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We have investigated the possibihty that a nucleus containing a single antinucleon (N} may exhibit
some relatively long-lived excited states. Using N optical potentials consistent with the available
data on p-atom level shifts and/or low energy p-nucleus scattering, and calculating the complex
eigenvalues of the Schrodinger equation, we find that the annihilation widths of strongly bound
(non-Coulomb) N states are generally large, as expected, of order I =50—100 MeV. Some possible
exceptions to this may occur when the N is bound to a light nuclear core which is not spin and iso-
spin saturated. We obtain cross section estimates for the formation of N nuclei via the (p,p) and

(p,n) reactions on nuclear targets with A =3, 4, and 16.

I. INTRODUCTION

The advent of the Low Energy Antiproton Ring
(LEAR) facility at CERN has greatly expanded the possi-
bilities for a detailed study of the interaction of antinu-
cleons (N) with nuclei. One eagerly awaits further data on
elastic, inelastic, and charge exchange scattering and po-
larization on nuclear targets, as a means of extracting the
systematics of the N-nucleus optical potential [central,
symmetry (v T), and spin-orbit parts, for instance]. Some
intriguing first results on elastic and inelastic scattering
are already available' from LEAR, which supplement
data from KEK in Japan and from Brookhaven. The N
may also be useful as a complement to more conventional
probes of nuclear structure, because of its properties of ex-
tremely strong surface localization and the possible strong
spin-isospin dependence of the N interaction with nu-
cleons.

At this stage, it seems appropriate to pose a few quali-
tative questions regarding N interactions with nuclei. We
explore the following ones:

(i) Could there exist any relatively long-lived excitations
of an N in a nucleus, beyond the atomic states formed by
the attractive p-nucleus Coulomb potential?

(ii) What are the cross sections for producing N nuclei,
for instance via the (N, N) reaction?

At first glance, the answer to question (i) is negative,
and indeed the first experimental results ' on the (p,p) re-
action do not indicate narrow structure. The encounter of
an N with a nucleon will typically lead to an annihilation
process in which a burst of pions is produced (mean mul-
tiplicity =5). Using simple semiclassical arguments, the
strong interaction width I associated with the process
NN~pions in the nucleus is or order 100 MeV. Hence,
one does not anticipate a spectrum of narrow N-nucleus
states (I & 10 MeV, say), except of course for the p-atomic
states, whose narrow width is due to the long range
Coulomb attraction which serves to localize the N wave
function well outside the radial domain of the short range

annihilation potential. In the present paper, we indicate
that there may be a few exceptions to this general expecta-
tion. Indeed, we find that for N-nuclear bound states in
finite nuclei the widths are generally large (I' & 50 MeV),
even for states of orbital angular momentum L&0 within
a few MeV of threshold, in rough agreement with the
semiclassical estimate of I . However, in certain very
light systems, where the nuclear core is not spin-isospin
saturated, the real part of the N-core potential can contain
a contribution from one-pion exchange (OPE). The long-
range piece can serve to localize the N wave function out-
side the region of strongest absorption, and hence reduce
I below the semiclassical estimate l"o. More importantly,
if the absorptive potential 8 is strongly spin and/or iso-
spin dependent, I /I o can be suppressed for certain con-
figurations in light systems.

To address question (ii), we have estimated formation
cross sections for N nuclei via the (N, N) reaction, using
the distorted wave approximation. The experimental dif-
ficulty with the (N, N) reaction, and also similar processes
such as (N, m.), (N, d), etc. , is that significant backgrounds
arise from N annihilation into pions, followed by m-

induced emission of various secondary particles. A reac-
tion leading to a high momentum exit particle is most
easily distinguished from the background, which is con-
centrated at low momentum. However, a particle in the
final state with large momentum corresponds to the for-
mation of deeply bound N-nucleus states, which are ex-
pected to be very broad. Thus one does not expect sharp
structures in the high momentum part of the exit particle,
but rather a smooth tail which may rise above the back-
ground predicted by simple cascade calculations.

The paper is organized as follows: In Sec. II, we dis-
cuss the choice of the N-nucleus optical potential V,~,(r)
The available p-atom and low energy p scattering data
only determine the potential in a narrow spatial region
around a strong absorption radius (typically two to three
surface diffusenesses outside the nuclear radius R). The
bound state N spectrum, on the other hand, also depends
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sensitively on the interior region of the potential, which is
largely undetermined.

In Sec. III, we discuss several typical spectra of N
bound and continuum states. Deeply bound states arise
only when V»(r) is strongly attractive in the nuclear in-
terior, a situation not favored by recent phenomenological
analyses, ' which lead to attractive but rather shallow
real potentials.

The most natural way of producting N nuclei is
through the (N, N) reaction. In Sec. IV, some sample
cross sections are given for the (p,p) reaction on an ' 0
target. For the broad p bound states, we find do/dQ to
be as large as 0.5 mb/sr, while the cross sections to p-
atomic states are typically three orders of magnitude
smaller. The calculations were done in the distorted wave
Born approximation (DWBA), with phenomenological p
and p potentials consistent with those used for the bound
state calculation. The transition operator is constructed in
zero range approximation from the observed pp~pp dif-
ferential cross section at 180'.

In Sec. V, we investigate some special features which
may prevail for light N-nucleus systems. Since the NN
interaction is spin-isospin dependent, quite strongly in
some models, the binding energies and widths of N states
depend on the spin S, and isospin I, of the nuclear core.
These effects are relatively more important when the
number of core nucleons A is small. In particular models,
notably that of the Paris group, the imaginary part of the
NN potential is much stronger for the spin singlet state
than for the spin triplet. If this is true, the widths of N
states may exhibit an interesting spin selectivity, analogous
to that which occurs' in the X hypernucleus &H.

%'e argue that if such states are narrower than about 25
MeV, they should be observable at LEAR via a study of
the He(p, p)X or He(p, n)X reactions at energies of
100—200 MeV. The most likely candidate for a narrow
three- or four-body state is the NNN system with spin
S„=—', and isospin I„=—,'. A brief summary is given in
Sec. VI.

V», (r) = —Vo 1+exp
r —Rv

aq

—i 8'0 1+exp
&w

(2.1)

II. THE N OPTICAL POTENTIAL

Our knowledge of the antinucleon-nucleus optical po-
tential Vo~, (r) is rather limited. Several analyses" ' of
the complex level shifts in p atoms and low-energy p-
nucleus scattering' ' ' have been performed. Often
V», (r) is parametrized in terms of a Woods-Saxon poten-
tial

with R„=ro„A' and R =ro A', A being the number
of nucleons in the core. The parameters of three such po-
tentials are. collected in Table I. The potential of Barnes
et al." cited in the table represents a best fit to the level
shift in the p+' 0 system. The other two potentials"
are obtained from fits to the p+ ' C elastic scattering data
at E=46 MeV, but they are also consistent with the
p+ ' C atomic level shift.

The potentials fitted to low energy p scattering data
have a shallower real part than the older models"
based on p-atom data. A recent combined analysis of low
energy scattering and p-atom data by Batty et al. ' favors
the shallower potentials, and does not require the poten-
tials to be energy dependent, at least in the regime below
50 MeV. Note, however, that a number of theoretical cal-
culations' ' indicate that V,p, should be energy depen-
dent, with a change of sign of the real part at some finite
energy, roughly between 100 and 200 MeV. For our
bound state calculations, such an energy dependence is
largely irrelevant, but for the study of unstable bound
states (UBS s) in the continuum, it introduces an addition-
al uncertainty in our calculations.

The p-atom level shifts and also low energy scattering
are only sensitive to V», (r) in the far surface region. For
instance, Garreta et al 'obtai.n a whole family of
equivalent fits to the elastic p data characterized by the
approximate constancy of ReV», (r)/ImV», (r) near a
strong absorption radius R,b, -3.6 fm for p+ ' C, well
outside the half-radius R„=2.5 fm. Using a Fourier-
Bessel expansion of the p potential, Batty et al. ' have
shown how the uncertainties in the p well depths Vo and
8 0 become very large as one penetrates the nuclear interi-
or.

For the problem we are interested in, namely p-nucleus
bound states, the internal part of V», (r) plays a more im-
portant role. If ReV,„,(r) is strongly attractive in the in-
terior, a number of p-nucleus bound states with large
binding energy Ez can be formed. Even though we ex-
pect these objects to be very broad, they still have an ex-
perimental consequence, namely the appearance of pro-
tons from the (p,p) reaction with momenta k considerably
higher than the p beam momentum kL. In this regime
(k & kL ), the background spectrum of protons, due to p
annihilation followed by pion knockout of secondary nu-
cleons, is expected to be small. Even in the absence of
narrow internal p states, the momentum spectrum of the
exit proton might still contain some rough information on
the p well depth for r &R„.

The potentials of Table I are appropriate for a p in-
teracting with a spin-isospin saturated (S, =0, I, =0) nu-
clear core. The size of the spin and isospin dependent
terms in the p-nucleus potential are essentially unknown,
although the comparative analysis of Poth et a/. ' for

Reference

TABLE I. Antinucleon optical model parameters.

Vo (MeV) 8'0 (MeV) ro, (fm) ro (fm) a„(fm) a (fm)

Barnes et al (Ref. 11)
Friedman (Ref. 16)
Garetta et al. (Ref. 1)

167.7
47.97
25

79.4
65.64
61

1.032
1.0234
1.167

1.032
1.0234
1.195

0.5
0.552
0.608

0.5
0.682
0.508
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p+ ' 0 and p+ ' 0 atoms indicates a sizable isospin
dependence for V,„,(r), i.e., a Lane potential proportional
to 7N I, . Such spin and isospin dependent terms in both
the real and imaginary parts of V,~,(r) are expected
theoretically, since the two-body NN interaction exhibits a
rather strong spin-isospin dependence. In Sec. V, we
focus on the problem of a p interacting with an unsaturat-
ed light (two or three nucleons) core. Here, the widths of
particular p bound states can be reduced by the spin-
isospin dependence of V,z, (r). This offers the best possi-
bility for observing relatively narrow (non-Coulomb) p
bound states.

III. THE SPECTRUM OF BOUND AND CONTINUUM
p-NUCLEUS STATES

In this section, we show some typical results for the
bound and continuum (UBS} states of the p+ "B (- Be)
and p+ ' N (z C) systems. These could be populated in
the ' C (p,p)' Be and ' O(p, p)-' C reactions, respectively.
Our preliminary results were reported in Ref. 20; other ex-
amples of bound state spectra are given in Refs. 21 and
22. Before proceeding, it is useful to make some qualita-
tive arguments regarding the scale of the widths I of
N-nucleus states. If the binding energy Ez is large (deep
real potential), the N wave function is localized inside the
well, and one obtains the limiting value I =28'o. For any
realistic 8'0, this gives I ) 100 MeV. In practice, the cal-
culated widths are somewhat less than 2 Wo since some of
the wave function leaks out of the well. However, we do
not obtain narrow widths (I &20 MeV, say), even if the
binding energy is only a few MeV. An exception is the
Coulomb-type bound states, for which the wave function
is localized far from the nucleus.

In Table II, we give the energy shifts AE and widths I
of p+ ' N states with the p in an s- or p-wave orbit
around the ' N core. The p potential of Barnes et al."
from Table I was used. We solved the Schrodinger equa-
tion for the complex eigenvalues Ez i I /2, using —a
modified version of the program ExoTIC due to Koch and
Sternheim. The shifts AE are taken with respect to the
point Coulomb binding energies.

The spectrum of Table II is typical for a model with a
deep real p potential in the nuclear interior. Several deep-
ly bound states are produced, but these are broad (I =100
MeV). The s (n=2) state is unstable bound state (UBS) in

TABLE II. Energy shifts hE and widths I for s- and p-wave
p+' N states calculated using the parameters of Barnes et al.
(Ref. 11) from Table I.

the continuum, also quite broad in this case. The s (n= 3)
and p (n=2) states are the shifted p-atomic states, which
evolve continuously from the nodeless 1s and 2p eigen-
states of the Coulomb potential as the strong interaction is
turned on. Note that these shifted "atomic" states acquire
additional radial nodes, in order to remain orthogonal to
the "nuclear" states of the same orbital angular momen-
tum L,. These nodes occur in the nuclear interior, and do
riot disturb the essential localization property of the atom-
ic states at distances well outside the nucleus. The large
rms radii of the atomic states ensures that their widths I
are small. Note that the strong interaction shift hE is
repulsive (AE & 0) for these states.

The s- and p-wave p + ' N atomic states cannot be seen
directly in a y-ray cascade, since strong absorption al-
ready dominates E1 y-ray emission in the d state. "
Nevertheless, these levels are of considerable interest,
since they contain additional information on the radial
dependence of V,&,(r) Cr.oss section estimates for their
formation in (p,p) reactions were first presented in Ref.
20. Their importance has also been emphasized by Gibbs
and Kaufmann, who found a case where the (p,p) forma-
tion cross section may be large enough to be observed
above the background. We return to this question in Sec.
IV.

In Table III, we give E& and I for the p + "Bnuclear
states, using the potentials of Garreta et al. ' and Fried-
man'6 from Table I. A folded Coulomb potential is in-
cluded in the calculation. These potentials, which fit low
energy (E=46 MeV) p + ' C elastic scattering, have rath-
er shallow real parts, so only the nodeless s (n=0) state is
bound. The other states in Table III are normalizable un-
stable bound states (UBS's) embedded in the p continu-
um. Because of their greater degree of localization at the
surface, the UBS's are narrower than the states with
Ez &0. The widths of these UBS's are to a first approxi-
mation independent of the depth of the real potential. Al-
though one can produce narrow UBS's in -' Be (I &20
MeV or so), for instance an f (n=O} state, by modest
changes of Vo and Wo, these always lie rather high in the
continuum (Ez &40 MeV), so the results become very
model dependent. Another problem is that formation of
the UBS's in the (p,p) reaction would correspond to pro-
tons with momentum k & kl, where the background from
annihilation is highest. One might note from Table III
the approximately "harmonic" level ordering of the
UBS's, i.e., the s (n = 1) and d (n=O) states are almost de-
generate and the s (n=O), p (n=O), and d (n=O) states
form an approximately equidistant sequence. One can

p orbit
hE

(Mev)
r

(MeV)

TABLE III. Binding energies E& and widths I for p+ "B
states calculated using the parameters of Garreta et al. (Ref. 1)
or Friedman (Ref. 16) (in parentheses) from Table I.

s (n=0)
s (n=1)
s (n=2)
s (n=3)
p (n=0)
p (n=1)
p (n =2)

—116
—48
+12
+ 0.7
—86
—17
+ 0.019

116
94
45
0.15

108
77
0.028

p orbit

s (n =0)
s (n=1)
p (n =0)
d (n=0)

E
(MeV)

—2( —17)
40(25)
18(6)
39(27)

r
(MeV)

95(91)
21(26)
69(66)
36(35)
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TABLE IV. Variation of binding energy shift AE and width
I of the p (n =0) state of p+ "N with 8'p for fixed Vp ——166
Mev.

8'p
(Mev)

0
35
61
79

bE
(Mev)

—84.8
—84.9
—85.2
—85.5

I
(MeV)

0
47
83

108

TABLE V. Variation of AE and I" of the p (n =1) state' of
p+ 0 with Vp for fixed 8'p ——79 MeV.

Vp

(MeV)

166
131
96
82
81
79
56

AE
(MeV)

—50
—29
—9
—0.9

0.08
1.1

15

r
(MeV)

61.4
63.0
62.3
60.7
60.4
60.1

53.7

'An attractive real term proportional to the second derivative of
the Woods-Saxon form of Eq. (2.1) has been added here to the
potential of Barnes et al. (Ref. 11) from Table I.

deduce an equivalent harmonic oscillator spacing %co=20
MeV from Table III, and observe that the calculated s
(n =0) level lies about —,

'
Ace in energy above the bottom of

the potential well, as it should.
It is instructive to see how AE and I evolve as we

change the well depths Vo and 8'0. Two typical exam-
ples are shown in Tables IV and V. If one keeps Vo fixed
and increases IVo from zero to its full phenomenological
value, I increases linearly with 8'0 and AE remains
essentially fixed (for a deeply bound state). This behavior
is shown in Table IV. On the other hand, if one keeps 8'o
fixed and reduces Vo, the binding of the p state decreases
but its width is essentially independent of Vo, as shown in
Table V. Even as the nuclear state passes through zero
binding, its width remains large, contrary to what one
might naively expect from perturbation theory. This is
because the imaginary part of V,~,(r) serves to keep a
considerable part of the wave function localized in the nu-

clear interior, even when the attraction from the real part
is weak. In perturbation theory, on the other hand, one
writes

2
r r ImV r (3.1)

where P(r) is the N wave generated by the real potential
alone. In this case, as E&~0, the wave function g(r) is
pushed out of the nucleus, and I" becomes small. In a
realistic situation with strong absorption, as here, Eq. (3.1)
is valid only if g is generated by the full complex poten-
tial, for the normalization f I f I

d r = 1.
In summary, our calculations indicate, as expected, that

N nuclear states are broad (I & 50 MeV), even if they are
weakly bound. Here, we have assumed the average ab-

sorptive potential appropriate to a spin-isospin saturated
core. We investigate the possibility of "quenching" of I
for unsaturated cores in Sec. V.

IV. PRODUCTION OF N NUCLEI
IN THE (N, N) REACTION

In this section, we present some estimates of the pro-
duction cross sections for p nuclei in the (p,p) reaction on
' O. We have used the usual distorted wave Born approx-
imation (DWBA) for our estimates. In DWBA, the
(p,p) cross section in the laboratory system is given by

fi ~PPPP

=CXy

L,O'
I+y (q) I

' (4.1)

where a~; is a spin-isospin coefficient, 0 & u~; & 1,
q=k —k' is the momentum transfer and E~;(q) is the nu-
clear form factor. In a simplified form which neglects
recoil corrections, we have

Ffj (q) = f d r g~ '(k', r)p~;(r)@'+ '(k, r)

where g~
' is the appropriate distorted wave of the

proton, t/i'+' is the distorted wave for the antiproton, and

p~; is the transition density defined by

pf;(r)=(f
I
gfp(r)P~(r)a-(P)a~(a) Ii) . (4.3)
aP

(4.2)

Here 1(~ and gp are bound state wave functions for the p
and p, respectively. The wave function gp is obtained by
reversing the sign of IV(r), but 1i ~ essentially coincides
with gp. We consider transitions from a single proton
bound state a=i (n;, l;,j;) to a p bound state
/3=f(ny, l~j~). The complex bound state p wave func-
tions are normalized according to d r ~ r =1 rath-
er than f d r

I P~(r) I
=1. Note that the former nor-

malization embodies two conditions, one being the ortho-
gonality of the real and imaginary parts of gI', this causes
the number of radial nodes of Re Pi and Im Pi to differ
by one. In this section, we use the alternative notation nlj
for nuclear states, where n is one greater than the number
of inner nodes of the real part of the radial wave function.
This is the equivalent of the notation i(n —1) used in Sec.
III. For these calculations, we have used the same p opti-
cal potential V,z, (r), from Barnes et al." as per Table II,
to generate both t/i

'+' and g-I, thereby ignoring the (not
yet established) energy dependence of V,z„.

To generate alt;, we use a real Woods-Saxon potential
(no spin-orbit term) with ro, 1.15 fm, a, =——0.63 fm and
adjust Vo to reproduce the observed binding energy of the
proton orbit. Here, we show results only for the orbit
i =

I lp3/2 I. Transitions involving the deeply bound ls&/2
orbit are more strongly suppressed by the effect of initial
state absorption, whereas transitions involving the 1p&~2
proton orbit are comparable to those we illustrate here.

The outgoing proton distorted waves gz
' are obtained

by solving the Schrodinger equation with a proton optical
potential V~~, (r) which has been adjusted to fit p+' O
elastic scattering data at E~ = 150 MeV. This potential
has %'oods-Saxon parameters Vo ——18.7 MeV, 8 o ——10.42
MeV, ro„1.13 fm, ao„07——2 fm——, .ra~ ——1.18 fm,
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PP PP

cos 8 = —0 994
C. IYl.

0.4
l

0.6
I

0.8 I.O

I

50
ec.m. (deg )

kL (GeV/c)

FIG. 1. Laboratory differential cross section do. /d AL for pp
backward elastic scattering as a function of antiproton laborato-
ry momentum kL . The points and error bars were obtained us-

ing the approximate formula do/dQL, -4do/dQ, , valid near
cosO, = —1, and the data for do. /dA, 'of Alston-Garnjost
et al. (Ref. 27).

ac~=0.85 fm for the central part, and Vo' ——3.52 MeV,
8'o' ———2. 11 MeV, ro' ——0.93 fm, a"=0.5 fm for the
Thomas spin-orbit component. We assume thai the po-
tential for p+ ' O is also representative of the distortion
effect for the final state p+ -' C. In any case, the choice

P
of this potential is not crucial, since the reduction of cross
sections from their limits in plane wave approximation
(PWA) is due mainly to initial state absorption.

The other ingredient in Eq. (4.1) is the forward pp~pp
cross section, which, loosely speaking, is identified with
the 90' pp —+pp elastic cross section in the laboratory
frame (corresponding to the backward elastic pp cross sec-
tion in the two-body center of mass frame). The. most re-
liable measurements of large angle elastic scattering are
due to Alston-Garnjost et a/. The behavior of the large
angle laboratory cross section (actually 8, = 174 ) is
shown in Fig. 1, as a function of kL. A priori, one would
like to choose a larger incident p momentum, in order
that the final state proton is also more energetic, and
hence less likely to be confused with a "background" pro-
ton due to p annihilation. However, as seen from Fig. 1,
(der/dQ)L, peaks at about kL ——510 MeV/c and drops
rapidly above 550 MeV/c although a second peak of dif-
fractive character at higher momentum is not ruled out
experimentally. In our calculations, we have taken
kL, =550 MeV/c (E~——150 MeV) and used the value

FIG. 2. Predicted angular distribution do/dQ (c.m. system)
for the ' O(p, p)' C reaction at kL ——550 MeV/c, corresponding

to the 1p3/p~ 1pj single particle p~p transition. The curves la-

beled by orbital angular momentum transfers AI. =0, 2 refer to
the summed population of final states of the ' C system with

spin parity J =0 —3 arising from the (1p3/2)(, 1') proton
hole-antiproton particle configuration (4.4). The DWBA calcu-
lation was performed for a Q value of 68 MeV, corresponding to
the centroid of the broad 1p bound state of the p.

(der/d Q)z ——3.37 mb/sr.
Our calculational procedure is as follows: we first con-

struct the wave function Pf'(r) for the bound p from the
modified code ExoTIc and then, after obtaining P;(r)
from a standard Woods-Saxon bound state search routine,
we form the complex product Pf(r)g;(r) to which the
transition density (4.3) reduces for a single particle transi-
tion. This is read in as a numerical form factor to the
standard distorted wave program CHUCK. , which com-
putes the differential cross sections in DWBA.

Some typical results for 1p3&q~npz transitions are
shown in Figs. 2—4. The final states considered in ' C are

P
assumed to be of pure particle-hole structure

(4.4)

with respect to a closed ' 0 p shell. In Eq. (4.4), we have
J =0, 1, 2, and 3 . It is inconceivable that these
states are separable from each other in the (p,p) reaction:
for the states of nuclear type (n=0, 1) this is due to the
large width of each of these, while for the atomic type
(n =2) this holds due to the (-1 MeV) resolution of the
final protons. For this reason, we have plotted in these
figures the total &J.=O and ~~-=2 cross sections, where
the &I.=O transition populates the 0 state (~=0) and
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O
IOb

Io-~—

I

50

c. m. ( de g )

I

60

IO-4

IO

FIG. 3. Differential cross section do. /d 0 for the 1p3/2 +2pj
single particle transition in the ' O(p, p)& C reaction, calculated
at the central value Q =1 MeV for the broad 2p state of the p.
The curves are labeled as in Fig. 2.

the 1 states (b,S=1),and the AL =2 transition populates
the 1 states (~=1), the 2 states (b,S=0,1), and the 3
state (b,S=1). With this effective summation over b,S,
the coefficient af; in Eq. (4.1) becomes equal to one. The
values of af; before summation may be deduced from
Table X in the Appendix. In these calculations, we have
evaluated the cross section at a Q value corresponding to
the centroid of the broad p bound states. The Q value is
defined in the usual way in terms of the initial and final
state masses:

Qo=m(' 0)—m(' N) —m~ —E~(p),
where the binding energy Ez(p) is negative for a bound p
state. Equivalently, we have Qo

——E~(p) —E~(p).
Figures 2 and 3 correspond to the formation of strongly

bound p-nuclear states. We see that there is only a rela-
tively small penalty (a factor of 2) for changing the num-
ber of radial nodes by one. This is due to the very strong
effects of p absorption for such deeply bound states
(reduction of more than an order of magnitude relative to
PWA), which reduces the sensitivity to the presence of
nodes in the p radial wave function in the nuclear interior.

As usual, the coherent AL, =O transitions are forward
peaked while the AI. =2 transitions are negligible at small
angles. Note that the peak value (at finite angles) of the
~~-=2 cross sections is about a factor of 5 less than that
for &L=0.

In Figure 4, we display the (p,p) cross sections for the
production of atomic states of structure (4.4). For the case
we have chosen, ' O(p, p)-' C, these cross sections are three

p
orders of magnitude smaller than those for strongly bound
states. Our case is unfavorable, however, for atomic for-
mation, since there is very little radial overlap between the
p-atomic wave function and the rather strongly bound
p3/2 proton in ' O. In an interesting paper, Gibbs and
Kaufmann have looked for cases where this radial over-
lap is maximized: for the example of 'P(p, p), they obtain
an atomic cross section more than an order of magnitude
larger than we get for the ' O(p, p) reaction.

In Figs. 2—4, we used the central value Q=Qo to
evaluate do/de. This may appear questionable, since the
DWBA cross sections depend on Q through the depen-
dence of the exit proton energy E~ = E- + Q, and a broad
p-state would sample a sizable range of Q values. To
check this point, we have calculated der/dQ for a set of
Q values determined by the width of the p state
(Q= Qp —I Qo —I /2 Qp Qo+I /2 Qp+I ) and aver-
aged the results over a normalized distribution f(E) of
the form

f(Q)=
2~ (Q —Q, )'+(I /2)' (4.5)

30
ec ~ (deg)

I

60 For the 1p3/2~npz transitions, we find average values (in
mb/sr)

FIG. 4. Differential cross section for the 1p3/2~3pj transi-
tion in the ' O(p, p)' C reaction at 550 MeV/c. The cross sec-
tion for the narrow "quasiatomic" 3p state is seen to be about
three orders of magnitude smaller than those shown in Figs. 2
and 3 for strongly bound p states.

(0')) = jf(g) ~ (g)dQ

0.47 for lp3&z~lpj.
O. 25 for 1@3/2~2p&

(4.6)



1278 BALTZ, DOVER, SAINIO, GAL, AND TOKER 32

while the cross sections evaluated at Q =Qo are (in
mb/sr)

0.50 for lp3/2~1p, .

0.26 for 1p3/2~2pJ
'(0')= ' (4.7)

where E is the bombarding energy. The energy spectrum
P

d o /d 0 dE~ at 8=0' is shown in Fig. 5 for the
lp3/2~2pj transitions, using Eq. (4.8). The dashed curve
represents the approximation used by Heiselberg ei; al. ,
who replaced do/dQ(Q) by der/dQ(QO) in Eq. (4.8),
thereby obtaining a pure Lorentzian line shape. This is
seen to be a rather poor approximation to the line shape,
which is considerably skewed towards higher Q by the

Thus, the effect of a large width on da/dA is negligible.
However, the effect of Q dependence has a more pro-
nounced influence on the shape of the proton energy spec
trum in the (p,p) reaction. For the excitation function, we
have

d O' I /277 do'
(Q) (4 8)

dQdE (E —E —Q, )z+(I /2)' dQ

factor der/dQ(Q), although the energy-integrated cross
section remains essentially the same, as per Eqs. (4.6) and
(4 7)

The peak cross sections of d o/dQ dE~ in Fig. 5 are of
order 1—2 pb/sr/MeV, two orders of magnitude smaller
than those shown in Fig. 1 of Heiselberg et al. for the
' O(p, p)

' C reaction. There are several reasons for this

large discrepancy. Firstly, these authors use the PWA,
which overestimates the cross section by more than a fac-
tor of 10 for nuclear p states. Even for the 'P(p, p) transi-
tion to p-atomic states considered by Gibbs and Kauf-
mann, absorptive effects still diminish the cross section
by a factor of 2. Secondly, all single particle transitions
from s, /2, p, /2, or p3/2 proton states to si/~, pi/~, and

p3/2 (and perhaps other) p. bound states are summed in
PWA in Ref. 28, whereas we have shown only the transi-
tions lp3/2~npi Th.us in PWA at 0' (&f.=0), assuming
he radial overlaps for s i/2 —+s i/2, p i/2 —+p &/2, and

p 3/2 ~p 3/p are about the same, the summed cross section
to 0 states should be roughly two times as large as the
p 3/2 ~p 3/2 1esult. Note, however, that the s

& /2 —+s i /2
transition will be even more strongly reduced by absorp-
tion than the p~p transitions. Thirdly, in Ref. 28, it is
assumed that two-body pp elastic scattering is isotropic,
so a value

b

O.I—

i'0 (p, p)-,'C

p( I p 3/2 )~ p (2 p)

do/dQL, (180')=o,i/4n. =6.4 mb/sr

is assumed. This is an overestimate (by a factor of 2 at
E =150 MeV-, and more at other energies), since the ob-
served pp angular distribution is in fact strongly forward
peaked. For these reasons we believe that the ' O(p, p)

' C
P

cross sections have been qualitatively overestimated in
Ref. 28, and we disagree with their conclusion that pro-
tons produced by the (p, p) process should be "clearly dis-
tinguishable" from the background for E~ ) 100 MeV.

The crucial question now is whether the protons from
the (p, p) reaction on nuclei are observable at all on top of
a large physical background arising from p annihilation,
followed by secondary proton emission due to pion ab-

sorption. This background proton spectrum has been es-
timated theoretically in the framework of the internuclear
cascade model. ' Recently, the (p, p) reaction has been
studied by Garreta et al. at LEAR, using ' C, Cu, and

Bi targets. In a companion experiment by DiGiacomo
et al. , a Si target was used. The spectra ' show no
clear evidence of a peak which could be identified as an
N-nuclear state. In Ref. 4, a Maxwellian form

o.ol
-80

I

—40
I

0
Q (Mev)

I

40 80

2d o + E/T—
dodEPP gg

(4.9)

FIG. 5. The double differential cross section d o./dQdEP at
0=0' for the 1p3/2~2pj transition in the ' O(p, p)& C reaction at
550 MeV/c, as a function of Q (or, equivalently, the exit
proton's kinetic energy E~=E +Q). The solid curve corre-P

sponds to a set of DWBA calculations performed at different Q
values and then weighted according to the normalized distribu-
tion f(Q) of Eq. (4.5) for the broad p state, as per Eq. (4.8).
The dashed curve corresponds to the approximation adopted in
Ref. 28, where der/dQ(Q) in Eq. (4.8) is replaced by
do /d Q(QO).

was used to parametrize the data. In Eq. (4.9), we use the
subscript "bg" to stand for "background. " For a ' C tar-
get at 0, they" found values C=80 pb/srMeV / and
T=86 MeV. The slope parameter T is somewhat larger

.than the values T=60—65 MeV predicted by the cascade
calculations. ' The essentially isotropic angular depen-
dence observed for the emitted protons is consistent with
the cascade calculation, however.

We now consider the "signal to background" ratio R
defined by
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R =—(d o/dQdE~)~„k/(d o/dQdE~)bs . (4.10)

The peak cross section (d o./dQdE~)~„z for the forma-
tion of any particular N-nuclear bound state specified by
the shell model orbit I njlI is obtained from Eq. (4.8) as

(d o/d'QdEp)p«k= (Qo) (4.11)

Note that the Q dependence of der/d Q(Q) produces only
a small shift in the peak position away from Q =Qo, even
for broad states, as shown in Fig. 5.

Now consider the transitions 1p3/2~npj for the
' O(p, p)-' C reaction. From Eq. (4.11), we find at 0' the
values

3.0 for lp3/2 +lpj

(d cr/dQdE„)~«q- 2.2 for lp3/z +2pj

9. 1 for lp3/2 +3pj

(4.12)

in pb/sr MeV, using the widths I from Table II. We now
estimate the background from Eq. (4.9), using T=86
MeV and C=95.9 pb/srMeV . The latter value is ob-
tained by extrapolating to ' O the value C= 80
pb/srMeV / for ' C, using the observed A depen-
dence of the proton spectrum. We obtain

2.7X10 (lpj)
R = . 1.1 X 10 (2pj ),

3.8X10 (3pj)

(4.13)

where the background has been evaluated at the energy
E~=E~+Qo. Our calculations use E~ ——150 MeV; we
assume that the background measured at 180 MeV
remains essentially the same at 150 MeV.

The "signal to noise" ratios R of Eq. (4.13) would be
very difficult if not impossible to detect experimentally.

~ Qne might hope for a more favorable situation, in which
the p-nucleus real potential is extremely deep in the interi-
or region, while healing to the shallow phenomenological
values required in the nuclear surface by p-atom and p
elastic scattering data. ' ' This would give rise to high
energy protons corresponding to deeply bound N-nuclear
states. However, these protons are necessarily spread over
a large energy region of order I =28'o and peak cross
sections are not expected to exceed the typical values in
Eq. (4.12). Using Eq. (4.9), we find that (d o'/dQdE~)bs
remains above 1 pb/sr MeV for E~ &650 MeV (p binding
energy of order 500 MeV), so it is unlikely that values
R —1 are attained, even in extreme cases.

A possible exception to this rather pessimistic
viewpoint may be provided by certain p-atomic states.
Qur example of the 3p quasiatomic state in Eq. (4.13) is
typical but unfavorable, in that R is about the same as for
the strongly bound states. In certain special cases, an
atomic state may have a considerably enhanced formation
cross section from the (p, p) reaction due to a happy coin-
cidence of a sizable radial overlap and a large spectroscop-
ic factor. Such an example has been found by Gibbs and
Kaufmann, namely the 'P(p, p)-'Al reaction. The single
particle transition is from the 2s proton state (7.3 MeV

binding) to the lowest s-wave quasiatomic state, bound by
1.15 MeV with a width I =106 keV. In Ref. 8, a cross
section do/dQ=20 pb/sr at E =150 MeV is given for
this state. We have reduced this estimate by a factor 0.52,
since the two-body pp cross' section which was assumed
(Table 3 of Ref. 8) disagrees with the original pp data at
180' (Table I of Ref. 27). We then. obtain at 0',

(d o/dQdE~)~«k=62 pb/sr MeV,

R =0.2—0.3,
(4.14)

where the range of R values reflects the uncertainty in the
choice of T. Comparing Eq. (4.14) with Eq. (4.13), we see
that the R value for the 'Al s-wave atomic state is
enhanced by an order of magnitude relative to Eq. (4.13),
bringing it into the realm of possible detection at LEAR.
Note, however, that we have assumed perfect energy reso-
lution in obtaining Eq. (4.14). The actual resolution
b.E=1 MeV in Ref. 4 is about ten times as large as the
natural line width of the quasiatomic state, so we would
have to reduce R by a factor of 10. Thus high resolution
(b,E-100 keV) is absolutely essential in searching for the
few enhanced quasiatomic p states which may exist.

V. ANTINUCLEON SOUND STATES
IN LIGHT SYSTEMS

t (r) =to+ t 1 &N WN+ t21 N'TN+ t3CTN'CTNrN rN

we obtain a first-order folded optical potential

V,p, (r)= Ato+t(crN (tr, )+t2rN (~, )

(5.1)

+rr g rrg rr;rp r;) firi,
i=1

(5.2)

where o, =2S„+,=2I„and f ( r) is a function obtained
by convoluting the nuclear density with the radial depen-
dence of the two-body interaction. For our qualitative
discussion, we assume that each component t; has the
same range, and hence f (r) is a common factor in Eq.
(5.2).

For a spin-isospin unsaturated core, one may look for
two effects, which in some cases may act in unison, i.e.,
(a) an attractive contribution of one pion excha-nge to
V», (r), and (b) a decrease of the absorptive part,
(Im V», /Im( Vo~, ) ) & 1, due to the altered spin-isospin en-

The results presented in Secs. III and IV refer to a p
bound to a spin-isospin saturated nuclear core (S, =0,
I, =0). In this case, the optical potential ( V,~,'(r)) seen
by the p is proportional to the spin-isospin averaged two-
body pN t-matrix to. For a heavy nuclear core with spin
S,&0 and/or isospin I,&0, the corrections to this aver-
aged ( V», (r) ) will generally be rather small [for instance,
proportional to (N —Z)/A for the isospin dependent Lane
potential]. In the case of a light core (A=2 or 3 will be
considered here), in contrast, the corrections to ( V», (r) )
could be rather substantial, particularly since the underly-
ing two-body NN interaction i.s expected to exhibit a siz-
able spin and isospin dependence. If the NN t matrix
(complex) is decomposed in the form
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vironment of the N. The effect of (a) is to provide a
longer range tail to Re V z, (r), which would help to local-
ize the N bound state wave function at larger distances,
where it would have less radial overlap with the absorp-

I

tive potential. The effect of (b) would be to decrease the
width I of an N bound state relative to the value I p

characteristic of the average absorptive potential. For our
rough estimates, we use the perturbative result

Ita Alp+I&&rN'& ~, & +&,rN'& ~, & +i3 $ PN 81N 1 'l
i=1

A Imto
(5.3)

The quenching phenomenon for I /I p, due to the spin-
isospin dependence of absorptive processes, has previously
been studied for X hypernuclei. There, the XN —+AN
conversion reaction is dominated by the S~, I= —., chan-
nel at low energy, so the X-hypernuclear width is
suppressed if XN pairs in the nucleus are arranged to be
predominantly in the 'So state. The ~H system provides
an example' of such a width reduction due to spin isospin-
selectivity.

We now investigate the possibility of obtaining small
values of I /I'p for an N-nuclear system. A priori, the
situation is much less favorable than for light X hypernu-
clei, for two principal reasons: (a) for N-nuclei, the scale
of widths (I p-50—100 MeV, as per Sec. III) is consider-
ably larger than that for X hypernuclei (I p-10—20 MeV
for bound states, as per Ref. 32), requiring a more dramat-
ic reduction factor I'/I p in order for a state to be observ-
able, and (b) the XN~AN conversion reaction at low en-

ergy proceeds almost entirely through one spin-isospin
channel, a situation which leads to the maximum possible
reduction (I /I p-0) for some spin-isospin configurations
[and width enhancement, (I /I'p) & 1, for others]. In con-
trast, the absorptive NN interaction, although it exhibits a
sizable spin and isospin dependence in particular
models, ' is not expected to be overwhelmingly dom-
inated by a sE'ngle spin-isospin channel. In realistic cases,
we thus do not anticipate approaching the theoretical lim-
it I /I p ——0. Conversely, the startling observation of a
very narrow N-nuclear state (non-Coulomb) would consti-
tute strong evidence for an NN absorptive interaction
dominated by a particular spin and isospin channel.

The available light targets for which one might expect
to see some effects of spin-isospin nonsaturation are H,
He, and He. We consider the reactions

Woo:Woi:Wio:Wii =1:081:0 11:007 (5.7)

Note that [a, P, y, 5j are taken to be energy dependent in
Ref. 9, and spin-orbit and tensor contributions are also in-
cluded. Although the W's grow linearly with E (except
for Wt ~, which is assumed constant), the ratios (5.7) are
more or less independent of E (at E=200 MeV, we find
1:1.12:0.17:0.017). The main qualitative feature of the
Paris model, as shown by Eq. (5.7), is that Wfor S = 0 is
an order of magnitude stronger than for S=l, whereas the
isospin dependence is much milder. In an alternative fit
to the NN data in a coupled channel framework, the
Nijmegen group does not require such a strong spin
dependence. Estimates based on the quark rearrangement
model for NN annihilation ' also give stronger absorp-
tion for S =0 than for S = 1, but not as dramatic a differ-
ence as Eq. (5.7).

If we evaluate I /I p for the two-body NN system using
Eq. (5.7), the width I of the I of the I =S=1 states
should be considerably suppressed with respect to the
"average" width I o, i.e.,

I
I'p ( Wpp +3 Wp] + 3 Wtp +9Wt t ) /1 6

In Ref. 37, g(r) was taken to be a Woods-Saxon form,
and spin-isospin dependence neglected (P=y =5=0).
This was sufficient to obtain a good fit to NN total elas-
tic, charge exchange, and reaction cross sections. Howev-
er, a fit to polarization and backward elastic scattering
data seem to require the introduction of a spin-isospin
dependence for W(r). For instance, the Paris group
finds the following ratios of the strengths Ws, in different
spin-isospin channels at kinetic energy E=0, appropriate
for a discussion of N-nuclear bound states:

A(p, N)X

leading to staI.es X of the type

X=[N+ (A —1)N]t„,s„

(5.4)

(5.5)

=(a+P+ @+5)/a =0.26,

where we have used the numerical values at E =0,

(5.8)

labeled by the total isospin I and spin S~. We consider
systems with all particles in s states, for which the total
angular momentum J is equal to S .

In order to estimate I /I o, we assume that the spin-
isospin dependence of Imt follows that of the absorptive
part of the NN potential W(r), the central part of which
can be parametrized in the form

—= —0.704, ~= —0.067, —=+0.034p
a a (5.9)

from the Paris model.
In addition to a suppressed width, the S =1, I = 1 NN

configuration also benefits from long range attraction
from one-pion exchange (OPE), which contributes an NN
potential

W(r)=(a+PcrN oN+yrN rN+5oN crNrN ~N)g(r) .

(5.6)

2 3
g mNN Pm'

+opE(r) crNo N'rN rNP(x)4~ 12m N

(5.10)
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He(p, p)X,

H(p, p)X,

He(p, n)X,

H(p, n)X .

(5.11a)

(5.11b)

(5.11c)

(5.11d)

The NNN states X have isospin I„=—, or —,'. For reac-
tions (5.11) with orbital angular momentum transfer
~~=0, only states with J„=S will be populated, assum-
ing L =0 for the target. For AL+0 transitions, which
peak at nonzero angle for the outgoing nucleon, one could
also produce NNN configurations with relative orbital an-
gular momentum L&0 between the N and the NN clus-
ter. If such states are bound, they would be longer lived
than L =0 states of the same S„and I„. Thus angular
distributions for reactions (5.11) should be measured to
look for such L&0 states. Our considerations on quench-
ing factors I /I o are independent of L, however.

The NN core for the states X can only have the Pauli-
allowed spin-isospin combinations S,=0, I, =1 or S, =1,
I, =O, i.e., the core is either spin or isospin saturated.
Consequently,

(5.12)

and the OPE contribution (5.10) to the real potential be-
tween the N and the core vanishes. The width ratios
I'/I c for the NNN states are found to be

with g NN/4m=14. 4. Here, p and mN are the pion and
nucleon masses, respectively, and P(x) = e "/x with
x =p r. In Ref. 38, the Paris model was used to find NN
resonances by solving the Schrodinger equation. As
might be anticipated on the basis of the general arguments
given here, relatively narrow (I =10—20 MeV) I =S=1
states (with L =1) were predicted near the NN threshold.
There is as yet little experimental data on this energy re-
gion, which hopefully will be explored at LEAR. Some
time ago, evidence for a narrow bound state of the NN
system was found in an experimental study of the (p, p)
reaction on a deuteron target.

After a brief digression on the two-body NN problem,
we return to the study of three- and four-body N states.

A. Three-body NNN bound states

We now consider the (N, N) reactions on the 2 =3 tar-
gets H and He. For a p beam, the various channels are

(a —2P)/a for S„=,',I-„= ,',S-, =1,I, =0

(a+P)/a for S„=,',I„—=—,',S, = l,I, =0
(5.13)

(a —2y )/a for S„=,',I„=——,',S, =0,I, = 1

(a+@)/a for S„=,',I„=——,',S, =O,I,=1 .

The values of I /I 0 are collected in Table VI for the four
limiting situations where W'(r) is dominated by a single
two-body spin-isospin channel IS,II, as well as for the
more realistic values of Eq. (5.9). One notes immediately
that a value I /I o——0 can only be achieved if S =0 or
I =0 channels dominate W(r). T'his is analogous to re-
sults already known for X hypernuclei. The Paris
model is not too far from a limit in which S=0 two-
body annihilation dominates, and there is no isospin
dependence of 8'(r). In this limit, we have

3 for f —,', —,', 1,0]

0 for I
—', , —,', 1,0I

1 for I —,', —,', 0, 1I

1 for I z, z, 0, 11 .

(5.14)

= IN'i"(q) I'If
I

'

where NP, '(q) is the s-shell form factor for a h, L =0 tran-
sition, defined in Eq. (A. 19), and

I f I
is a factor given by

(5.15)

We see from Eq. (5.14) and Table VI, that the only candi
date for a narr ow NNN 'state is the one with S„=—'„
I„=—,, if the NN annihilation potential is dominated by
the S=O channel. This result is easy to understand, if one

s that an S„= 2 stat~ can only b

an S =1 NN pair to the extra nucleon, and we have as-
sumed that the annihilation potential operates primarily
for S =0. Another interesting limit (far from the Paris
model) occurs when I=0 annihilation dominates (in-
dependent of the spin mixture), in which case the width of
the S„=—,, I = —,

' NNN state will be strongly quenched
(here the NN pair must have I= 1).

The formalism for calculating the cross sections for the
reactions (5.11a)—(5.lid) is given in the Appendix. The
laboratory differential cross sections der/dQL, are of the
form

TABLE VI. Width ratios I /I o for states of the NNN system. [The columns labeled with IS,I I
values refer to the two-body NN absorptive channel which is assumed to dominate. The column labeled
"Paris" uses the parameters of Eq. (5.9)].

NNN state

IS„,I,S„I,I
1 01 1

2 7

1 03 1

2 7

0 I1 1
7

0 1
1 3

)

S =O,I=0 S =O,I=1
3

1

3

4
3

S =1,I=0
1

3

4
3

S =1,I=1
1

3

3

1

3

Paris

2.41

0.30

1.13
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for the production of this state in the variou t'various reaction

(A8 —A
channels (5.11). The amplitudes b d f'es; are e ined in Eqs.

)—( 13) of the Appendix. Note that the H(p, p) pro-
cess does not excite th S.= 23, I„= 21e = —,, „=—, state.

i, (q)
I

can be roughly estimated inThe fo~ factor
I

X(0)" 2

the eikonal approximation, using an harmonic oscillator
wave function for the A=3 target with d'

b=1.7 fm
wi ra ius parameter

m and neglecting the real parts of the N and N
optical potentials. We find

JV ig (q =0)= dt(e ' —e(0)
—S e-'

), (5.17)

where S~=3crz/2mb =1.09 and S =3cr /2mb =2 48
using o.-=150 mb and o. =.66 mb W hm . e t en obtain

section
„q=0 ~=0.22, i.e., a suppression of ( N)o p, cross

tions due to absorption of about a factor of 4. For con-
venience in lottinn p o ting cross sections, we have assumed that

I
X'i, '

I (pL/p, ~ ) =1. At energies below 100 MeV, the
absorption factor is expected to be larger than we have as-
sumed here thereb
wh

ere, ere y suppressing the cross sections som-
at. Note that we have also assumed th

me-
e e existence o" an

I =0 NNN bound state with an N binding energy corn-
parable to that of a nucleon bound in the target, so that
the radial overla ofver ap of the N and N wave functions will be
of order unity.

The energy dependence of the 0' laboratory differential
cross sections for the production of the S„=—', , I„=—,,
NNN state in the (p, N) reactions on an A =3 target are
s own in Fig. 6. The difference between curves 8 and 8'
indicates the effect of tensor NN amplitudes for the He
p, p)X reaction. For this case [as well as the (p, p) reac-

tion on other targets], the tensor forces produce only a
modest increase in cross section, while for the (p,n) pro-
cess, the tensor terms are much more important.

From Fig. 6, we see that the H(p, n)X reaction in the
vicinity of E =175 MeV has the largest cross section
(0.8—0.9 mb/sr) for the production of X(S = —' I = —'

Howowever, this process would be difficult to study experi-

r
menta y. T e experimental situation for th H ( )X
eaction would be much more favorable. For this case, we

estimate a signal to background ratio

R =5/I' (MeV) (5.18)

at E =150M
p

0 Me v'. This estimate was obtained by extrapo-
lating the measured background f E . (4.
target; this yielded (d o/dQdE )

o q. .9) to an A =3
b = 0 pb/srMeV.

q. . ), we note that R remains larger than 0.2
presumably a measurable signal) if I 25 M

„=—,) is indeed a narrow state, it seems feasi-

thee sums of absolute squares of two-b d NN 1'- o y amp itudes

f; tabulated in Table VIII in the Appendix. For instance,
i we ocus attention on the potentially narrow S„=—,,
I„=—,

' state of the NNN system, we have

16Ib,
I

+32Ib,
I

for He(p p)

IfI = Ib b —
I

+8Ib b —
I

or'He( n

4
I
b +b

I

'+8
I

b T~+b'~
I

' «r 'H(

(5.16)

2.5

2..0

O

c' l.o

0.5

A
I Xr+

50 500I 50 200 250
E p ( M eV)

FIG. 6. F
of p a orator ener

. Forward angle laboratory cross sections as a function
f p a oratory energy for producing potentially narrow NNN

(S„=z, I„=2) and NNNN (S =1, I„=o) bound states in

(p,N) reactions on A =3 and 4 targets.

IOO

ble to search for it at LEAR in the He(p, p)X reaction at
energies Ep 100 200 MCV.

B.Four-body NNNN bound states

e now consider the possibility of relatively t bl
NNN

sa e

actions
our-body states X and their production in the re-

He(p, p)X,

He(p, n)X .

(5.19a)

(5.19b)

Unlike the NNN states, the four-body states can benefit
from an attraction in some charm 1 d
change, since the A =3 core is both spin and isos in un-

~ ~~ ~

3

CTN CT)7N'7
g

= —CT—'0
N c N c (5.20)

so that the OPE potential of Eq. (5.10) gives rise to a con-
tribution b, VopE(r) to the real part of the N-core o tical
potential of the form

a o e -core optical

2 3
g m NNPm~ VopE(r) = o—o r .r J(r)—
4 12 2 N N

N
(5.21)

where J r) is the average of the Yukawa function over the
three-body core density p(p, A, ):

d d A,
—p ~

r++2/3A
(pd A, p(p, i, )e /p I

r+v'2/3A,
Ijdipd3kp(p, A, )

(5.22)

where p=(ri —r2)/M2 and A, =(ri+rz —2r3/M6 are the
usual relotiue coordinates for the three-bod s
evaluate b.V (r w
for p(p, A, ):

Qpp r, we adopt a Gaussian approxim t''ma ion
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P(I,Z)=ce '~+""b' (5.23)

where b= 1.7 fm is chosen to reproduce the rms radius of
He. The integral J(r) is then given by

T

y/2 1J(r) = e "erfc (y —x)
2x 2y

50

20

where

1—e "erfc (y +x)
2y

(5.24) IO

erfc(z) =2/Mn I e ' dt
z

and x=p~, y=pP /3=0.472. For large r, J(r) as-
sumes the simpler form

J(r) =e~" '
x (5.25)

displaying the same radial dependence as OPE.
The same folding model can be used to construct an es-

timate of the absorptive part Im V,&,(r) from the two-
body W(r). Using a Yakawa form

g(r) =exp( 2mN—r)/2mNr

in Eq. (5.6), which has the same volume integral as the
function

g (r) =Xp(2mNr)/2mNr

0.5

0.2

O. I

r (fry)

adopted by the Paris group, we can use Eq. (5.24), with
y =4m Nb /3=87. 13 to obtain Im V,~, (r). The expansion

'1/2 2 2

J(r)=
y2 2 (y2 2)2

(5.26)

valid for y »x, is appropriate in this case. We note that
now J(r) follows the Gaussian radial dependence of the
core density rather than that of the two-body interaction
as in Eq. (5.25).

Inspection of Eq. (5.21) discloses that OPE gives an at-
tractive contribution to the N+NNN potential for S„=O,
I„=1 or S„=1, I» =0. The values of AVopE(r) are given
in Fig. 7 as a function of r, along with the estimate of the
radial shape of Im V,~,(r) based on Eq. (5.26). For r =b,
the OPE contributes a non-negligible attraction of a few
MeV, which would help to localize the N bound state
wave function in the surface region, where the absorptive
potential is decreasing more rapidly than the OPE piece.
This surface localization would tend to decrease the decay
width of the N + NNN state.

The discussion of the width factors r/ro proceeds as
in Sec. VA. The NNNN states can have S =0, 1 and
I„=0,1. For the four possible combinations, we have

FIG. 7. The absolute magnitude of the contribution b VopE of
one-pion exchange to the real part of the N + NNN optical po-
tential for total spin-isospin S„=O, I„=1or S„=1,I„=O. The
dashed curve for Vga represents the approximation of Eq.
(5.25), and shows how EVopE follows the radial dependence of
OPE in the surface region (r &b), and the form of the three-
nucleon core density for r & b. The curve labeled Im V,pt

represents the magnitude of the absorptive part of the
N+ NNN optical potential scaled to reproduce the well depth
8'0 ——61 MeV at r =0 found by Garreta et ah. (Ref. 1) in an
analysis of low energy p-' C scattering.

—, for S„=l,I„=0,1
C

2 for S =O,I =0, 1 (5.28)

The values of I /I p are displayed in Table VII for the
four limiting cases where a simple IS,II channel dom-
inates the NN absorptive potential, as well as the predic-
tions based on Eq. (5.9). Here, unlike the NNN case, the
dominance of a single NN channel is required to obtain
I /I p ——0. For S =0 dominance (no isospin dependence),
we obtain

(5.27)

(a —P—y —35)la for S„=O,I„=O
(a+p/3 —y+5)/a for S„=1,I„=O
(a —p+y/3+5)/a for S„=O,I„=1
(a+p/3+@/3 —5/3)/a for S„=1,I„=1 .

which is to be compared with Eq. (5.14). The results for
the Paris model in Table VII are rather close to the limit
(5.28). Thus we do not anticipate major deviations of
I /I p from unity for NNNN systems. Based on the Paris
W(r), the best candidates for relatively narrow NNNN

states would haue S„=I,I„=l or I» =0, for which there
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TABLE VII. Width ratios I /I o for NNNN states. (The columns are labeled as in Table IV.)

NNNN State
{S„,I„I

0,0

1,0

0,1

S =O,I=0

8
3

8
3

S =O,I =1
8
3

0
16
9

S =1,I =0
8
3

16
9

8
9

S =1,I =1

0
8
9
8
9
32
27

Paris

1.67

0.87

1.72

0.73

is a modest reduction in I /I 0 and where, for the latter
case, the OPE contribution to the real potential is attrac-
tive. To produce these objects, the reactions (5.19a) and
(5.19b) are appropriate. States with I„=1 can be excited

I

in both (p,p) and (p,n) reactions, whereas I„=O states are
populated only in the (p,n) process. From Table IX, we
have

(24' b,
~

+48 b, ) for He(p, p)X (I„=l,S„=1)
N(0) 2 .

dQL
" (12~ b

~

+24~ ho~
~

) for He(p n)X (I =OS„=l)
(5.29a)

(5.29b)

where the form factor N and the amplitudes b; are de-
fined in the Appendix. We note that the (p,p) cross sec-
tion of Eq. (5.29a) is —, times the He(p, p) cross section
(curve 8) in Fig. 6. The (p, n) cross section (5.29b) is
shown in fig. 6 as curve A. In this case, the influence of
the tensor amplitude ho is enormous (compare curves A
and 2'). At 0 we thus obtain

R =10/I" (MeV), (5.30)

VI. SUMMARY

We have discussed the energy spectrum of nuclei con-
taining a single antinucleon and estimated their formation
cross sections via the (N, N) reactions on nuclear targets.

for He(p, n) at E~ ——150 MeV, using the same approxima-
tions applied to obtain Eq. (5.18). The estimate (5.30)
refers to an s-wave NNNN bound state, for which the
cross section peaks at 0' (AL=0). One should keep in
mind the possibility of longer-lived L&0 states which
would be optimally produced at nonzero angles. In sum-

mary, the reactions He(p, p) and He(p, N) appear to be
good candidates for experimental study at LEAR. They
may provide a test of the strong spin dependence (S=O
dominance) of the NN annihilation potential predicted by
the Paris group, assuming that the widths I in some cases
are small enough (I &25 MeV) so that the N-nuclear
states can be observed. Note that other models, for in-
stance due to the Nijmegen and Helsinki groups,
predict a different pattern of spin-isospin dependence for
W(r). For these models, the spin dependence of W(r) is
more modest, and a less dramatic quenching factor I /I o
is expected for the S„=—,', I„=—,', NNN state, for in-

stance. It is worth mentioning that Shapiro and his colla-
borators have also presented estimates of the binding en-

ergies and widths of NNN states, for a spin-isospin in-
dependent W(r) Here, we. have rather emphasized the
role of possible spin isospin selectiv-ity in W(r) in reducing
the widths of certain configurations.

Except for the quasiatomic p states, the bound N-nuclear
excitations are quite unstable in general, with annihilation
widths of order I =50—100 MeV. Their binding energies
are very sensitive to the depth of the N-nucleus optical
potential in the nuclear interior, which is poorly deter-
mined by p-atom and low energy p-scattering data. The
shallow real potentials favored by recent phenomenologi-
cal studies' ' support only a few bound N states (non-
Coulomb). The cross sections d cr/dQdE& for the for-
mation of these states in ' 0 assume peak values of order
1—10 pb/sr MeV, which is much smaller than the annihi-
lation background ' of 100—200 pb/sr MeV. These
broad N-nuclear excitations will thus be very difficult to
detect experimentally. For particular p-atomic states, on
the other hand, the "signal/background" ratio of cross
sections d cr/dQdE~ could be as large as 0.2—0.3, al-
though it is more typically of order 1—5 X 10, as for
strongly bound N states. Excellent energy resolution
(I -100 keV) would be required for the detection of
quasiatomic p states.

We have also considered the possibility that particular
configurations of an N plus a light spin-isospin unsaturat-
ed nuclear core could be anomalously narrow, due to a
strong spin-isospin dependence of the NN absorptive po-
tential W, or the influence of a nonzero contribution of
one-pion exchange to the N-core Hartree potential. For
the Paris model, in which the spin-singlet 8'dominates,
we predict that the NNN configuration with spin S = —,

'
and isospin I~= —,

' is the best candidate to be narrow.
Configurations of the NNNN system with (S,I„I= [1,0I or I 1, 1I enjoy a more modest width suppression
factor I /I 0, the former having an attractive contribution
of one-pion exchange to the N Hartree field. The most
promising reaction for study appears to be He(p, p)X in
the kinetic energy range E =100—200 MeV. The
signal/background ratio for the S„=—,, I = —, NNN
states is estimated to be about 5/I (MeV), so narrow exci-
tations with I &25 MeV or so have a reasonable chance
of being detected in the presence of the background of nu-
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clean emission induced by N annihilation in the target.
Even in the absence of a width suppression effect, the
light targets He arid He, particularly the former, are the
most favorable cases for N bound state searches, since the
background (which varies essentially as A ~

) is mini-
mized relative to the signal.

This work was supported in part by the U. S. Depart-
ment of Energy under Contract No. DE-AC02-
76CH00016 and in part by the U. S.-Israel Binational Sci-
ence Foundation.

where

q=(p; —pf )/A' . (A7)

b, = (t, +3t,+3t +9t .),

Note that at 180 we have pf ———p;. %'e denote p; by
p, . Thus p, , q, Q, and PL are all parallel. Clearly,
the amplitudes describing NN~NN at 0' and NN~NN
at 180' must be equal to each other up to a phase (—1) +
which depends on the s-channel spin and isospin. This re-
quirement leads to the following expressions of the b's in
terms of t's:

APPENDIX: EXPRESSIONS FOR
(p, p} AND (p, n) CROSS SECTIONS

ON NUCLEAR TARGETS

The input to the (p, N) nuclear amplitudes considered in
the main text consists of the forward (0') NN~NN am-
plitude in the two-body laboratory (lab) system

f(NN —+NN)o. ——bo+b, ~( ~2+b o( oz

+bg~a). n2z). v2

+(boQ+b, Q~g &2)S(2(.Q),
where

b = (to t, +3—t 3t, )—,7

b = (t +3t, t —3t,—),a 4 0

b, = (t, t, t +t—,)—,cTT 4

b tQ +( t Tlg+ 3t Te
)

2

bTQ J (tTe tTQ)0

where

r=A PL,

Pc.in.

(A9)

(A10)

(Al 1)

(A12)

(A13)

A A
S(z(Q) =3cr( Qo2 Q —cr(.(r2,

Q (PN+PN)/g (A2)
/e(4M c ),

e =(mc ) +(cp, ) (A14)

Note that at 0' we have pf ——p;, and we denote this com-
mon vector by pL. Thus, for the two-body cross sections
of interest we have

dQL
PP}o =4(

I
b.

I
'+3

I
b ~ I

'+6
I
b'

I

')

(A3)

(pp n )o ——(
I bo b,

I

'+3
I
b —b,

I

'—
L

The factor A, is a kinematical factor transforming t into

f, and the factor (pL/p, m) transforms f, m(0') to
fL(0'). Equations (A8—A13) demonstrate how each of
the definite spin and isospin (t-channel) transfer ampli-
tudes, which are given by the coefficients b, is a mixture
of various spin and isospin NN elastic amplitudes. For
example, the pp~pp forward cross section (A3) (which is
given in terms of purely isovector transfer amplitudes) is
expressed in terms of isoscalar and isovector s-channel
amplitudes:

+6Ib,'Q —b,'Q I')

(pn np)o ——(
I
bo+b,

I
'+3

I
b +b .I

'

+6Ib Q+brQ I')

(A4)

(A5)

do
dQL

(PP~PP)o =(pL/pc. m. } (pp~pp)(so.
dQ, m

=7 (Ito —4I +3It —t, I'

(A15}

+ (tp+ t.'~&.~2)S»(q), (A6)

On the other hand, the theoretical and experimental infor-
mation on nucleon-antinucleon interactions is summa-
rized ' by extracting the two-body center of mass (c.m. ) t
matrix. In particular, for backward (180'} elastic scatter-
ing in the c.m. system.

t(NN~NN)(so —to+t~T] v2+tgcrf cr2

+t o ~ eq~~. vz

Similar expressiori for other projectiles have been given in
the appendices of Refs. 40 and 43.

We record here the general (p, N) amplitudes in light
(s-shell) nuclei. The derivation follows closely that in
Ref. 43, leading to Eq. (A15) there. Neglecting recoil
corrections we obtain the following amplitudes for the
&I.=0 transition from the ground state with spin and iso-
spin (S;,I;) of the nuclear A-body target (A =2,3,4) to the
state (S„,I„)built on a core with (S„I,):
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Sx(Sc )

TABLE VIII. Reduced cross sections' for the He(p, N)X& ~ reaction.x' x

(der jdQI. )/
I
xI,'(q)

I

~

(p, p) (p, n)

2 (0)

2(1)

—,'(0)

2 (1)

—,'(0)

—,'(0)

2 (1)

61b. I
'+21b-

I
'+41b'g

I

'

3 I
b

I

'+21b ~ I
'+41b,'

-',
I b, I

'+4
1
b., I

+8
I
bP

I

161 b., I
'+32

I b,'&12

2 Ibo —b. l'+T
I bo bo—.I'+ lbo~ —bP I'

r'lb. + 3b. l'+ z lbo+Tbo. l'+91bo~+ ,'b7—1'

—,
'

I
b,

I
'+41b ~ I

'+81b,

41b b
I
'+81bP

'The H(p, n) cross sections are obtained from the tabulated 'He(p, n) cross sections by changing all the relative phases between isosca-
lar and isovector coefficients. The (p, p) reaction on 3H excites only the I„=2 state, with a reduced cross section

41 b.
I
'+ 121 bo. I

'+241b'~
I

'.

(p, p) =483 (2I;+ 1)(2I„+1)
L

1
1 I; —, I~ Ic , (2S„+1)

[Sc Ie I Isi I(]'
s

2
1

(1,k, )x g (2k, +1) (
I
b.

' ' I'+2
1 brg

' I')
I
&I".(e) I',

k =0, 1 s 2 s
(A16)

2 (2S„+1)
(p, n) =4a [s„I, I Is, ,I, ]'

1 S„ SC

(2k, +1) '

k =0, 1

2

1 Is

0 i;

I I ——
X( —1)" ' '(»;+1)'"(».+1)'"

1

X C

I; 2 1

(O, k ) (1,k ) I —i
2 51.1 bTg ~6hz@ ( —1)

I„1 I;
—s 0X l

1

Ix+Ic —
2

Ix Ic
X( —1) " ' '(2I;+1)' (2I„+1)'

2

2

I

~(o)(q) 12

(A17)

(1,0)b, ' =b
TABLE IX. Reduced cross sections for the He(pN)XI, ~ re-

action.

(11) ' s TQ
bc ' =b~„bZg ' ——bO 5k 1, (A18) S„

(d~rdn, )y
I
x((o'(q)

I

'
(p,p) (p,n)

(1,k, )
&Tg' =b. &k, 1

[ I J] is the appropriate spin-isospin fractional parentage
coefficient, and

0
1

0
1

0
0
1

1

8
I
b, l'

&4
I

b ~ I
'+ 48

I
bP

4 bo I

4 b, l

'
&&

I
bo I

'+&41bo'
I

'
&21b., I

'+24
I b,'~ I

'
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b

+

+
b

oo j~
+

+
b

elm

Ol

b

+

+
b

+
o%

+
b

m ~4

~ Ch„

CQ

+
Ol

I

m~4 +

X

OO

b

+

+
t4 b

t

N'), '(q)= f d r gp "(pL,r)pf;(r)g'+'(pr, r),
q=PI. —PI. ~ (A19)

is the appropriate s-shell form factor normalized to unity
for q=0, in the limit of no absorption, ideal wave func-
tion matching, and ignoring recoil corrections.

In Tables VIII and IX we list the expressions for the
reduced cross sections (do./dQL )/

I
NP'(q)

I
for He and

He targets. A check on the correctness of these tables is
provided by the sum over I and S of entries for (p, p),
which yields Z times the expression (A3) for one proton.
In the case of (p, n), each such sum gives Z times (A4)
plus N times (A5). To establish contact with the general
expression (4.1) of the main text, we note that af; is expli-
citly determined by the entries of Tables VIII and IX for
s-shell targets. Thus, for the He(p, p)X process to the
possibly narrow S„=—, state, we obtain from Table VIII,

8lb ~ I'+16lb' I'
4lb. I'+» Ib ~ '+24lb' I' (A20)

NIz
' ——f u(z(r)J~ qr u (z(r)dr . (A21)

The af; coefficients of Eq. (4.1) can be readily read from
the entries of Table X. Thus, at 0' where the && =0 tran-
sitions peak and dominate over the ~L =2 transitions, we
have

(
I b.

I

'+3
I
b

I

'+6
I
b'

I

')

5(
I
b., I

'+2
I
b,'~

I

')
3(

I b, I

'+ 3
I b,

I

'+ 6
I

b r&
I

')

4(
I b,

I
'+2

I
bP

I

')
3( lb. I'+3 lb ~ I'+6lb' I') '

(A22)

where we divided the appropriate entry of the table by two
since in the general formulation (4.1) this number of tar-
get protons belongs to the form factor.

As another example, we list in Table X the cross section
expressions for ' O(p, p) due to transitions of the type
lp3/2~npj Thes.e results are appropriate for a ' C target
as well, if the latter is described by a closed p3/3 shell.
We implicitly assume here that the final -' C states are
well described by specific j values. While this assumption
may break down, for example, due to a p-nuclear spin-
orbit splitting comparable to that of a proton (6 MeV), it
is adopted here for the sake of definiteness. The form fac-
tors N&z

' are defined in Ref. 25 IEq. (3.13) of Auerbach
et al.]. In the plane wave approximation they reduce to

for 0, 1 (p3/3), and 1 (p~/2), respectively. The sum of
these coefficients is, of course, one. Note that the spin
dependence enters here through the combination
(

I
b ~ I

'+2
I
b'~

I

') as it did in Tables VIII and IX for
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the ~I =0 transitions. This is not the case for the 4J- =2
transitions in Table X for which orbital and spin contri-
butions mix in a nontrivial way. However, when the cross
sections of the table are summed up, the natural sum rule

g (dcrldQ)(psy2~p; ) =4(
~
b.

~

'+3
I b., I

'+6
I b' I

')

~4( (NP~'('+2)N'")') (A23)

is satisfied.

'Present address: Theory Group, SIN, CH-5234 Villigen,
Switzerland.
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