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The experimental elastic scattering cross section is inverted into an optical potential using a ra-
tional parametrization of the scattering function. A regularized error analysis is carried out. The
method is successfully applied to the system a- Ca at 104 MeV.

I. INTRODUCTION

Empirical optical potentials are usually inferred from
experimental elastic differential cross sections by search
on the parameters of an assumed parametrized potential
shape. The traditional search procedure based on the
Woods-Saxon shape has in the recent past been extended
or modified with the aim of making it more "model in-
dependent. " We mention here the (Woods-Saxon)' fits, '

the Fourier-Bessel expansion, the orthogonal polynomial
expansion, the sum-of-Gaussians method, and the cubic
spline fits.

While it is impossible to determine the potential deduc-
tively from the cross section with the help of some analyt-
ic algorithm, this can in principle be done if the input is
not the cross section but the scattering function (or its
logarithm, the phase shift). The latter is the inverse
scattering problem at fixed energy: calculating the poten-
tial from the phase shifts as a function of angular momen-
tum. '—"

In a recently proposed inversion method at fixed ener-
gy' ' the scattering function is interpolated by a ration-
al function of angular momentum, whose poles and zeros
determine uniquely the corresponding potential. This
method has been applied in nuclear and atomic scatter-
ing. ' ' Inasmuch as the rational interpolation of the
scattering function between the integer angular momenta
can be regarded as model independent, the same can then
be said of the potential derived from this interpolation. A
general discussion of potentials connected with simple
classes of scattering functions is given in Refs. 20 and 21.

The input for the inverse scattering problem, the
scattering function Sq at integer angular momenta
I =0, 1,2, . . . , would have to be obtained from the exper-
imental elastic cross section by a phase shift analysis (as
in Ref. 22). For high energies and heavy particles, for ex-
ample in heavy-ion scattering, a phase shift analysis
which treats each phase shift independently, becomes for-
biddingly difficult owing to the large number of phase
shifts 5t involved (one for each integer angular momen-

turn l which contributes to the scattering). It appears
much simpler to skip fitting the phase shifts: that is, to
fit directly the small number of parameters a (poles and
zeros) in the rational scattering function S (l,a), to the ex-
perimental cross section.

This "rational scattering function analysis" of the cross
section is not only more practical than the traditional
phase shift analysis, it has the further great advantage of
yielding immediately the associated scattering potential
via the algorithm of Ref. 15. Although a search on the
parameters a has to be made —this is no "deductive"
procedure —and although a certain functional dependence
of the phase shift 5t on l is implied (though a rather flexi-
ble one), this procedure may perhaps be called a model in-
dependent inversion of the elastic cross section into the as-
sociated potential.

In the inversion the spread of the experimental data as
well as the inaccuracies in the fitting procedure will in-
duce errors in the potential. ' Unless only a very few
parameters a are used in the fit, the inverse problem will
become an ill-posed problem, leading to large, unphysical
errors in the potential. This can be remedied by a statisti-
cal regularization procedure.

In the present paper we formulate such an inversion
scheme for the cross section and apply it to a realistic
case. In the next section, the inversion algorithm for a ra-
tional scattering function is briefly recalled, and the fit-
ting of the parameters of this scattering function to the
experimental cross section is explained. Section III is de-
voted to the derivation of the errors or confidence limits
of the potential, and to a discussion of the regularization
of the inversion procedure. In Sec. IV the method is ap-
plied to the scattering of a particles on Ca at 104 MeV,
and the results are compared with those of Ref. 27. Sec-
tion V contains a summary.

II. INVERSION METHOD

The method' ' makes use of the fact that certain
simple classes of scattering functions St=S(l;a) charac-
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terized by a finite number of parameters a= Ian] are as-
sociated with certain easily calculable, analytic classes of
local potentials. The determination of the potential ("in-
version") then consists in determining the parameters a
from the input scattering information [the scattering
function Si at l =0, 1,2, . . . in the conventional inverse
scattering problem or, as in the present work, the cross
section o(8) at a finite number of angles 8=8;] by a fit-
ting procedure .Thereafter, the potential is obtained au-
tomatically, as a by-product as it were. The search in the
fit is on the parameters of the scattering function, not of
the potential.

Examples of such classes are the rational scattering
function'

A, —P„S...(l;a) =S(0)(z) g
n=1 ~ —&n

(2.1)

(0) (0)
op o~
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(0) (0)—oa
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with n, m =1, . . . , X and

o(0) e in(2. )/2—)S(0)(—g) .o.~ ——e

and the "mixed" scattering function, ' which is a product
of expressions (2.1) and (2.2). Since the rational function
can only be used when Imcc„~ 0 and ImP„& 0, '" while the
nonrational function is appropriate only if

~
Imct„~,

~
Im/3„~ are reasonably large, ' the mixed scheme must

generally be employed.
The potential associated with these scattering functions

is given by

V(r) = V))i(r);

V„(r)=V n ()r) +V'"'(r); n —1, . . . , X;
(2.3)

(2.4)

V'"'r =— —a )
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n n d L (n —1)( ) L (n —I)( )

(2.S)

The L')„"' (r) are the lo—garithmic derivatives of the Jost
solutions f~"'—(r) to the potential V, (r) in the rational
scheme, and of the regular solution PI„"'(r), in the nonra-
tional scheme. ' '

A given set of S~, I =0, 1, . . . , is easily interpolated by
the rational function (2.1). The parameters a= Iccn, Pn I

are determined by setting

Q (A, —a„)= g A A.
n +i(.

n=1
(2.6a)

where A. =1+—, and a= Ia„I= Ia„,I3nI, and S' )(A, ) is
the scattering function of a possible reference potential
V0(r), e.g., a Coulomb background potential; the nonra
tional scattering function'

(0) (0) (0) (0) {0)

S„, „(l;a)=S' )(k)

1V

~ (g2 p2 ) g g g2n —2+g2X
n=1

(2.6b)

and minimizing

M

gg, s„
n=1

o.(8;a)=
~ f(8;a)

~

',
f (8'a) =fco~(8)

(2.8)

00

+(2ik) ' g (2I+1)[S„,(l;a) —e ']Pi(cos8),

(2.9)

where fc,„)(8) and oi are the Coulomb amplitude and
phases, respectively. The parameters a= ta„ I

= Ia„,P„ I
are determined by minimizing the sum of least squares

M
X (o-,a):—Q [cr; —cr(8;;a)] /(b, cr;) (2.10)

where cr= to.; I
= Io(8;)I, and the 8; are the measurement

angles; ho; is the experimental error of o.;.
Here the minimization problem does not lead to linear

equations, but a nonlinear search on the 4X real parame-
ters a must be made instead. This is unavoidable in any
scheme: The cross section can in general be analyzed only
by a search procedure, be it on the phase shifts, or on the
poles or zeros of the rational scattering function. As men-
tioned in the Introduction, we regard the latter as more
practicable than the former, quite apart from its "inverti-
bility" into a potential. The search on the parameters a
must be started with some starting values a"'. These may
be obtained by a rough Woods-Saxon —type fit of the cross
section cr(8), whereupon the scattering function Si of that
Woods-Saxon —type potential is used to calculate the pa-
rameters a" from the linear equation discussed earlier.

2X
S(0)(g ) y g g2n —2+g2N (2.7)

' n=l

with respect to the 2X complex parameters A„and B„,
n =1, . . . , X. The number of fitting points is equa1 to
M 2X, and the g; are suitable weights. The minimiza-
tion of expression (2.7) leads to a system of 2X linear
equations with a unique solution for the coefficients An
and 8„. From these the poles ct„and zeros P„are found
immediately. With the convention that all Ima„&0 and
all Imf3n ~0, we find that for Rect„, RePn &0 we have
genuine Regge poles and zeros, while for Rectn, RePn &0
we have false Regge poles and zeros. ' The former are
taken into account in the rational form (2.1), and the
latter in the nonrational form (2.2), with the condition
that the imaginary parts of the false poles and zeros are
sufficiently large ( &2). The potential is then calculated
as explained in Ref. 15.

Thus, the inversion starting from the scattering func-
tion SI involves a unique "best" interpolation which is
readily found by solving a linear system of equations. On
the other hand, the inversion starting from the experimen-
tal cross section o.(8) is not so straightforward. Here we
introduce a "rational" cross section interpolation,
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We remark that a rational parametrization of the cross
section of the type (2.8) has first been proposed by
Remler. "

III. ERROR AND REGULARIZATION

(~ ( )~ (,)) ~ BV(r) BV(r')
Ba„Ba

Thus, we have for the error

(3.9)

Regarding the experimental errors as purely statistical,
in particular, assuming that the experimental cross section
values o; are independent stochastic variables with a nor-
mal distribution of variance (b,tr; ), then

P(cr
I
a) =const exp[ —( —,

'
)X (o;a)] (3.1)

is the conditional probability for o.; if the "true" cross sec-
tion is given by the expression (2.8) with some fixed but
unknown parameters a. One finds estimates a of these
parameters in terms of the experimental quantities tr;,
(ho.;) by maximizing the probability (3.1), i.e., minimiz-
ing the function X (tr;a) with respect to the variables a (as
was indeed the recipe of the previous section). The
minimum value is then given by

X;„(o)=X(o;a); (3.2)

its expectation value over the distribution P(cr
I
a) of the

variables u, is

zX;„=F, (3.3)

where F=M —4X is equal to the number of degrees of
freedom.

In practice, the parametrized cross section (2.8) will
not, in general, represent the true cross section exactly (al-
though it might get quite close with sufficiently many pa-
rameters a). Then, Eq. (3.3) is to be replaced by

2&min+F .

Thus,

f=f (o",a) =X'(tr;a)/F

(3.4)

(3 5)

is an estimate of the goodness of fit, the true fit giving
f=1 on the average.

We now regard expression (3.1) as a distribution in the
parameters a for given experimental values o, and define
the average over a function F(a),

(F(a))=—f F(a)P(tr
I
a)da f P(o

I
a)da . (3.6)

Then, the covariance of the parameters a defines the error
matrix (ha„=a„—a„)

4N

[b, V(r)] = ([AV(r)]2) = g e„
tt ttt = &

~an ~attt

(3.10)

4N

P, ~„,„( a)= conste xp[ —(y/2) g (a„—a„") ] .
n=1

(3.11)

Together with the experimental information described by
the distribution P(cr

I
a) of Eq. (3.1) we have the a pos

teriori distribution (Hayes formula)

If the potential is complex, Eq. (3.9) is to be generalized
to a covariance for the real and imaginary parts, and Eq.
(3.10) holds for ReV(r) and ImV(r) separately. We re-
mark that one could analogously define the covariance for
the scattering function S(A, ), and make an error analysis
on the phase shifts in terms of our rational parametriza-
tion.

The fit to the experimental cross section will generally
be the better (i.e., f will be the closer to unity) the larger
the number 4X of parameters. But as X increases, the
normal matrix a„~ becom. es ill conditioned, ' and the
errors b, V(r) will become very large. A family of highly
fluctuating, unphysical potentials will be found which,
however, all give rise to fits of the cross section o(8)
within the experimental errors.

By keeping the number of parameters low, the class of
potentials can be kept "smooth, " at the possible expense
of the goodness of fit. This has been called "parametric
regularization. " A more satisfying method is the statist-
ical regularization scheme, which has been introduced in
nuclear scattering by Krappe and Rossner. (Another
method of regularization is that of Ref 30.) .As applied
to the present situation, the method stipulates that the
searched-for potential be as close to a pregiven a priori
potential "as the experimental data allow. " Since the po-
tential is determined by the parameters a, we consider an
equivalent set of a priori parameters a", which, as the
notation indicates, are conveniently identified with the
starting values of the parameter search. These a priori
parameters determined a normal a prion distribution with
assumed variance 1/y:

e„=—(Aa„Aa ) =a„'f .

Here,

(3.7) Pa Jtnori (a)P( tr
I
a)

Pa post(a I
tr) =

f P, r„,,„,.(a)P(tr
I
a)da

(3.12)

Q2g2

2 Ba„Ba

t)o(8;;a) t)tr(9;;a)
Ba„aa (3.8)

is the curvature, or normal matrix, and the parabolic ap-
proximation is assumed valid near the minimum of X .

This yields for the covariance of the potential
V(r) = V(r;a),

4N
X (tr;a)=y g (a„—a„") +X (o",a) (3.13)

with respect to the variables a„, which results in the a
posteriori estimate a(y) = Ia„(y)j.

This conditional probability in the parameters a, for given
values cr, is to be maximized to yield estimates for the a
posteriori parameters a. That is, one must determine the
minimum of the expression
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For y =0 we obtain the previous goodness-of-fit value f
of Eq. (3.3) without a priori information; as y increases,
the value of

where

4%

4N,«(y)= g e„(y)~„(y)~;, )
(3.21)

f(y) =X'(—a;a(y) ) II' (3.14) n, m

increases as well, i.e., the fit gets worse. However, the
regularized error matrix

is the effective number of parameters [4N,«(0)=4N].
Therefore, condition (3.17) implies (Philipps)

e„(y)= [P(y) ']„ f(y),
where

p„(y)=~„(y)+y&„

(3.15)

(3.16)

X;„(y)=X;„+4N,
while condition (3.18) means (Turchin)

X;„(y)+4N,«(y) =X;„+4N .

(3.22)

(3.23)

x',„(y)= &x'& . (3.17)

Thus, one allows the a postenon "minimum" X (y) value
to be as large as the unregularized, "unbiased" average 7
value &X'&)X';„.

Alternatively, one may require that the a posteriori
auerage of X be equal to the unregularized average of X
(Turchin condition):

&X &g pygmy
= &X

where

(3.18)

and a„~(y) is a„~ of Eq. (3.8) evaluated at a(y), has re-

duced, stabilized matrix elements, and the errors of the
potential cease to be fluctuating between large limits.

As to the value of y, i.e., the degree to which the a
priori information is taken into account, one may require
that it be chosen such that the value of the function
X~;„(y)=X (o",a(y)) associated with the minimum value

of X, X~;„=X (cr;a(y)), be equal to the unregularized
average value of X (Philipps condition): '

In either case, one starts with a large value of y, when the
left-hand sides are larger than the right-hand sides, and
reduces it until Eqs. (3.22) and (3.23) are satisfied.

IV. APPLICATION TO a- Ca AT 104 MeV

A. Data and a priori potential

For a demonstration of the method, we "invert" the
elastic cross section data of Gils et al. for a on Ca at
104 MeV, since these authors appear to provide the best
available data which, moreover, they have fitted by a po-
tential using the Fourier-Bessel method. These data are
shown in Figs. 4 and 5. Gils et al. have made a
"rough" fit to these with a Woods-Saxon potential with
parameters V=151.9 MeV, ro) ——1.407 fm, a) ——1.248 fm
(real form factor squared), and 8'=20.3 MeV, F02 = 1.607
fm, a2 ——0.672 fm, 8;=ro;A', plus a double-folding
Coulomb potential (this is fairly close to a charged-
sphere potential). This rough fit achieves a goodness of
fit value f=3.3

The scattering function calculated with this potential
can be very accurately fitted (at M=80 angular momenta
i;) by a rational scattering function of the form (2.1) with

&X &,~„:—jX (o-,a)P, ~„(a
~

o.)da . (3.19)

&x'& =x',„+4N,

&x'&, ~„,=x';„(y)+4N,«(y),
(3.20)

This last condition gives less weight to the a pviori infor-
mation than the former.

Xow26

i&in(k +k ) (4.1)

corresponding to a Coulomb reference function' with

q =40 e /flu= 1.2354, A., =8q, and the 4N=32 real pa-
rameters a"= Ia„',P„"I given in Table I. (We remark
that for convenience two zeros p„are taken into account
in the nonrational form although they should be counted
as rational according to Sec. II.)

TABLE I. A priori parameters ("y~ oo").

Nonrational

a„
15.839 20—i 25.214 40
24.449 70—i 11.31820
20.10140—i 6.589 27

24.64080 +i 11.58200
—18.03700 +i 18.37020
—4.11930 +i 5.64255

Rational

8.349 48 —i 7.869 54
—23.037 60—i 5.095 80
—10.959 10—i 4.898 35
—18.684 50—i 7.709 72
—14.862 30—i 6.346 00

—21.31370 +i 0.42403
—19.20990 +i 1.35463
—16.781 200+ i 2.221 91
—13.71500 +i 3.17024

9.61602 +i 4.31102
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B. Search for the optimal parameters

Starting with the parameters a", with y fixed at vari-
ous values between 0 and 10.0, a search is made on the pa-
rameters a to find the minimum of the function X (o;a)
of Eq. (3.13), using M=140 scattering angles 0;. This
search is carried out with the help of the program
INBAFI, which is based on the Marquardt algorithm.
In the search the signs of the real and imaginary parts of
the parameters were kept fixed at their a priori values.

The minimum value found, X -;„(y)=X (cr;a(y) ), is plot-
ted as a function of y in Fig. 1(a); the corresponding func-
tions X-;„(y)=X (o-,a(y)), (X ),~„, and 4X,tt(y) are
displayed in Figs. 1(b)—(d), respectively.

It is seen that, unfortunately, the search program does
not always yield a unique minimum; rather, in various re-
gions of y, different families of solutions yield the lowest
tninimum. For the fulfillment of the Philipps condition
(3.17) [cf F.ig. 1(b)] we choose family 2 because family 3
yields no solution, and there is no corresponding locaI

300

min

280—
200

260—

240—
180—

220—
&x ) =x .+32 =1

ill l fl

200—

180—

160—
140

0.001
I I I I I IIll
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I I I IIII I I I I I III! I I I
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140
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I I I I IIII! I II I I I IIIII I IIII

0.01 0.'I 1.0
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40 i
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&x'& = x'..
min

I I I I IEEEI
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I I I I I EIEI

@=0.195

1.0 y

30-

20—

10—

0
0.001 0.0 1

I I I I I IIII
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I

y = 1.45)

I

I I I IEEEI I I I

1.0

FIG. 1. (a) The minimum value P;„(y ) determined by search on the parameters a at fixed y. Three different families are found
by varying the starting values of a for different y. (b) The function P;„(y ) associated with the minimum value P;„(y ). The inter-
section with (X2) =177.7 yields the "Philipps value" y=1.45. (c) The a posteriori average (+2),~„associated with the minimum
value J (y). The intersection with (J2) =177.7 yields the "Turchin value" y=0. 195. (d} The effective number of parameters
X ff(y) associated with the minimum value p (y ).
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TABLE II. Optimal parameters for condition (3.22) {y= 1.45).

Nonrational
15.668 60—i 25.595 90
25.059 60—E' 1 l.248 40
19.863 10—i 6. 12695

27.321 80+i 10.476 10
—18.281 20+ i 18.372 90

3.31099+ i 5.346 60

Rational

—9.073 68 —i 4.365 67
—25.833 60—i 7.487 36
—19.125 20—i 4.025 79
—16.91840—i 7.557 36
—14.483 40—i 5.21621

—20.600 50+ i 1.431 51
—20.291 70+ i 2.68098
—15.528 30+ i0.59620
—12.209 50+ i 2.87075

8.250 91+i 4.034 62

minimum of X related to family 1. This results in the
value y= 1 45. For the fulfillment of the Turchin condi-
tion (3.18) [cf. Fig. 1(c)] only family 1 can be used, yield-
ing the value y=0.195. The parameters a(y) for these
two solutions are given in Tables II and III.

C. The potentials

The potentials (2.3) calculated from the two sets of pa-
rameters are shown in Figs. 2 and 3, together with the er-
rors b, V(r) calculated by formula (3.10); the error matrix
e„ is here of course calculated with the help of Eq.
(3.15). According to Fig. 9.2b of Ref. 24, the resulting er-
ror bands, or confidence intervals, correspond to a proba-
bility content of about 55% (number of parameters:
4%=32). It is seen that the final potentials are signifi-
cantly shifted away from their a prion' shape.

The Philipps condition (3.17) yields a smoother poten-
tial, with smaller confidence intervals, than the Turchin
condition (3.18). The price for this is a slightly worse fit
(larger value of f). The fits to the cross section resulting
from an inversion using the Philipps and Turchin condi-
tions are shown in Figs. 4 and 5, respectively. To the eye
they ap'pear as equally perfect, although f= 1.675 for the
Philipps condition and f=1.417 for the Turchin condi-
tion. If no a priori information is used at all (y=0) a fit
with f= 1.35 is obtained, which indicates that the rational
scattering function with 4%=32 real parameters is only
just adequate statistically to describe the experimental

cross section (I' =108). The corresponding unregular-
ized potential, however, has errors which generally attain
values of to 100%%uo of the potential itself.

It is seen from Fig. 1(d) that the effective number of
real parameters for the regularized fits is 4%,ff =19 for
y= 1.45 and 4&,g=24 for @=0.195. That is, instead of
the 32 real parameters introduced in the rational interpo-
lation, one effectively needs only about 20 independent pa-
rameters in order to obtain acceptable fits to the cross sec-
tion in the light of the assumed a priori information.

The regularized inversion of the high-quality a- Ca
scattering cross section data yields smooth potentials
with fairly narrow confidence limits. The two potentials
obtained by the two different methods of choosing an op-
timal value of y are practically the same in the (physically
important) surface region, but they differ in the interior
Owing to the absorption in this region, the actual value of
the potential is not very important there, however.
Nevertheless, the fact that the two potentials differ from
one another outside their confidence limits would have to
be attributed to a significant difference between the Phi-
lipps and Turchin conditions together with a certain
(physically irrelevant) rigidity of the rational scattering
function analysis (a certain "model dependence" showing
up in unimportant parts of the potential, but not in the
cross section). The choice of the a orion potential may of
course also prejudice certain local g Ininima. In the
physically relevant surface region all these ambiguities are
kept to a minimum.

TABLE III. Optimal parameters for condition (3.23} (y =0.195).

Nonrational
14.183 80—i 24. 358 90
24.580 90—i 12.936 70
19.237 90—i 6.852 95

30,12000+ i 6.935 93
—19.373 10+i 19.133 10
—4.253 10+i 5.78143

Rational

9.925 88 —i 6. 198 39
29.101 20—i 6. 146 75

—21.93900—i 3.664 32
—17.977 60—i 4.309 60
—12.281 70—i 5.273 97

—19.795 50+ i0.001 62
—21.727 10+i 1.76678
—15.698 40+i 3.11650
—13.55640+ i0.001 12

0.001 67+ i 3.99807
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cedure, since it involves a parameter search in going from
the cross section to the scattering function. But cross sec-
tions can in general be analyzed only by some search pro-
cedure; instead of the traditional phase shift search
analysis we propose here the somewhat more restricted ra-
tional analysis, which involves less parameters, yet is ap-
parently still flexible enough to represent realistic cross
sections. The rational analysis automatically yields the

corresponding potential, including confidence limits. The
a priori parameters used in the present work are admitted-
ly introduced ad Itoc on the basis of reasonableness .A
more model independent starting set would indeed be
desirable. Further research should also deal with the
problem of the occurrence of local minima. The method
should facilitate the investigation of the sensitivity of the
potential to the cross section in various angular regions.
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