated in k space.
This is analogous to the operator form of (3.22)—(3.25).
The requisite transition operator T( —) satisfies an optical
model equation identical to (3.18) or (3.19) for T((+ )) ex-
cept for the change of boundary conditions in the propa-
gator and the presence ' of the adjoint of the optical po-
tential, U((+))t, in place of U((+)). These facts may be
summarized by the statement

&(—)=7'(+)'
which now follows immediately from (3.18) and (3.19).
The needed final state is thus obtained from the adjoint of
(3.22) and (3.30), which is

&
k's'

i
T

i
ks & = &

—k, —s
i
T

)
—k', —s'

& (3.33)

which leads to the partial wave symmetry in the momen-
tum arguments discussed above. The general outline of
the construction of the requisite distorted waves is now
completely described.

B. Calculational procedure

Relevant details of the DWIA calculation of the current
matrix element are described in this subsection. We start
from the momentum space final state wave function need-
ed in (3.7). Expanding (3.2) in the basis of positive and
negative energy plane wave states by the methods of the
previous subsection yields

&4p 'Ip&= g &p'+ I[1+&(+)GD(+)lip,~&~'(p),

Equation (3.32) yields &g~, ',f ~

in terms of the solution
of (3.18), i.e., the solution of (3.17).

One technical problem remains. The solution of (3.17)
yields T((+ );p', k) for fixed k and all p', whereas use of
(3.32) in evaluating the current matrix element in k space
requires T((+);p',k) for fixed p' and all k. In general,
T((+ );p, k) is not a symmetric function of its arguments.
Comparison of one of (3.18) or (3.19) with the transpose
(r) of the other, shows that T((+))'=T((+)) if
U((+))'=U((+)). In the nonrelativistic case, with no
spin-orbit force this is sufficient to make T((+)) a sym-
metric function of its arguments if U((+ )) is. This is not
the case if spin-orbit forces are present. However, the
force of (3.18) and (3.19) is preserved in partial wave form
so that TLJ((+);k',k) is symmetric if ULz((+);k', k) is,
and this one obtains if the only asymmetry in U((+)) is
the spin-orbit operator. The symmetric nature of the par-
tial wave k-space optical potential, which implies 'the
same symmetry for TLJ((+);k',k), is a rather general
property which is satisfied by all the optical potentials,
both relativistic and nonrelativistic, of Refs. 6, 7, 23, and
24. The general feature which underlies these considera-
tions is, of course, the reciprocity relation. ' Although
the dynamical equations are not time reversal invariant,
due to the non-Hermitian nature of the optical potential,
the S matrix and thus the T matrix can be shown to satis-
fy the reciprocity relation

(3.32)
= g &+'(p', p)ii'(p), (3.34)
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where u '(p)=u' (p)y and Q+' is defined by (3.34). A
partial wave expansion of the operator Q+' is introduced
as7, 25

Q++(p' p) = g QI J+(p' p»i~z(p')[y'1. ,~(p)]
LJM

and

SlJ+ ——1 (2—m ) Ep ip'Ti J+(p',p') . (3.36b)

Q+ (p' p)= g QLz (p'p'»P, ,x(p')[&P, ,z(p)l
LJM

(3.35)

QLg(p', p)=(2ir) 5, + z SlJ+. ~ 3 &(p —p') ++

+4~Ti~'( ' p)PI'[g o(p)] (3.36a)

where L.~
——L, L2 ——2J —L„and the partial wave terms are

defined in terms of the half-shell T matrix elements for
proton-nucleus scattering by expansion of the analogs of
(3.28b) and (3.29)

Here the plane wave final state is obtained by setting SLJ
to 1 and T~ to 0. The factor S~z+ provides on-shell final
state distortion and the term involving a principal value
provides the off-shell final state distortion. The T matrix
elements needed in (3.34)—(3.36) are exactly the ones pro-
vided by the wIZARD program. The clean separation of
on-shell and off-shell final state effects, as in (3.36), is one
of the attractive features of momentum space calcula-
tions.

In order to provide a more compact notation, we ex-
press the final state wave function in terms of a row vec-
tor. Using (3.35) in (3.34) leads to

&p, , lp&= g &i~z(p )[4fi(p p)I'L, ,z(p»ff2(p p) L,,~(p) ]
LJM

(3.37a)

lii l&2
J"(q)= .p .p.J21 l22

(3.38)

where

where

gf i(p',p) =%&[QLJ+(p',p)+A&QI J (p',p)], (3.37b)

/f 2(p pp) =Nq [AqQI J+(p',p) Qi~q (p',p)], —(3.37c)

and A~ =p/(E~+m).
The current is next expressed in terms of 2 X 2 matrices

of the general form

iF2cr&&q (2mFi+coFz)cr
J(q) =(2m)

( —2mF, +coF, )o iF,o Xq

(3.40)

+qF2
J+(q)=(2m) cr+

( —2 F + F )

(2mFi +coF2)

+qF2

and Fi(q ) and F2(q ) are nucleon electromagnetic form
factors. In particular, the transverse parts of the vector
current, J+ ——e+ J, take a simple form in terms of spin
raising and lowering operators cr+ ——e+ a. where
e+=+2 '~2(e„+ier). Note that ie+ cr&&q=+qcr+. We
obtain

and

J (q) =(2m)
2mF) o'qF2
a'.qF2 —2mF, (3.39) (3.41)

With these definitions, the desired current matrix ele-
ment given by (3.7) is expressed as

2 3J"= g &&,
I &rJ(P ) Q g I ff.(p',p)[I' J(p)]'I& &&&. IJ,"~(q)l&. &

LJM (2ir)'

&«&
I ft( lp —ql )I'i,j«p (3.42)

(3.43b)

C(L,N) =

where we have twice utilized the completeness of the Pau-
li spinors. The spin spherical harmonics can be expressed
as follows

I'~~(Qp)= & &LN2~
I
J~&I'L~(~p &r) l&s& (3.43a)

X,s

I 1.~(8~,$~ ) =C(L,N)pi (cosO~ )e

2L+1 (L —N)!
4m. (L+N)! ~

Since q is parallel to the z axis, the dependence of the in-
tegrand of (3.42) upon the azimuthal angle Pz is simplye'" '~&, where n and N refer to the z projections of the
orbital angular momenta of the bound and scattering (par-
tial wave) states, respectively. Integration over the azimu-
thal angle therefore produces a factor 2~5„~. The
remaining integrations have been performed numerically
using Gaussian integration. The basic numerical integrals
needed are given by



32 FINAL STATE INTERACTIONS AND RELATIVISTIC. . . 1321

I„N N——„+N f dpp f d(cos8&)gf„(p', p)PI. (cos8~)

+D1/ (cos~, —,)4 ( I p —q I »
(3.44)

I

where

N~~ (2—m—) C(L„,N)C(l„N) . (3.45)

Once these integrals are determined, the current matrix
element becomes simply

I.JM rt oa' X
(3.46)

where (3.38)—(3.41) defines the jg. This concludes the de-
tailed description of our calculational procedure.

IV. RESULTS

The calculations presented here have been performed
for the case of 135 MeV protons ejected from ' O. The fi-
nal proton energy was chosen to be within the energy
range attainable by currently available experimental facili-
ties. In Figs. 3—14, relativistic and nonrelativistic calcu-
lations of the five response functions are compared. Fig-
ures 3—7 show the response functions for the ejection of a
135 MeV proton from the lpi&z shell of ' O. Figures
8—12 are for the ejection of a 135 MeV proton from the
lp3&z shell of '60. The response functions are plotted as a
function of the magnitude of the recoil momentum of the
residual nucleus

l

p' —q l
at a constant momentum

transfer
~ q ~

=2.64 fm '. We have fully examined the
behavior of the five response functions as functions of

l p —q ~

and
l ql and the figures shown are representa-

tive slices of the complete three-dimensional graphs.
The solid line in each figure represents a completely rel-

ativistic calculation of the response function using Dirac

60 I I 1 I
f

I I I i j I I I I )
I I i

4.0—

distorted waves for the ejected proton and Dirac-
Hartree ' wave functions for the bound state. Results
based on wave functions from Refs. 8 and 9 give essential-
ly the same results. The dot-dashed line represents a non-
relativistic calculation, in the sense described earlier, while
the dashed line is the undistorted calculation using the
Dirac-Hartree bound state and a Dirac plane wave for the
ejected proton. Calculations have also been performed us-
ing a nonrelativistic bound state wave function and a rela-
tivistic scattering wave function. In all cases, the results
of this calculation differ from the fully relativistic calcu-
lation by only one or two percent. Thus, the curves
shown for the relativistic calculation are also representa-
tive of these "semirelativistic" calculations. Figures 3—7
also contain a calculation labeled "on shell" which is
represented by a short-dashed line. In this calculation
only the pole part of the propagator in the Moiler opera-
tor is retained; this corresponds to keeping only the on-
energy-shell part of the T matrix in the Moiler operator.
The purpose of this calculation is to provide a rough mea-
sure of the sensitivity of the response functions to the
off-shell parts of the nucleon-nucleus T matrix in the fi-
nal state interaction.

Figure 3 shows the longitudinal response function RL
for the lpi~z shell. Here the relativistic calculation is
54%%uo as large as the plane wave result, showing the effect
of the loss of flux into other reaction channels. The non-
relativistic RL is about 20% larger then the relativistic
one. We find this to be almost entirely the result of the
difference between the nonrelativistic and relativistic dis-

20

0
0.0 0.5 I.O

ip'-ql(sm )

l.5 2.(

60 I I l I 1
I

I I I I
I

I I I II I

/
/

I
I40'

FIG. 3. Longitudinal response function, RI., as a function of
recoil momentum

~

p' —q ~

for knockout of a 135 MeV proton
from the 1p~~2 shell of ' O. The solid line shows a calculation
using a Dirac bound state and a Dirac distorted wave for the
ejected proton. The long-dashed line shows the undistorted
(plane-wave) result. The dash-dotted line shows a calculation
using a Schrodinger bound state and a Schrodinger distorted
wave for the ejected proton. The short-dashed line is the "on-
shell" calculation described in the text. The meaning of the
various lines, as described here, is the same in all subsequent fig-
ures.

~f

0.0 0.5 I.O l.5 2.0

FIG. 4. Transverse response function, R~, as a function of
recoil momentum

~

p' —q ~

for knockout of a 135 MeV proton
from the 1p I~2 shell of ' O.
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FIG. 5. Transverse-transverse response function, as a func-
tion of recoil momentum lp' —ql R~, for knockout of a 135
MeV proton from the IP~~2 shell of ' O.

FIG. 7. Helicity dependent longitudinal-transverse response
function, Rz,~, as a function of recoil momentum

I
p' —q I

for
knockout of a 135 MeV proton from the Ip ~~2 shell of ' O.

torted wave function for the ejected nucleon; the Dirac-
Hartree shell-model wave function accounts for only a
small part of this difference. The "on-shell" calculation
is, coincidentally, almost identical to the nonrelativistic
calculation in this case, so that the sensitivity to off-shell
effects is also roughly 20%.

Figure 4 shows the transverse response function RT for
the lp»2 shell. As shown in this figure, the relativistic
Rz is 68% of the plane wave result. The nonrelativistic
RT is 1% smaller than the relativistic value, indicative of
little dependence of this response function on relativistic
versus nonrelativistic dynamics. The "on-shell" calcula-
tion is very close in size to both of the distorted wave cal-
culations, except for small recoil momenta, so that there
appears to be little off-shell sensitivity in this response
function. It is interesting to contrast the differences in
the various calculations of Rz to those of Rz. While the
differences between the relativistic and nonrelativistic cal-
culations of Rz are small, the calculation of Rz which in-
cludes relativistic effects is suppressed by a substantial
amount relative to the nonrelativistic result. This is the
type of change which is necessary to account for the

suppression of the longitudinal response function in in-
clusive (e,e'). ' Note that the effect need not be of the
same magnitude in (e,e') as it is in the present (e,e'p) re-
action which includes only one reaction channel. The in-
teresting feature of this suppression is that it is due to
dynamical relativistic effects in the final state interaction.
This can be seen by noting that the relativistic and
"semirelativistic" calculations, which differ only by
whether the bound state wave function is relativistic or
nonrelativistic, are essentially the same. Thus, relativistic
bound state effects are small in both cases.

Figure 5 shows the transverse-transverse interference
response function RrT for the lp~~2 shell. Notice that
this response function is small compared to RL and Rr,
being only about 6% at large as R~. The magnitude of
the relativistic calculation is about 20% less than the
plane wave result but is of opposite sign. The relativistic
and nonrelativistic RTT values differ by about 10%. The
"on-shell" calculation differs both in sign and shape from
the other two distorted wave calculations so that this
response function seems to be especially sensitive to off-
shell effects. Unfortunately, this response function is suf-
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I
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FIG. 6. Longitudinal-transverse response function, RL.~, as a
function of recoil momentum

I
p' —q I

for knockout of a 135
MeV proton from the Ip~/2 shell of ' O.

FIG. 8. Longitudinal response function, Rl. , as a function of
recoil momentum lp' —ql for knockout of a 135 MeV proton
from the Ip3/2 shell of ' O.



32 FINAL STATE INTERACTIONS AND RELATIVISTIC. . .

0 1 I l '
)

I 1 l I
1

I I 111 I I I I8 40

60—
/

I
I
l

30

20

10

1&W2

20—

0
0.0 0.5 1.0

~p-q~(sm-~)

1.5 2.0
I I I I I I I I I I I I I I I I I I I

0.0 0.5 1.0 '
1.5

Ip-qi (rm-)

2.0

FIG. 9. Transverse response function, RT, as a function of
recoil momentum

~

p' —q ~

for knockout of a 135 MeV proton
from the 1p3/g shell of ' O.

FIG. 11. Longitudinal-transverse response function, RI.T, as
a function of recoil momentum

~

p' —q ~

for knockout of a 135
MeV proton from the 1p3/2 shell of ' O.

ficiently small relative to the other response functions that
it will be difficult to extract experimentally. Further-
more, the experimental determination of RzT requires
that the ejected proton be detected out of the electron
scattering plane, as discussed in Sec. II.

Figure 6 shows the longitudinal-transverse interference
response function R'z for the 1pI/3 shell. The relativistic
calculation is only about 40% as large as the plane wave,
showing a greater sensitivity to final state interaction ef-
fects than either R' or RT. On the other hand, the rela-
tivistic and nonrelativistic calculations differ by about
10%, showing relativistic dynamic sensitivity intermedi-
ate between Ri and RT. The "on-shell" calculation is
about 55% larger than the relativistic result suggesting
that this response function is quite sensitive to the off-
shell character of the final state interaction. RIT is about
half as large as RL and so should be experimentally ob-
servable with good accuracy (see Sec. II).

Figure 7 shows the helicity dependent longitudinal-
transverse interference response function Rzz" for the
1pI/2 shell. This response function can only be measured

using a polarized electron beam. The plane wave value of
RLT is identically zero for all recoil momenta since this
response function can only be nonzero if the ejected pro-
ton experiences final state interactions with the residual
nucleus. Therefore, Rzz exists only as a result of the fi-
nal state interaction. Consistent with this statement, the
relativistic and nonrelativistic distorted wave results are
nonzero and differ by about 10%, indicating dependence
on relativistic effects similar to that of R'T. The "on-
shell" calculation differs considerably from the two dis-
torted wave calculations. This suggests that the interfer-
ence structure functions may be, in general, quite sensitive
to off-shell effects. Since Rzz" is 55% of Rz it is quite
possible that an intense polarized electron beam will allow
RzT' to be extracted from the cross section data. Howev-
er, this can be accomplished only with an out-of-plane
spectrometer, as discussed in Sec. II.

Figures 8—12 show that the results for the 1p3/2 shell
are similar to those of the 1pI/2 shell. There is, however,
an interesting difference between the calculations in the
two shells. Distorted wave calculations, both relativistic
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FIG. 10. Transverse-transverse response function, as a func-
tion of recoil momentum

~

p' —q ~
RTr, for knockout of a 135

MeV proton from the 1p3/p shell of ' O.

FIG. 12. Helicity dependent longitudinal-transverse response
function, R~T', as a function of recoil momentum ~p' —q~ for
knockout of a 135 MeV proton from the 1p3/2 shell of ' O.
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where Jl is the longitudinal component of the three-
vector current. %'e employed this constraint in Sec. II to
write AI entirely in terms of J . However, one must ob-
tain the same longitudinal response function Rl by em-
ploying instead the longitudinal current JI and using (4.1)
to eliminate J, if current is conserved. Thus, as a rough
test of the effect of current nonconservation, we may
compare the calculations of the longitudinal response
function based on the two different alternatives (J or
Ji ). For clarity, the response function calculated on the
basis of JL is referred to as Rl. . Figures 13 and 14 show
the quantity

FIG. 13. C, , as a function of the recoil momentum for the

lp)/2 shell of ' G. See the text.

RL —RL

EL+EL
(4.2)

and nonrelativistic, of RTT and ALT in the 1@~~2 shell
produce opposite signs relative to their analogous calcula-
tions in the lp3~2 shell. However, the sign of RL, T is the
same in both shells. The existing cross section data indi-
cate that ALT changes sign when going from one shell to
the other. Nonrelativistic calculations have been able to
reproduce this feature by adjusting the imaginary part of
the spin-orbit contribution to the optical potential. This
freedom is not available within the context of our micro-
scopic treatment of the pmton distorted waves. However,
recent work has suggested that a more complex approach
based on meson theory is needed at low proton energy to
produce a good description of proton-nucleus elastic
scattering. ' lt is possible that these improvements to
the optical potential at low energy would remove this defi-
ciency in the present calculations. An implementation of
the improved proton distortion for momentum-space cal-
culations is being developed and this is expected to lead to
an improved analysis in the near future.

Another, possibly related, problem is current conserva-
tion. In deriving the expression for the ( e,e'p) cross sec-
tion, it is assumed that the electromagnetic current is con-
served, which implies that
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PICx. 14. C, , as a function of the recoil momentum for the
i+3/2 shell of O. See the text.

for both the ip&&z and 1@3&& shells. The line types in
these figures correspond to those used in the figures
displaying the response functions. Clearly, the constraint
of current conservation requires C„„ to be zero for all
recoil momenta. The present calculations indicate viola-
tions of current conservation by as much as 40%, by this
measure. This is not unexpected due to the orthogonality
problems which show up in DWIA calculations of all
types. Moreover, all 0%'IA calculations omit two-body
currents and meson exchange currents. However, it may
be worth noting that the effects of the violation of current
conservation for the relativistic calculations in the region
of the peaks in the response functions is 10% or less (by
this measure) so that the calculations may be more reliable
than expected a priori. In principle, it is possible to re-
store current conservation in a dynamically meaningful
way, but that requires an extension of the current ap-
proach which is beyond the scope of this paper. While it
is important to determine whether or not such an exten-
sion will introduce any new features in the response func-
tions, there is no reason to expect it to result in any quali-
tative changes to the results presented here.

V. CONCLUSIONS

In this paper, we have presented the results of a detailed
study of the influence of the hadmnic dynamics on the
five response functions which characterize the ( e,e'p) re-
action. Within the framework of a distorted wave im-
pulse approximation, we cleanly separated and gauged (1)
the effects of relativistic versus nonrelativistic dynamics
in both the treatment of the bound state and the treatment
of final state interactions, (2) the importance of the final
state interaction, and (3) the importance of off-shell versus
the (better constrained) on-shell part of the final state in-
teraction. We have also proposed a measure of the ambi-
guity introduced in DWIA calculations by the violation of
current conservation and we have used it to obtain at least
some indication of the impact of current nonconservation

'

upon our calculations.
Before summarizing the detailed information obtained

from our studies of the five response functions, four of
our results deserve special note:

(1) In all five response functions we find that the effects
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of relativistic (as opposed to' nonrelativistic) dynamics on
the calculated results arise almost entirely from the final
state interaction of the ejected proton. Relativistic effects
arising from the bound state dynamics are small.

(2) The method we have used to estimate the uncertain-
ty introduced into the calculations by the violation of
current conservation appears to indicate that such effects
may be at the 10% level when the response functions are
near their maxima.

(3) We have found a 20% suppression of the longitudi-
nal response function RL with the use of relativistic as
opposed to nonrelativistic dynamics in the description of
the final state interaction. Since no such effect is seen for
the transverse response function Rz., this is also a 20%
reduction of RL relative to RT. It may be speculated that
this result is indicative of the source of at least part of the
observed suppression of the longitudinal response function
in quasielastic (e,e').

(4) For the five response functions, we find large effects
due to the final state interaction. This indicates that a
careful, controlled treatment of the final state interaction
is required prior to the extraction of spectroscopic infor-
mation from the (e,e'p) response functions.

Our analysis indicates that measurement of the com-
plete set of five response functions would prove valuable
in a theoretical separation of the relativistic versus non-
relativistic dynamical effects from the on- and off-shell
effects of the final state interaction, and in the separation
of these from the nuclear structure dependent informa-
tion. Our results indicate the following picture. The
response function RT is virtually independent of the
choice of relativistic versus nonrelativistic dynamics, as
well as the off-shell part of the final state interaction.
Analysis of &his response function apparently requires as
input only accurate information concerning the on-shell
final state interaction. All of the interference response
functions ( Rz T, RL T, and RL, T ) are extremely sensitive to
the off-shell part of the final state interaction, but show a
sensitivity to relativistic effects only at the 10% level.
Moreover, the character of the off-shell sensitivity is very
different for each of the three interference response func-
tions. Thus, these response functions can be used as a
"proving ground" for the treatment of the off-shell part

of the final state interaction. Finally, the longitudinal
response function appears to be about equally sensitive to
off-shell and relativistic effects. Given control of the
former via the interference response functions, Ri pro-
vides for elucidation of the latter. The point here, of
course, is that the different dynamical dependences of the
five response functions provide an opportunity for untan-
gling both the important dynamical mechanisms and the
structure information.

Despite the above results, several caveats are in order.
A measure of caution is needed in drawing firm con-
clusions from our calculations, or for that matter, from
any DWIA calculation of the ( e,e'p) reaction, due to the
severe approximations made in regard to the appropriate
current operator. This concern manifests itself most
directly as a violation of current conservation in such
treatments. Although our estimates suggest that the error
from this source may not be too large, further investiga-
tion is certainly necessary. This, along with the failure of
the calculations presented here to reproduce the change in
sign of Rl T between the 1@i&2 and 1@3~i shells, augers for
a deeper, more fundamental approach. Furthermore, it is
we11 known that meson exchange currents make important
contributions in the (p, y) reaction, to which we intend to
extend our considerations. For these reasons, a consistent
treatment, rooted in meson theory, of the bound state, the
current operator, and the final distorted wave ' is
currently under investigation. Only within the context of
such a fundamental theoretical grounding can the current
matrix elements be properly addressed. Finally, two rela-
tively minor points should also be kept in mind when
comparing our calculations to experimental data. In our
investigations, we have, for simplicity, neglected Coulomb
distortion of the ejected proton and we have taken the nu-
cleus to be infinitely heavy. Neither of these truncations
is an integral part of our approach and we intend to re-
move them in our future investigations.
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