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Pion-helium potential by inverse scattering method
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The inverse scattering formalism is applied to the case of the pion-helium system to obtain the
real and imaginary parts of a local phenomenological potential from ~ -"He partial wave phase
shifts at a fixed energy. The phase shifts and inelasticities for all partial waves up to angular
momentum I =9 are extracted from the differential cross-section data by parametrizing the nuclear
amplitude. The method has been tried for a number of incident pion energies between 51 and 110
MeV. The real and imaginary parts of the potential are seen to compare well with the commonly
used pion-nucleus Laplacian potential.

I. INTRODUCTION

In the last decade the study of the interaction of pions
with nuclei has been of much theoretical and experimental
interest. With the availability of high intensity pion
beams from the new generation of meson factories, accu-
rate and extensive experiments, on the elastic scattering of
low to medium energy pions by nuclei have been per-
formed. The data have been analyzed using pion-nucleus
optical potentials, like the Kisslinger potential' or some
variants of it. Such optical potentials are usually ex-
pressed in terms of the densities of protons and neutrons
in the target nuclei. They contain several free parameters
which are optimized to give the best fit to the scattering,
as well as to the pionic atom data. Such model potentials
may not reveal the true information content of the data,
as sometimes several sets of the free parameters can repro-
duce good agreement with experiment. An attempt to
construct a model-independent local potential has been re-
ported by Friedman. He analyzes the data on the elastic
scattering of pions by nuclei in the low to intermediate en-

ergy range with a complex local potential which is
parametrized by a Fourier-Bessel series. In this paper we
pursue the same goal, i.e., to obtain a local potential
directly from the scattering data without the explicit use
of a model for the interaction. We rely on the use of local
potentials. They reproduce the gross features of the ex-
perimental data quite well.

Coming to the problem of obtaining a potential directly
from the scattering data, several alternative procedures"
have been suggested. We follow the inverse scattering for-
malism suggested by Newton to calculate the potential
from the partial wave phase shifts at a fixed energy. We
have tested a modified form of Newton's method in the
case of simple square well potentials which are real. In
this paper we generalize the formalism to include poten-
tials and phase shifts which are complex and apply this to
a simple physical problem, i.e., to determine a local in-
teraction for the m. - He system using the experimental
phase shifts at a fixed energy.

Theoretically, only an infinite set of phase shifts can
contain the necessary information for reproducing the
true interaction. Furthermore, small errors in the phase

shifts introduce large errors in the reconstructed potential.
So we need to know a large number of partial wave phase
shifts with the best accuracy possible in order to be able to
reproduce the true interaction to some degree of confi-
dence. The objective of this paper is, therefore, twofold.
The first is to extract the largest possible number of sig-
nificant phase shifts with sufficient accuracy from the
scattering cross section data. This is achieved by the use
of the conformal mapping technique of Cutkosky and
Deo; the procedure is described briefly in Sec. II. The
second objective is to construct the m - He optical poten-
tial using the phase shifts. Section III gives an outline of
the inverse scattering formalism generalized to accommo-
date complex forms for the potential and the phase shift.
The modification needed to take into account the presence
of the Coulomb force is also discussed. In Sec. IV we
present the resulting potentials for several values of in-
cident pion energy. A discussion on the salient features of
the resulting potentials is also included, and the results are
compared with the standard Laplacian potentials.

II. PHASE SHIFT ANALYSIS

The differential cross section for pion-nucleus elastic
scattering is

(&)=
~ f, (0)+f~(&) j

' .

f, (0) is the pure Coulomb scattering amplitude, given by8
T T

f, (8)=f, exp 2i go —gln sin
0
2

Here the effective Coulomb coupling constant

z&zza[s —(m +I ) j
[s —(m+~) ] [s —(trt —M)2]&/2

z& and z2 are the charges and m and I are the masses of
the projectile and the target, respectively; s is the square
of the total energy in the center of mass system; and o. is
the fine structure constant. The Born term is

f = ~ I'(8) (4)
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F(g) is a form factor containing information about the
finite sizes of the pion and the target nucleus. In Eq. (4)
k is the c.m. momentum and t is the momentum transfer.

The nuclear amplitude f)v(g) of Eq. (1) can be ex-
pressed as

2l + 1 2io, 2i5,
f)v(g) = g e '(q(e ' —1)p((cosg)

l =o 2ik

for the range of energies considered. This number is
much less compared to the number of significant phase
shifts and inelasticity parameters involved.

The number of parameters involved would have been 20
in a conventional phase shift analysis, in order to be able
to extract phase shifts and inelasticity parameters up to
the partial wave l =9. Thus 14 parameters are saved at
each energy value, which is a significant achievement.

b(p((cosg) .
1=o

The known Coulomb shift (r( for the lth partial wave. is

, r(i+I+ad)
2i I (l+1 if)—

Usually the phase 5~ and the inelasticities g~ are obtained
by varying them as free parameters in order to get the best
fit to the cross-section data. However, with increasing en-

ergy the higher partial waves gradually become more and
more significant. Thus the number of free parameters in-
volved becomes large and the search procedure introduces
more uncertainties in their optimized values. To circum-
vent this difficulty, the nuclear amplitude is parametrized
in an optimal polynomial expansion, In the absence of
any pole in the pion- He scattering, the nuclear amplitude
is holomorphic in the cosO=x plane except for a t-
channel cut extending from x+ ——1+(2m, /k ) up to oo

and a u-channel cut spreading over —x to —oo where

2 2 . 2 2(m. .. , +mp(„)) (m + —'m4 )
x =1+

2g2 2g2s

The cuts are symmetrized in a 8' plane and subsequently
mapped onto the boundary of a unifocal ellipse in the z
plane. If the real and imaginary parts of the nuclear am-
plitude f)v(g) are expanded in terms of the Tchebyshev
polynomial T„(z) as

III. CALCULATION OF THE POTENTIAL
FROM THE PHASE SHIFTS

The essential problem is to construct the potential when
the corresponding phase shifts for different partial waves
are calculated from experiment. It was first solved by
Newton' within the framework of linear algebraic equa-
tions. He considered only real potentials. However, it is a
well-known fact that real potentials cannot explain all the
properties of nuclear reactions. It is necessary to consider
complex potentials and complex phase shifts in order to
take into account the possibility of the absorption of par-
ticles as well as the influence of closed channels on open
channels. It has been shown by Coudray and Coz" that
the construction of potentials in the real and in the com-
plex cases is performed by solving the same set of equa-
tions.

Let V~(r) be the potential associated with the nuclear
interaction which is assumed to have the range ro and de-
creases rapidly to zero for r &ro. The interaction of
charged particles with the nucleus contains a Coulomb
potential Vc(r) which has infinite range in addition to the
short range nuclear potential. The radial Schrodinger
equation for the pion-nucleus system can be written, in
terms of the dimensionless coordinate

1/2
2pE

fx~(g)= g&.z7'. ( )
n=0 Dpgi(p) = l(1+ 1)gi(p),

where

fur(g)= g& s7' (z)
n=0

(8) 2
d'

D =p' +1—U)v(p) —Uc(p)
I

the convergence of the series expansion is likely to be
maximum. So the number of terms in the series (7) and
(8) required for a good fit to the data will be much less
than the number of significant terms of the series (5), and
hence the optimization procedure with these expansions is
easier and analytically more accurate than that with the
expansion in terms of the Legendre polynomials. Once
the coefficients a„of series (7) and (8) truncated to any
desired degree of accuracy are obtained from the search
procedure, 6~ and g~ can be obtained to any order by
equating the now truncated series (7) and (8) with the in-
finite series (5) and then projecting out the various partial
waves.

The number of terms in each of the expressions (7) and
(8) required for a good fit is three for E (180 MeV.
Thus the total number of parameters searched is only six

U'(p) = V(r)/E,

Pl(p) =rRI(r) .

Outside the range of the nuclear interaction, i.e., for p ~ po
( = kro), the nuclear part of the potential may be neglect-
ed and then the wave function P~(p) in this region can be
expressed as a linear combination of E~(p) and G((p), the
regular and irregular Coulomb wave functions.

4t(p)=~(tco»(+i(p)+»»(Gt(p)]=~iZi(p) (10)

The "nuclear" phase shifts 5& are obtained from experi-
ments and may be complex. The coefficients A~ are the
unknown quantities to be determined.

It has been discussed in detail by Newton' and by
Coudray and Coz" that, if one defines a kernel
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the wave functions P~(p) satisfy the integral equation

(12)

I I

QI(p) =pP'(p) f &—(p,p')p' p~ '(p')dp' . (13)
~ m. a

O Ch
Ch Q
O 0 O

0 Ch 0 Ch0 R 00 Ch 00 O 0 O

000 It turns out that the kernel E(p,p') is the unique solution
of the Gel'fand-Levitan integral equation.

Substituting (11) into (12) we get a coupled system of
linear algebraic equations, namely

I I

~ cn,O Ch O Ch0 M 0O % O0 O O O

VO

00 0
QE

0
0

(14)
Ch0

I I

where the matrix I.I~ is

Equivalently (14) can be written asOO
oO
O
O O

S~0 0
I

OO0 0
000

g [~11'Tl'(p)A!'+~II'(p) TI (p)bi ]=+I(p)
I=O

(15)

where we have abbreviated b~ ——cIAI. The unknown coef-
ficients A~ and bI which may, in general, be complex, are
determined by solving (15) at two radial distances p =pi, p2
(&po); the kernel K(p,p) and the nuclear part of the in-
teraction U~(p) are then obtained from (11) and (12),
respectively. The computational details are given in Ref.
6, so we will not reproduce them here.

The Coulomb wave functions F~, GI and their deriva-
tives are calculated by using the series expansion method
of Froberg. ' The conditions for the series expansion to
be valid are gp ~50 and p & 10. For p& 10 we have used
the asymptotic expansion method. '
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IV. RESULTS AND DISCUSSION0 0N O
CV

The differential cross-section data for negative pions
scattered from He nuclei have been analyzed at five in-
cident pion energies between 51 and 110 MeV. The re-
sulting phase shifts and inelasticities for the first ten par-
tial waves (up to I=9) are given in Table I. Partial waves
of angular momentum higher than this contribute insigni-
ficantly to the amplitude in the energy region considered
in this work. We have not searched for the error limits in
these parameters, but they have been shown in Refs. 9 and
14 to be small.

Potentials are calculated at these five incident pion en-
ergies by the inverse scattering method using the formulae
noted above. The resulting potential curves at different
energies have been shown in Figs. 1(a)—(e) along with the
commonly used Laplacian potential.
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(a) In the range of energies considered, the real part of
the m - He optical potential has the typical shape of be-
ing attractive at large radii and repulsive at short dis-
tances. There is a distinctive repulsive core at all energies.
The oscillations at the tail end of the potential are a
characteristic feature of the inversion procedure. They
arise due to the finite size of the matrices used in the com-
putation rather than the infinite dimensional matrices that
occur in the theory. For this reason we get nonzero values
for the potential in some cases for values of r for which
there is essentially no nuclear matter.

(b) The strength of the attractive part of the real poten-
tial increases with energy.

(c) The point where the real potential crosses the zero
value moves to smaller radii as the energy increases. This
means that the radius of the repulsive core decreases with
energy. Figure 2 clearly shows the energy dependence of
the real potential.

(d) The imaginary potential increases with increasing
energy. This agrees with the observation of an increase in
the inelastic cross sections at higher energies.

It is easily seen that the Laplacian potential shown for
comparison in Figs 1(a.)—(e) does indeed possess the
characteristics listed above. Similar features of the pion-
nucleus potential have also been noted by Friedman in a
model-independent analysis of the pion-nucleus scattering,

using an unbiased Fourier-Bessel series for the potential.
It is quite satisfying that the inverse scattering which

directly uses the experimental data is able to reproduce
the essential features of the pion-nucleus optical potential.
However, the inversion potential differs from the standard
Laplacian potential in its finer details, and it may be in-
teresting to see how these affect other pionic processes in
nucleus. One such interesting feature, as can easily be
seen in Figs. 1(a)—(e), is that the inversion potential is
much stronger at large distances than in the Laplacian
version. This should affect pionic reactions such as in-
elastic scattering of pions. This is being looked into and
will be reported on later.

In this work we have assumed a local pion-nucleus po-
tential. Most of the attempts to study the information
content of the experimental results on pion-nucleus
scattering by way of large scale fits to the data at present
rely on the use of local potentials, mainly for practical
reasons. However, if we look at our results, it is obvious
that the inversion potential is in strong disagreement
which lessens near the 6 resonance. This result agrees
with the observation in the isobar-doorway model that the
potential is very nonlocal at low energies and becomes al-
most local at the 6 resonance. ' This suggests the impor-
tance of a nonlocal formulation of the inverse scattering
method which should be studied carefully in the future.
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