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Direct reaction description of sub- and above-barrier fusion of heavy ions
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A new approach to calculation of the fusion cross section o.~, based on the direct reaction concept,
is presented. The method is to define a fusion potential WF [with r (R~=rF(A' , +A2 )] as a
part of the imaginary potential of the usual optical model. The oF is then obtained as that part, due
to only 8'z, of the total absorption cross section. It is seen that, if rF is chosen as 1.40—1.50 fm, the
value of o.z computed as described fits the experimental o-F very well, in both sub- and above-barrier
regions, and for a variety of fusing nuclear pairs A

&
and A2. In most cases, it is sufficient to con-

sider only the incident (elastic scattering) channel. In a few cases, in which some specific nuclear
structure effects are involved, it is found necessary to perform coupled-channel calculations. Then
absorption due to other channels is also taken into account explicitly. It is shown that adding these
contributions is -the key to getting good fits to data, under the above-mentioned special cir-
cumstances. A possible relation of what the present approach describes, particularly when it is used
in the sub-barrier region, to (spontaneous) fission is also discussed.

I. INTRODUCTION

Fusion of two heavy ions has customarily been
described in terms of simple models that use one-
dimensional potentials. ' In this model, fusion is as-
sumed to take place if (and only if) the two iona pass
through (or go over) the potential barrier. The model is
thus often referred to as the barrier penetration model
(BPM).

In the sub-barrier regime, the barrier penetrability is
calculated first, and is used to deduce the fusion cross sec-
tion 0.+. In the above-barrier regime, on the other hand,
the two iona are considered to fuse, if the potential barrier
height, which includes the centrifugal potential, is lower
than the value of incident energy E, . The cross section
is thus obtained as a sum of contributions from the partial
waves that satisfy this criterion.

Experimental evidence shows, however, that the simple
BPM has troubles. In the sub-barrier case, the BPM often
underestimates' the measured o.F. On the other hand,
the very simple BPM, mentioned above, overestimates"
the experimental oF (particularly for very heavy systems).

In order to remove these troubles, a variety of attempts
were made recently. " ' In the sub-barrier region,
the approach usually made is to stay with the BPM, but
to allow for varying the parameter involved rather freely.
This is done with the premise that such variations would
take into account the effects of neck formation, or the
zero-point oscillation of the nuclear shape. ' Such modi-
fications of the BPM certainly resulted in enhanced sub-
barrier fusion cross sections, thus improving the fit to
data. In dealing with the effect of the zero-point oscilla-
tions, some authors also used the coupled channels (CC)
method.

For the above-barrier case, e.g., Swiatecki' proposed a
model called the extra-push model. It is a two-
dimensional potential model in that he added the neck
formation degree of freedom to the usual BPM. (He also

added a frictional force. ) With this model Swiatecki was
able to explain the observed reduction of the cross sec-
tions. A similar two-dimensional model was developed
also by Gregoire et al. ' They used the asymmetry degree
of freedom, in place of that of neck formation.

It may be worthwhile to note here that all the above
modifications of the simple BPM were made, having in
mind their use only in the sub-barrier or in the above-
barrier region. It does not seem likely that any of these
modifications would remove the troubles in both regions
simultaneously.

It may also be remarked that the BPM, including its
modifications, often contradicts the fact that sizable
amounts of direct reactions are taking place even (some-
what) below the barrier. Also, the real and imaginary po-
tentials (in particular the latter) used in the BPM are nor-
mally quite different from those of the usual optical
model potentials. This means that, by using the BPM,
one normally gives up any hope of fitting even very sim-
ple elastic scattering data.

It is our strong belief that it is highly desirable to con-
struct a theory for fusion, which is consistent with the
concept of the direct reaction (DR); or at the least with
elastic scattering. This is why we proposed recently' '
an approach to calculate o.F, within the framework of the
DR theory. (This, in particular, means that we always use
optical potentials that fit elastic scattering data. )

The purpose of the present paper is to explain this new
approach in detail. As will be seen below, we can describe
the sub- and above-barrier fusions (as well as the DR pro-
cesses) on the same footing.

The basic idea is to define a fusion potential 8'F(r), as
a part of the imaginary potential W(r) in the usual opti-
cal model. We then obtain o.F as that part, which is due
solely to Wt;(r), of the total reaction cross section (nor-
mally denoted by cttt ). In the simplest case, we consider
only elastic scattering, as the DR mode that comes into
our description of o.+. As will be shown below, o.+ is then
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II. FORMULATION

A. Elastic fusion

Let us begin by writing the well-known Schrodinger
equation for elastic scattering from an optical potential
(the standard optical model calculation). It reads

(Z + ~ )X(+) E X(+)

with
(la)

U = —V, —i8' (lb)
The subscript a attached to the various quantities that ap-
pear in Eq. (1) stands for the elastic channel a, which will

be treated as the incident channel, when we consider more
complicated direct reactions later on. In Eq. (lb), —V,
and —O' are, respectively, the real and imaginary parts

of the optical potential U, (for the a channel), and X,'+' is

written as (a constant times) the expectation value of
WF(r), with respect to the distorted wave in this elastic
channel.

We denote the above fusion cross section by o.EF (rather
than oF), to emphasize the fact that it was calculated by
using quantities that pertain only to the elastic channel.
The EF stands for'elastic fusion, and we call crEF, some-
what loosely, the cross section for fusion that takes p/ace in
(or proceeds through) the elastic channe/ To .describe oEF
in this way is very much the same as to call o.~ the total
reaction cross section described purely in terms of the op-
tical model. The a~ is the sum of cross sections of all the
reactions, many of them going though complicated steps.
Likewise, oE„ includes fusion processes that may go first
into some other DR channels, and then eventually into the
fused state. Nevertheless, we describe crEF entirely within
the framework of the optical model.

There are cases in which we find that we cannot fit ex-
perimental o~ simply in terms of crEF Th. ese are cases in
which a few channels exist, which are coupled to the elas-
tic channel and play some specific role for enhancing crF
For such cases, we consider these channels explicitly, by
switching our DR description from that of the simple op-
tical model to that of the CC or CRC (coupled-reaction
channel) calculations. A new description of crF then
emerges, and we succeed in regaining the fit to data.

The next section, i.e., Sec. II, is devoted to the presenta-
tion of our formalism. In Sec. II A, we explain how to ob-
tain o EF, while in Sec. II B, we formulate oF for the case
in which CC or CRC calculations are needed. In Sec.
IIIA, we compare with data the prediction of oEF. As
seen, we achieve good fits to data in many cases, covering
both sub- and above-barrier regions. In Sec. IIIB, we at-
tempt, by concentrating our attention on the above-barrier
region, to obtain a deeper insight into physics described by
our calculations. In Sec. IV, we discuss the cases in which
we need to use the formalism of Sec. II B, and show that
we can indeed fit nicely some data which we were unable
to handle in Sec. III. Section V is devoted to a summary
of the present work, and also to a few additional discus-
sions, including a possible relation between the fusion pro-
cess (as described in our way) and its inverse process, i.e.,
ass~on.

the distorted-wave function.
With Eq. (1), the total reaction cross section crI( can be

written as

og =(2m/AU, )((X,'+'1 W, 1X,'+') /m), (2)

U, being the relative velocity. Noting that X~+' can be ex-
panded into partial waves as

00

X~+'=(1/k~r) g (2l +1)X~ (r)P~ (0),
I =0a

Eq. (2) is rewritten as

(3a)

crg ——( m. /k, ) g (2l, + 1 ) T)
l, =o

oo ( I )

l =0
(3b)

where k, is the wave number, while TI, the penetration

factor, is given as

T( =(4/fiU, ) f 1X( (r)1 W, (r)dr . (3c)

1
O a ™a 3 +a +a aE —H +i@

In (5), v, denotes the exact initial state interaction. ' '

Once written in the form of (5), W, can be expressed as a
sum of contributions from all the possible reaction prod-
ucts (or reaction channels). [One can easily see this by in-
troducing a complete set of final state wave functions, in
order to represent the exact Green's function
(E H+ie) ' that ap—pears in (5).] Suppose that we can
calculate the contribution to O', from all the direct reac-
tion channels, and denote it by O'DR, Then, the rest,
i.e., O' —O'DR. , is nothing but our O'F., Of course, it is
impracticable to obtain WDR. , from (5), and hence WF,
Nevertheless, Eq. (5) serves to give a formal justification
for dividing W, into parts (this time into two parts).

We are ready to present our very basic idea' on how to
describe the fusion cross section. It is to consider that
only a part O'F., of 8', is responsible for fusion. This
means that, corresponding to (2), we write the fusion cross
section as

o.EF
——(2m/A'U, )((Xa+

1 WF;
1

Xa+ )/~) . (4)

It is important to note that the X,'+' that appears in (4)
is exactly the same as is the X,'+' in (2). In other words, in
spite of the use of WF., in (4) the full W, of (lb) is used
in order to generate X,'+' of (4). [Namely, we do not recal-
culate X,'+ of Eq. (4) by using WF, ] As we stated
above, WF , is taken . as a part of W, . The other part of
W, (i.e., the difference W, —W~., ) may then be con-

sidered to describe the absorption due to the direct reac-
tions. This means that, with the 7,'+', we can take into
account both fusion and direct reaction effects in Eq. (4).
We finally note here that we denoted in (4) the fusion
cross section by o.EF, rather than by O.F, as emphasized in
the Introduction.

Before proceeding, we shall go back to Eqs. (1)—(3), and
remark that the full imaginary potential W, can be given
a microscopic description in the form'
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In this sense, the statement which we made above Eq.
(4) that WF , i.s a part of W, is very important. It means
that an inequality

—W, (r) & —WF ,(r).; (all r) (6)

must be satisfied, because, otherwise, —WDR. ,(r) can be-
come positive for some values of r, i.e., it becomes a prob-
ability source rather than a sink. This is unphysical.

Within this restriction that 8'F., must be a part of 8'„
probably the simplest choice we may make in practice
would be to set '

with

W, , for r &RF
8' . 0, for r~gF (7a)

R, =rF(w ', "+w,'" ) . (7b)

In practice, we treat rF as adjustable, for each colliding
pair A& and Az (but keep it independent of the incident
energy E, ). In this sense, the present theory is a one-
parameter theory. We may improve the theory by intro-
ducing two parameters, the radius and the diffuseness, for
instance. [Keep in mind the restriction of (6).] Such an
improvement, however, will not be sought for in the
present work. As will be seen below, the one-parameter
theory works surprisingly well, with a rather narrow
range of the values of rF, rF=1.4-1.5 fm.

Once the above choice of Eq. (7) is made for WF „we.
can rewrite Eq. (4) as

(I )

EF
I =0a

crEF (erik, ) g (2——l, + 1)TFI.
I =0a

with
RF

TF.( (4lfiu, ) I I

X——( (r)
I

W, (r)dr,

(8a)

(8b)

B. Direct-reaction fusion

As will be shown in Sec. III, there are a few cases in
which the use of Eq. (4) [or Eq. (8)] with Eq. (7) en-
counters difficulties in fitting (sub-barrier) fusion data.
These are the cases in which there exist a few DR chan-
nels, through which specifically a large amount of fusion
can take place.

What we intend to do now is to develop a description of
the fusion processes, that take place not only in channel a,
but also in channels b that are reached via DR processes
denoted by A(a, b)B. To be more precise, we treat the
direct reaction by means of the CC (Ref. 22) or CRC (Ref.
23) method.

The DR processes (that we consider explicitly in the CC
or CRC calculations), and the subsequent fusion processes
proceeding through these DR channels, are all contained
in W, given by Eq. (5). Let us denote the contribution, to
8;, from these reactions by 8'D., We may then write
8' as

which is to be compared with Eq. (3). As seen, Eq. (8b)
differs from Eq. (3c), only in that the r integral in the
former has an upper limit RF.

8', = 8"+ 8'D, , (9a)

where W,
' describes the rest of the contributions to W„

thus serving as the (usual) imaginary potential to be used
in the CC calculations. We call the optical potential to be
used in the CC calculation the CC potential, and distin-
guish it from the elastic potential of Eq. (1) (used in the
simple optical model calculation). We denote this CC po-
tential by U,'. The W", is then nothing but (the negative
of) the imaginary part of U,'. Now, WD. , may be cast
into a form similar to Eq. (5) as

WD;. = Im&—&ad~ I
UD GD+'UD

I 4'ad~ &

where GD+' is the Green's function corresponding to the
DR Hamiltonian HD that is constructed for the CC or
CRC calculations at hand.

The fusion part WF' , of . 8", may be singled out in ex-
actly the same way as done [in Eq. (7)] for W, . In order
to single out the fusion part from WD.„we may now use
the method developed earlier to calculate the breakup-
fusion cross section. In fact, all we need to do is to use
an identity given as

(+) ~(—) (+)~(—)+ 6(+)U+6(+)+~D b gb b D D D (10)

Equation (10) is obtained as a limit to the two-body chan-
nel of the more general relation valid for the three-body
channel, given in Ref. 24.

In Eq. (10), 0'b ' and gb+' are, respectively, the wave
operator and the plane wave Green's function in the b
channel. The operator Qb produces the coupled channel
wave function when it is operated upon the plane wave
function, and is defined as

Q
—) 1+6'(+)+U+

By inserting (10) into (9b), we see that the latter is
rewritten as

WD;. = —Im(&4. 0~ I
U.+&b gbIIb

+&y.y, I
U.+G'+'W,'G'+'U. Iy.y„)) .

(12)

EF+ODaF ~ (13)

where oEF and oDaF are the contributions to oF from the
fusion taking place in the elastic and DR channels, respec-
tively. They are given explicitly as

~EF=(2~&&U )( &&,
'+'

I WF, , I x.'+ '
& /rr) (14a)

In Eq. (12), it is clear that the first term describes the con-
tributions to O'D. , from the direct reactions that end up
in the channel(s) b. On the other hand, the second term
originates from the absorption that takes place in these b
channels. The contribution to o.F from the b channels
may then be obtained from the second term of (12), in
which Wb is replaced by WF b, e.g. , by using . Eq. (7)
again. (Here we assume that the interactions that couple
channels are purely' real. The final expression [Eq. (17)]
given below is, however, valid even if the coupling interac-
tions are complex. )

Summarizing, the total fusion cross section can now be
written as
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(16)

Noting that W~. , (c =a and b) has no nondiagonal ele-
ment, it is possible to combine the two terms in Eq. (13) to
produce a more compact form,

cr F=(2~IRv. )( (e.'+'
~

WF ~%".+') A.), (17)

where 8'F is an operator whose projection onto the c
channel is nothing but WF , (c =a,. b, etc.).

From the derivation given above, it is clear that the
fusion cross section formulas given by Eqs. (4) and (17)
are equivalent, at least in principle. In Eq. (17), the fusion
processes proceeding via specific direct reaction channels
are treated explicitly, while in Eq. (4), they were included
only implicitly in 8'F., In practice, the results that are
obtained from Eqs. (4) and (17) are different, unless we,
e.g. , make the potential Wb. , in (4) nonlocal, so as to take
into account effects of specific channels.

III. ELASTIC FUSION CROSS SECTIONS

In subsection A, we present the results of numerical cal-
culations of crEF, made based on Eq. (4), and compare
them with experiment. As seen, the calculations cover
both the sub- and above-barrier regions. In subsection B,
we then discuss some specific features of 0 EF seen in par-
ticular in the above-barrier region.

and

crDRF ——(27rfiug)((eb
~

WF, b ~
cb )/~) . (14b)

In Eq. (14) 4&b+' is the relative wave function in the b
channel, and is given by

C'b+'=(0b0a
l

GD+'Ua
l
&a+'Pate~ & (15)

In terms of 4&'b+' the total CC wave function 4,'+' can
be written as

A. Results of numerical calculations
and comparison with experiment

So far we have performed calculations for 14 systems,
as listed in Table I. In this table, we also present the opti-
cal model parameters for each system. These parameters
were taken from the literature, ' except those for the
Ni + Ni and Br + A (A =Zr, Mo, and Ru) systems. For
the Ni + Ni system, we extracted parameters by analyzing
data for elastic scattering of the Ni+ Ni system taken
at F., =112.1 MeV. [To be precise, a set of optical
parameters for the Ni+ Ni system, extracted from a
CC analysis, was given in Ref. 29. However, the use of
this set, which used a rather small radius parameter, 1.2
fm, resulted in a poor fit to the fusion data. We thus ob-
tained new parameters by performing an (uncoupled) opti-
cal model analysis, fitting, however, only the large angle
data. For this reanalysis, we used data for Ni+ Ni, in-
stead of Ni+ Ni, in order to avoid the necessary sym-
metrization of the transition amplitude when the latter
system is considered. j As for the Br+ A system (or for
any nearby system), neither optical potential nor elastic
scattering data are available. We thus simply used for
these systems the parameters of the Ca+ Ca system.

For all the systems, the calculations were made with an
energy-independent optical potential, as shown in Table I,
as well as the energy-independent rI; also listed in Table I.
An exception was the ' 0+ Pb system in which energy
dependent optical parameters were available. We thus
carried out calculations for this system by using these
energy-dependent potential parameters, yet with fixed rF.
We also note that the radius parameters of the imaginary
potential for the Ni+ Sn system were modified from the
value 1.26 fm, given in Ref. 28, to 1.35 fm. Such a modi-
fication did not alter the fit to the elastic scattering data,
but improved noticeably the fit to the fusion data. (For
this reason, we may say that to fit o.F data is a better way

TABLE I. Optical potential parameters used in the calculations.

Systems
V

(MeV)

8'
(MeV)

ro
(fm) (fm) (fm)

Qg

(fm) (fm)
rp

(fm)
References

Expt. OMP
Vg

(MeV)

16O+ 148S

16O+ 154Sm

16O+ 208Pb

Ar+'"Sn
Ca+ Ca

4'Ca+ "Ca
Ni+ Ni
Ni+ Ni

58Ni+ 124Sn

Ni+" Sn
Br+ Zr
Br+ 4Zr
'Br+ Mo
Br+ Ru

20.0
20.0

100.0
41.8
35.0
35.0
40.0
40.0
58.1

58.1

35.0
35.0
35.0
35.0

20.0
20.0
22.0

8.0
12.13
12.13
15.0
15.0
62.9
62.9
12.13
12.13
12.13
12.13

1.34
1.34
1.25
1.25
1.35
1.35
1.25'
1.25'
1.26
1.26
1.35
1.35
1.35
1.35

1.34
1.34
1.25
1.34
1.35
1.35
1.25'
1.25'
135
1.40b

1.35
1.35
1.35
1.35

1.25
1.25
1.25
1.25
1.35
1.35
1.25'
1.25'
1.26
1.26
1.35
1.35
1.35
1.35

0.57
0.57
0.50
0.51
0.43
0.43
0.55
0.55
0.294
0.294
0.43
0.43
0.43
0.43

0.36
0.36
0.50
0.39
0.43
0.43
0.55
0.55
0.294
0.294
0.43
0.43
0.43
0.43

1.46
1.46
1.45
1.50
1.46
1.46
1.45
1.45
1.42
1.46
1.41
1.41
1.41
1.41

6
6

25
5

30,31
31
9
9

28
28
30
30
30
30

7
7

25
26
27
27
29
29
28
28
27
27
27
27

59.5
59.1

73.8
108
53.2
52.4
95.6
94.1

165
164
154
153
161
166

'The original value is 1.20.
The original value is 1.26.
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to fix the imaginary part of the optical potential than to
fit the elastic scattering cross section. )

In Figs. 1—7, the calculated o.EF are presented as func-
tions of E, , and are compared with the experimental
data. (References 5, 6, 9, 28, and 30—32, from which the
data were taken, are all listed in Table I.) As seen, the
overall fit to the data is very good.

The two theoretical results, shown in Fig. 2 for
' Q+~o Pb, by the dotted and full lines, respectively, are
those obtained by using the energy independent and ener-

gy dependent parameters. (The former used the parame-
ters given at E, =75 MeV. ) Comparison of these two
results gives an idea on how the calculation depends on
the potential parameters that are used. As seen in Fig. 2,
the difference between them is not very significant, al-
though it is worthwhile to emphasize that the solid line
appears below the dotted line at the higher E,

Two different theoretical curves are also shown in Fig.
3 by the full and broken lines. They are, respectively, the
results with the present theory and BPM. The latter
curve was presented to exemplify the rapid decrease of the
sub-barrier cross section, when the BPM is used, as
remarked in the Introduction.

In spite of the good overall fit to the data, achieved in
Figs. 1—7, one sees notable discrepancies in a few cases,
such as the ' 0+' Sm, Ca+ Ca, and Ni+ Ni sys-
tems. These are, however, the cases in which specific
channels play important roles, and thus are to be analyzed

l5O

IOO—

IO

I I

80
E&.m. ( ~ey)

1

90

FIG. 2. Comparison of calculated (oEF) and experimental
fusion cross sections for the ' 0+ Pb system. The full and
dotted curves shown are o.EF calculated by using the energy
dependent and independent optical parameters.

by using the formalism of Sec. IIB rather than that of
Sec. II A. We shall discuss these special cases in Sec. IV.

We also note that the large discrepancy seen in Fig. 7
should not be taken as an indication of a trouble of our

IOO— too—

IO—

I.O—

Al
E

I

O. I

I

55
I I

7060 65
E c.m. ( MeV

Q.I—

t

IOO IIO
Eg ~. (Mey)

tao

FIG. 1. Comparison of calculated (o.EF) and experimental
fusion cross sections for the ' 0+' ' Sm systems. Since the
calculated o.EF of the ' 0+' Sm and ' 0+' Sm systems are al-
most identical, we plotted here only o.EF for the ' 0+'" Sm sys-
tem. The arrow indicates the position V~, of the s-wave barrier
top for the ' 0+' 'Sm system.

FIG. 3. Comparison of calculated (o.FF) and experimental
fusion cross sections for the Ar+" Sn system. The full and
dashed curves are, respectively, the fusion cross sections calcu-
lated by the present theory and BPM. The arrow indicates the
position V~ of the barrier top.
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I I I I I I

IOO

l00

lo

O.t

I I I
54 58 62
Ec ~ (Me&)

FIG. 4. Comparison of calculated (o.EF) and experimental
fusion cross sections for the Ca+ Ca systems.

approach. The data plotted include only the evaporation
residue cross sections. For the systems considered in Fig.
7, however, the so-called fusion-fission cross sections are
expected to be rather large, particularly for larger E,

I I l I I I

l50 SO NO l70 l80 l90 200
E c m (Mev}

FIG. 6. Comparison of calculated (oEF) and experimental
fusion cross sections of the Ni+" ' "Sn systems. The arrovv

indicates the position V~ of the barrier top for the Ni+ ' Sn
system.

(as suggested by the work of Henning et al. }. One sees
that our o-EF in Fig. 7 consistently overestimates the ex-
perimental oF. We hope that this gap will be filled by a
further measurement of the fusion-fission cross sections.

I I I I I I

too— Ioo—

lO-
E

b I—

+ S42

+ Mo

+ loeR„

O. I
— ~

Q.I—
94 96 104

2r Mo Ru

90
I

fOO

Ec~ (MeV)
IIO

FIG. 5. Comparison of calculated (o.EF) and experimental
fusion cross sections for the Ni+ ' Ni systems.

I I I I

m50 ISO l70 l 80 l90 200
Ec tn (MeV}

FIG. 7. Comparison of calculated (o.EF) and experimental
fusion cross sections of the 'Br+ ' "Zr, 'Br+ Mo, and
'Br+ ' Ru systems.
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B. o.EF in the above barrier

oF ——(m/k )(121)

Further, use is made of a relation that

le R21 fA (E, ———V21)/2']'/

(19)

(20)

Vz being the height of the s-wave barrier top that is locat-
ed at r =R21. If (20) is inserted into (19), Eq. (18) follows.

It is important to note, however, that the cross section
formula (18), as derived in the way as described just
above, requires that

R, =Rg . (21)

This means that the parameters R, and V21 in Eq. (18) are
not independent of each other, but are mutually related.
We may call Eq. (21) a classical condition, since it result-
ed from the use of the classical (or semiclassical) relations
(19) and (20). Experimentally, this condition is rather well
satisfied in fusion of relatively light systems [with a small
effective fissility parameter X,ff =(Z /A ),ff]. Recent
measurements, ' however, revealed that the condition (21)
is not satisfied in fusion of very heavy systems with large
X,ff values. (The parameter R, gets much smaller than
R21 as X,ff gets larger. )

In Fig. 8, the experimental o.z and calculated o.EF are
plotted on a linear scale, against 1/E, , for three se1ect-
ed cases, the '60+'4 Sm, 4 Ar+'2 Sn, and 8Ni't-' Sn
systems. As seen, they are all fitted very well by straight
lines. (Comparison of the solid and dashed straight lines

As shown above, the calculated o.EF fit the experimental
o.F rather well (excluding the special cases discussed to-
wards the end of the last subsection). Note that the bar-
rier height Vz is indicated by arrows for three systems;
16O+ 148Sm 40Ar+ 122Sn and 58Ni+ 124Sn (see Figs
and 6, respectively). These are the cases in which our oEF
fit the data almost perfectly, and the positions of the ar-
rows show that the fits were achieved covering both the
sub- and above-barrier regions. In other words, we have
succeeded in explaining the sub- and above-barrier fusion
cross sections on an equal footing. (If E, is increased
beyond the energies considered in Figs. 1—7, the experi-
mental oF begins to saturate or decrease. We do not con-
sider such a high E, regime in the calculations made in
the present paper, but a qualitative discussion of it will be
given in Sec. IV.)

As is well known, in the above-barrier region, the exper-
imental oF is essentially proportional to 1/E, . This
means more quantitatively that o.F can be well represented
by a linear function written as

OF rrR, (1———V21/E, ) . (18)

Here R, and Vz are arbitrary parameters, whose values
may be fixed by fitting the data.

Theoretically, the observed linear dependence of O.z has
been understood in terms of a simple one-dimensional po-
tential model. ' In such a model it is assumed that only
the partial waves, up to an orbital angular momentum Iz
whose potential barrier height equals E, , contribute to
the fusion; a sharp cutoff model. The fusion cross section
is then given by

oF = 7r R (I- V/E. c f11 )
~ cr (exp)

58~. l24S„N&+
40 '

122S l60 ~ l48S

5.5 6 "8
~~E (Gev ')

IQ' 15 16 17

FIG. 8. Linear plot of the calculated and experimental cross
sections against 1/E, , and extraction of R, and V& parame-
ters of Eq. (18).
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i.o
le 20 24 28

(z /A) etf

FIG. 9. Comparison of the r„r~, and rF parameters for
three systems in Fig. 8.

in Fig. 8 shows that we are slightly overestimating the
cross sections at higher E, . The result of Fig. 2 shows
that the use of the energy dependent optical potential does
help in removing this undesired feature. )

From the straight lines shown in Fig. 8, we can deter-
mine the values of Vz and r, (defined as R, divided by

+A& ). They are Vz ——59, 104, and 164 MeV, and
r, =1.31, 1.16, and 1.11 fm, respectively, for the above
three systems. With the optical parameters we use, the
top of the (s wave) barrier appears at Rz ——11.3, 11.4, and
11.9 fm, which means that the reduced rz values are 1.44,
1.36, and 1.34 fm, respectively. (The height Vz of the
barrier at these Rz agrees very well with the Vz values
deduced above, as was expected. )

The value of r, is fairly close to rz in the case of the
'60+'4 Sm system (that has the smallest X,ff), but is
much smaller than rz in other systems with larger X,ff.
In order to show this more clearly, we plot in Fig. 9 the r,
and r~ values as functions of X,ff, where we also show the
values of rF. As seen, rz and rI; stay almost constant,
while r, decreases rather fast as X,ff increases. This
means that the classical condition, Eq. (21), cannot be
maintained for the case with a large X,ff. Compared with
this, our theory explains the difference between r, and r~
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FIG. 10. Partial wave contributions to o.~ and o.EF.

more or less automatically. %'e shall now show that this
success is due to our use of the realistic optical potential
(and possibly to a reasonable choice of RF ).

As the first step of doing this, we plot in Fig. 10 the
partial cross sections crI/' and o~', which are defined,
respectively, in (3b) and (8a). (The calculation was done
for the Ni+' Sn system at E, ~ =180 MeV. There-
fore, we are above Vz by about 16 MeV. ) Note that (the
calculated) crz' is essentially linear for / up to / =/z ——65
(which is marked by a vertical line in Fig. 10), and have
the value that agrees with the (semi-) classical value
(2/+ IHr/k . We also draw a vertical line in Fig. 10
marked /, (with /, =58), and the experimental oF agrees
with the area of the triangle defined by the aR and the /,
lines. The fact that one has to use an /, which is smaller
than lz, is, of course, the same as the requirement that
one has to take R, smaller than Rz.

The situation described in our way is quite different.
Our partial o.z' is shown in Fig. 10 by a dashed line, and
the area under this line again agrees with the experimental
oF. A remarkable feature is that o~ &0 for /&/ii, and
that we have o.F'—o'~'/2, for /&/z. These features, in
particular the latter, result from our use of the RF radius.
In our description, about half of the total oz' (for lower /)

is due to the DR, and the other half to fusion.
With the purpose of seeing sti11 more closely the origin

of the behavior of oz' shown in Fig. 10, we plotted in Fig.
11 the intensity of the absorption A (r)—:

I Xi (r)
I

W, (r),
i.e., the integrand of the integral that appears in (3c) and
(8b). This is done for the Ni+' Sn system (with
E, =180 MeV), i.e., the same case considered in Fig.
10, and also for the ' 0+ ' Sm system (with E, =64
MeV). The latter has a much smaller fissility than does
the former, and to compare these two cases is very in-
teresting. (Note that the above two cases share the same
value of E, /Vii ——1.09.)

As seen in Fig. 11(a), the A (r) for the Ni+' Sn case
is rather narrowly and symmetrically distributed around a
radius, whose value is very close to RF. (This is the case
for all the /, ranging from 0 to 60.) It is thus very easy to

I I

58N ~ (24 g

E c.m. = I80 MeY

R8 RF

1 I

(6p + 'l48S

E c.m. = 64 Mev

R8 RF

(b)

IO.O-

4 =2O

IO.O-
C)
CL3

CL

IO.O—

IO.O—

l3
I

l4
r (fm)

IO

FICx. 11. Radial dependence of the integrands A (r) for
several values of the angular momenta I, for the Ni+ ' Sn and
' 0+ '"'Sm systems.

see (as in Fig. 10) how crF" oz'/2——re. sulted. [For higher /,
the center of 2 (r) moves to larger r, making o F «oii .]

The behavior of A(r) for ' 0+' Sm seen in Fig. 11(b)
is rather different. It now has a much broader structure,
and the peak position moves to larger r, as / is increased.
At / =0, most of the A (r) lies to the left of r =R~, which
makes oF -oz, a fact which explains why r, =rz in this(o) (o) 4

system that has a rather small X,~~.

It is not difficult to see why 3 (r) behaves so differently
in the two cases. The difference is due to the difference in
the strength of the absorption. Note that the (local) mean
free path A, (r) for the absorption is roughly proportional
to [ 8'(r)/ij', where p is the reduced mass. In the case
of ' Ni+' Sn, A, (r) is as small as 0.2 fm, in the neighbor-
hood of r Rz =Thu. s the distorted wave Xi (r) cannot

a
survive, much inside of RF. The system ' 0+' Sm is,
however, much less absorptive. Thus the lower partial
waves can penetrate deep into the internal region.

Our approach, explained above, which results in r, ~ rz
automatically, is quite different from that of the extra-
push model of Swiatecki. ' The o.F" predicted by the
Swiatecki model equals that of the sharp cutoff model
with /, „=/„ the switch of /z to /, being explained in
terms of the extra-push energy. Thus, his model resorts
to the triangle in Fig. 10, and thus has the l distributions
of aF" quite different from ours. The differences. between
these models, may, however, be studied experimentally, by
observing, e.g., the (decay) y-ray multiplicities (from the
evaporation residues), or the angular distributions of the
fission products. Evidence seen so far in systems with rel-
atively sma11 X,g~ seems to favor a smooth o.'F' with a long
tail, ' as in our theory.
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Concermng the DR contributions to o.&, it may be
worthwhile to refer to a recent experiment performed by
Rehm et al. They measured total DR cross sections
(crDR) for Cl, Ti, and Ni bombarding Pb, and
found that oDR/oz —0. 15 in the case of the relatively
light Cl projectile, but oDR/o~ —0.7 with heavier Ti
and Ni projectiles. These results can be taken as evi-
dence that clearly supports the prediction we have made
and presented above.

IO

1 I I

l52S + l6O
l I

l48S + IS()

IV. COUPLED-CHANNEL CALCULATIONS

In Sec. III, we saw that the experimental sub-barrier
fusion cross section for the Ca+ Ca, Ni+ Ni, and
' 0+' Sm systems could not be explained satisfactorily
in terms of simple crEF calculations. And we remarked
that these systems involve specific channels to be con-
sidered explicitly. Actually, the first two of the above sys-
tems have positive Q values for some two nucleon transfer
reactions (thus differing significantly from their neighbor-
ing systems). The ' 0+' Sm system, on the other hand,
is characterized by the fact that it contains a deformed
target. We have given a formula in Sec. II8, to be used
for these specific cases. In the present section, we report
on calculations done by using this formula.

IG'=

ioo=

60 65 70" 60 65 70 75
E )ob {MeV)

FIG. 12. Comparison of calculated and experimental fusion
cross sections for the ' 0+' ' Sm systems. The full and dot-
ted curves are o-EF+o-DRF and o.EF only, respectively. See the
text for the o.q —o. + curves.p+

e ' O+' '"2Sm system~

Although we found in Fig. 1 that oEF fits rather well
the ' 0+' Sm data, we have performed CC calculations
for both the ' 0+ ' Sm and ' 0+' Sm cases. In doing
this, we used for ' 0+' Sm the optical parameters listed
in Table I, while for ' 0+' Sm, we used those fixed ear-
lier by Kim (in his calculations to fit the inelastic
scattering data). Note that we expect that the CC effect is
rather weak for the ' 0+' Sm system. Note also that
the inelastic cross section to the 4+ state is at least one or-
der of magnitude smaller than that to the 2+ state, even
for the case of ' 0+' Sm. We thus have considered only
the 0+-2+ coupling. The deformation parameters were
taken from Refs. 7 and 35, respectively, for the
' 0+' Sm and ' 0+' Sm system.

The obtained crF are presented by solid lines in Fig. 12,
and it is seen that good fits to data were obtained for both
systems. The values of r~ taken were 1.47 and 1.55 fm
for the ' 0+'~8Sm and ' O+' Sm systems, respectively.
The value for the ' 0+ '" Sm system is the same as the rF
value given in Table I. The value (1.55 fm) of the
' O+' Sm system is, however, somewhat larger than the
value given in Table I. This may be due to the rather
large imaginary radius parameter (1.40 fm) of Kim's po-
tential of Ref. 35. In Fig. 12, the elastic channel contribu-
tion, crEF, is also shown by dotted lines, and the difference
between this and «rF, is the contribution from the 2+
channel, i.e., oDRF. As expected, o.DRF is seen to be more
conspicuous in ' 0+' Sm than in ' O+ Smy particu-
larly for lower Z, . The total reaction cross section o.g
(seen in the elastic channel) minus the inelastic cross sec-
tion, i.e., oz —o. +, is also shown in Fig. 12. This
o'~ —o2+ (which is larger than the experimental oF) is

essentially the same as what Stockstad and Gross took as

aF. In other words, our work differs from theirs only by
the introduction of RF to obtain o.z.

B. The Ni+ ' Ni systems

In our previous study' (which was the first application
of our method that used RF), the calculations were made
by taking the Ni( Ni, Ni) Ni and 64Ni(58Ni, 60Ni)62Ni

reactions, which had Q= —2. 1 and 3.9 MeV, respective-
ly, for the ground-state to ground-state transitions. The
spectroscopic amplitudes we used were A =7.0 and 8.6,
respectively. Actually, these values were chosen so that
we could fit the overall magnitude of the observed fusion
cross sections. They are somewhat larger than what are
calculated (with a reasonable model) for the above
ground-state to ground-state transition. %e argued in
Ref. 17 that the use of these large A values was justified,
because, e.g., in the case of the Ni+ Ni system, there
were several transitions having positive Q values, other
than the above ground-state to ground-state transition,
which we did not take into account explicitly in the calcu-
lation. Also, the calculations of Ref. 17 were made by us-
ing D%'BA. In this subsection, we report on our new cal-
culations that utilized the CRC method.

It is too laborious to carry out CRC calculations by in-
cluding all the possible transitions explicitly, and thus we
have resorted to the following simplifying treatment. By
taking the "Ni+ Ni system as an example, we assumed
that there were three 0+ transitions, each carrying —,

' of
the transition strength

~

A
~

=74 (of Ref. 17). We also
assumed that these three transitions had Q values of 3.9,
2.5, and 2.5 MeV, respectively. The second of them ap-
proximately represents the transitions that lead to the first
excited 2+ states of the final ions, while the third
represents the formation of the Fe+ Zn system in its
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FIG. 13. Comparison of calculated and experimental fusion
cross sections for the Ni+ ' "Ni systems. The full, dashed,
and dotted curves are the calculated o.EF+o.DRF, o.EF only, and
o.EF, respectively.

lowest state. We thus expect that our calculation remains
fairly realistic. Note, however, that the calculated results
do not differ very much from those obtained by consider-
ing only one (ground-state to ground-state) transition that
carries all the strength. We therefore did the calculation
for the Ni+ Ni system by considering only one transi-
tion, i.e., the ground-state to ground-state transition.

We first used optical parameters given in Table I.
However, we found that the CRC calculatiotrs modified
the elastic scattering cross sections significantly. We thus
readjusted some of the parameters, so that the correct
elastic scattering cross section was regained as much as
possible. (Note the difference between W', and W,', dis-
cussed in Sec. IIB.) We carried out this readjustment at
E, =95 MeV. We found that the changes of the ro
from 1.25 to 1.29 fm and W from 15 and 13.5 MeV
achieved the recovery for the Ni+ Ni system. The new
ro and W for the ( Ni+ Ni) system were 1.20 fm and
13.5 MeV, respectively.

It is interesting to stress that we needed to increase ro
for the Ni+ Ni system, and decrease it for the

Ni+ Ni system. This means that, in the former, the
CRC effectively produced a repulsion in the elastic
scattering, while for the latter system, it produced an at-
traction. The origin of these opposing effects may be due
to the opposite signs of the Q values in the transitions in-
volved in the two systems, and may be understood on the
basis of the argument given recently by Dasso et al. '

The required decrease of the imaginary potential (by 10%)
was more or less as expected.

The calculations were performed by using the same
form factors as used in Ref. 17. The results thus obtained
are shown by solid lines in Fig. 13. As seen, the calculat-
ed o.F now fits the data very nicely for both systems. The
values of rF used were the same as in Sec. III.

We also show in Fig. 13 the calculated o.EF and o.EF by
dashed and dotted lines, respectively. (The dotted lines
are nothing but the full lines shown in Fig. 4.) The differ-
ence between the full and dashed lines represents O-DRF.
As seen, o-D&F is significant for the Ni+ Ni system,
particularly for the lower E, . However, it is not very
important for the Ni+ Ni system as expected.

It should be remarked that for the Ni+ Ni system
the sum of OEF+crDRF (full line) is roughly equal to o'EF
(dotted line). Therefore the equivalence between the two
calculated cross sections, discussed in Sec. II 8, is fulfilled
in this system. This is not the case, however, for the

Ni+ Ni system. To perform explicit CRC calcula-
tions, as done here, is thus vitally needed for this system.

V. CONCLUDING REMARKS
I

A very simple method to calculate the fusion cross sec-
tion has been proposed, which can be handled entirely
within the framework of the direct reaction theory. The
essence of the method is to define a fusion potential
8'F(r) as an inner part of the (full) imaginary part of the
optical potential 8'(r) of the optical model. In practice,
we introduce a radius parameter, called Rz, so that the
r (RF part of W(r) is nothing but WF(r). The elastic
fusion cross section o-EF is expressed as an expectation
value of WJ;(r) with respect to the distorted wave func-
tion in the elastic channel. We found that this simple-
minded oEF fits a number of fusion data very nicely. For
the cases in which the simple o.EF was found insufficient,
due to the presence of a few specific direct reaction chan-
nels that are strongly coupled, we extended the calcula-
tions by using the CC or CRC method, and found that
good fits to data were recovered.

In cases in which crEF fit nicely the sub-barrier fusion
data, we found that the method worked equally well for
the above-barrier fusion data. In other words, we were
able to describe the sub- and above-barrier fusion on an
equal footing. Note that RF was kept fixed independent
of the energy E, , once the system, i.e., the colliding
(fusing) pair A& and A2, was chosen. We also found that
r~ RF/(A I +Az ——), needed to fit the data, was essen-
tially the same (vF —1.45 fm), for all the systems con-
sidered.

Even in cases in which the CC or CRC treatment was
necessary, we found that such a need was the case only in
the sub-barrier (and slightly above the barrier) region. At
higher E, , the fusion cross sections calculated with
these complicated methods tended to coincide (approxi-
mately) with o EF.

One of the important consequences in the present
analysis is the fact that our rF (=1.45 fm) was rather
large, making RF )R~, where Rz is the radius at which
the s-wave barrier peaks (though RF is smaller than the
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strong absorption radius R ~&2 (Ref. 37) by about 1 fm, as
it should be). We have often RF —R~-1 fm, particularly
for the cases with large X,rf, and we also found that the
dominant contribution to the fusion cross section comes
from a rather narrow region of about 1 fm width, between

RF and RD=RF —1.0 fm. This means that all the fusion
(and direct reactions) takes place outside the barrier. (We
have shown this explicitly in Fig. 11 for an above barrier
E, . This feature is even more noticeable as E, is
lowered, particularly below Va.) In this sense, our picture
of fusion is very different from that of BPM, where the
fusion is assumed to take place after the ions pass through
the barrier.

The fact that the fusion does not take place for r (RD
is due to the fact that, inside RD, the two-body ( A ~+ A2)
amplitude de facto vanishes, because of the absorptive na-

ture of the optical potential. This means that, once one
gets into the r(RD region, one should cease to think in
terms of the simple A

~ +A2 system. One must switch to
a many-body type of description. The nucleons in A

&
and

A2 begin to attract each other, so as to form eventually a
single (fused) nucleus. This, we believe, is the physics
which the optical potential, whose parameters are fixed so
as to fit scattering and other DR data, tells us.

It will be interesting to compare the picture which we
have presented just above with that of fission, particularly
spontaneous fission (which may, to some extent, be con-
sidered to be a process inverse to sub-barrier fusion). As
is well known, fission takes place if the system passes
through a barrier, i.e., the saddle, which may be estimated
to lie at a distance of about 1.0X(A ~ +A& ) fm. This
saddle point is thus located inside R~ by 2 fm, say. An
important fact to be presented here is that this barrier is
not of a two-body, but of a many-body nature. No partic-
ular two-body channel 3~+22 has yet been assigned in
this barrier region. The separation of the system into
3&+32 takes place only after the system passes through
the barrier and reaches the scission point, which may cor-
respond to the radius we called RD. Thus our picture,
which states that the fusion takes place even before the
barrier is reached, is not inconsistent with the understand-
ing of fission, in which the concept of barrier penetration
is vital. Two quite different barriers are being talked
about. The barrier talked about in the fusion description
is a two-body barrier, while that of fission is a many-body
barrier.

We have stressed above that we successfully fit the ex-
perimental oF, not only in the sub-barrier, but also in the
above-barrier regions. In the latter, however, we have ac-
tually kept to the so-called region I, in which o.F increases
in proportion to I/E, . It is well known, however, that
if E, increases further, oF begins to saturate (region II)
and even to decrease (region III). A natural question that
is asked then is whether our method is applicable, even in
these regions.

A preliminary study has been made to answer the above
question, at least partially. It was done by taking the
' O+ Ca system, for which good information has been
provided not only for o.F, but also for the energy-

dependent optical potential.
Since the details of this work will be published else-

where, we shall give here only a brief summary of the
results obtained. In short, we were able to exp1ain the
transition from the region I to region II very naturally,
which in particular means that the description was
achieved by continuing to use the energy independent rF.
The key to this somewhat surprising result lies in the fact
that the strength of the imaginary potential, in the energy
dependent optica1 potential, suddenly increases at just
the E, where the region I to region II transition takes
place. This makes the ~X~

~

factor in the integrand [in
(3c) and (Sb)] rather small for r (RF. This fact prevented
OF from increasing with increased E,

The above result presents us an interesting example to
show, in addition to many other examples we have
presented above, that it is indeed important to consider
the DR (including elastic scattering) aspects, in under-
standing fusion properly, a point which we have stressed
in the Introduction.

In the work done earlier, e.g., in BPM, information was
also taken from the optical potential. Nevertheless, in
most cases, the information that was taken was limited to
only the real part of the optical potential. As our analyses
given above have shown, and the related discussions have
emphasized, however, it is the imaginary part, rather than
the real part, of the optical potential that is playing the
key role in our description of the fusion processes. After
all, we are here treating heavy ions that are known to be
very strongly absorptive. Correct information regarding
their absorption would thus have to be taken into account
properly.

We have not analyzed any data in the region III, in
which o.F is known to decrease with increasing E,
Thus, we are not in a position to make any definite state-
ment about it, but may make the following remarks. One
can certainly fit the data of decreasing az, by keep reduc-
ing rF. However, we do not consider it to be a correct
way to follow. As is well known, ' the critical angular
momentum begins to play an important role at higher
E, , preventing the information of compound systems
with high spin values. This means that the correct
method to use (within the framework of the present
method) is to start introducing an angular momentum
cutoff. This certainly gives rise to decreasing 0.~. The
calculation of the contribution to fusion of the lower par-
tial waves will, however, remain essentially unchanged
from what we have done in the present paper.
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