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%e report on a microscopic calculation of the spreading width I & of the isobaric analog state in
" Sc of the ground state of Ca. In calculating the coupling of the isobaric analog state to hallway
states we included (1}first and second order Coulomb coupling, (2} a charge-dependent but charge-
symmetric interaction from the mass difference between charged and neutral pions, and (3) a
charge-asymmetric interaction fitted to the Coulomb displacement anomaly in Sc- Ca. The
second order Coulomb terms arise from mixing with the T= 2 component of a giant isovector

monopole. The different sets of matrix elements are found to add coherently to give I & ——5—7 keV,
in excellent agreement with the value of I"& ——5.3 keV which we obtain from a strength function
analysis of the high resolution data on 'Ca(p, p). The coherent charge-symmetric —charge-
dependent contribution gives approximately one-half of I q. The result for I ~ also includes a
charge-asymmetric reduction of about 1 keV, but this is too small to confirm its presence in view of
the uncertainty in the value of I"&.

I. INTRODUCTION

The fragmentation of a nuclear isospin state which is
seen in high resolution data on an isobaric analog reso-
nance (IAR) is the most visible evidence for the breaking
of nuclear isospin symmetry by charge-dependent interac-
tions. The microresonances seen, for example, in (p,p)
scattering on a nucleus with T& ———,

' (X —Z) results from
the coupling of the isobaric analog state (IAS) with iso-
spin T& ——T3+ 1 to more numerous states with isospin
T& ——T3. In low resolution experiments the isospin mix-
ing is seen as an additional "spreading width, "
I ~ ——I ~ —Q, I ~, . The Coulomb force is usually held to
be responsible for this mixing, but its long-range character
reduces its direct coupling matrix elements so much that a
second-order coupling dominates. Assuming that the
dominant mechanism involves Coulomb coupling the IAS
to the giant isovector monopole (IVM) excitation and an
antianalog state, both states with T & which are coupled
to "fine structure" (FS) states near the IAS by the
charge-independent component of the two-nucleon force,
Mekjian' was able to account for the systematic behavior
of I z in various nuclei.

It is not obvious, however, that the contribution to I z
of the known charge-dependent components of the short-
range two-nucleon interaction can be neglected relative to
the second-order Coulomb interaction. In fact, since a
short-range interaction is effective in coupling the IAS
directly to nearby T& states, we should expect its contri-
bution to the spreading width to be enhanced relative to
that of the Coulomb interaction. The spreading width
might therefore be expected to be a more sensitive mea-
sure of the charge-dependent components of the short-
range interaction between nucleons than level shifts be-
tween corresponding states in an isobaric multiplet. In
this paper we investigate the contribution to I z of, first,

the well-established charge-symmetric —charge-dependent
(CSCD) interaction arising in large part from the differ-
ence in mass between charged and neutral pions. To this
we add a charge-asymmetric —charge-dependent (CACD)
interaction whose magnitude we fix to account for the
Nolen-Schiffer anomaly in 'Sc- 'Sc. There is theoretical
justification for a CACD interaction which will fit the
scattering data, although Shlomo has argued that the
same interaction cannot fit Coulomb anomalies in both
light and heavy mirror nuclei. For this reason we consid-
er it important to investigate the limitations on the magni-
tude of the CACD interaction which the measured
spreading widths might provide.

Inclusion of the CSCD and the CACD interactions in
the calculation of a spreading width requires inclusion
also of the Coulomb matrix elements which couple the
IAS directly to nearby T& states. This necessarily leads
to an extensive microscopic calculation in which these in-
teractions contribute coherently to the spreading width.
The possible importance of constructive and destructive
interference between various contributions to the coupling
between an IAS and a given FS state of T& also forces
abandonment of the schematic treatment of the second-
order spreading used by Mekjian. In this paper we
present a way of including the second-order Coulomb cou-
pling through the IVM as a coherent contribution to the
spreading width. We shall see that this is very important
because the short-range charge-dependent interactions
contribute coherently to the spreading width.

The large scale of a microscopic calculation of a
spreading width has limited us to consideration of the

IAR observed in (p,p) and (p,n) reactions on Ca
by %'ilhjelm et al. This resonance corresponds to a
T = —,

' state in Sc which is the IAS of the ground state
of Ca. This high resolution experiment showed the ex-
istence of eight fragments of this IAS and determined the
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energy and width of each fragment. As we shall show in
Sec. II, a strength function analysis of the distribution of
widths allows us to determine I z ——5.3+0.5 keV. This
IAS is particularly suitable for a microscopic calculation
of the spreading width because Ca has been shown to be
a particularly good approximation to a closed shell nu-

cleus. . Moreover, an unrestricted Hartree-Fock calcula-
tion of the isospin impurity of this nucleus gives a very
small result, a =0.0016. This result allows us to use per-
turbation theory to calculate the isospin mixing produced
by the Coulomb force and the CSCD and CACD interac-
tions in this nucleus. Even so, we find it necessary to
develop a variety of new techniques in order to carry out
the calculation of the spreading width of this IAS.

In Sec. II we present the theory needed to relate the ex-
perimentally determined R-matrix parameters to corre-
sponding quantities in a unified shell model reaction
theory, discuss the strength function for an IAS, and give
a strength function analysis of the isobaric analog of the
ground state of Ca to determine its spreading width I z.
Section III develops equations for calculating the contri-
bution to the spreading width of the isovector monopole
term in the Coulomb field and specifies the short-range
CSCD and CACD interactions used in this calculation.
Section IV presents various aspects of the microscopic
calculation, including (1) a comparison between the ob-
served level spacing and that obtainable from 2p-lh, 3p-
2h, 4p-3h, etc. , excitations; (2) a reduction of the equation
for the spreading width to one containing only matrix ele-
ments to "hallway states"; and (3) a brief discussion of the
techniques developed to construct hallway states of good
isospin and to evaluate the matrix elements connecting
them to the IAS. Section V presents the results of the cal-
culations. Section VI summarizes our conclusions.

II. THEORY

S„=exp[i(5,+5, )][(1+iK)(1 iK)]„— (2.1)

where 6, is the phase shift for a one-body potential U.
The K matrix includes both a direct and a resonant term,

D Rx„=z„+x„,
with

K„=m (cE
~

V,
~

c 'E ),

(2 2)

(2 3)

A. Resonance parameters of the K matrix

The IAR is an intermediate resonance which can be
seen in high resolution experiments as a number of, mi-
croresonances having the same spin and parity with
widths increasing toward the center of the pattern. An
R-matrix analysis of the high resolution data gives the
resonance parameters I E~,y~, I for each of the microreso-
nances. Since we want to carry out a microscopic shell
model calculation, based on the antisymmetrized products
of single-particle states, we use the K-matrix formulation
of the shell model reaction theory. After a brief sum-
mary of this theory we shall then relate its resonance pa-
rameters to those from the R-matrix analysis.

The S matrix is given by

1/2 1/2

K„ (2.4)

The term K„ is a direct transition matrix element be-
tween continuum channels for the A-nucleon system, each
of which is the antisymmetrized product of bound states
4p for the target or residual nucleus and a continuum
single-particle state in the potential U.

~

cE) =W@p(1, . . . , A —1)up, (A) . (2.5)

Here c:—(Pjle) denotes the channel quantum numbers,
which include the single-particle angular momentum
quantum number and its energy e.

The individual terms of K„describe compound nu-
clear resonances corresponding to eigenstates %~ which di-
agonalize an effective Hanultonian Hs Ho+QV——,Q on
the set of discrete states

~
a) containing only bound

single-particle orbitals.

(1, . . . , A
~

a) =M+(i
~
a;) .

The effective interaction V, which appears in these
equations includes both the lowest order direct interac-
tions with the target through the residual interaction
V=H Ho and—multistep reaction processes. If P pro-

jects onto the continuum states and Q=l Pprojec—ts
onto the discrete states, the effective interaction is given
by

V, = V+ VP(E —Ho —V) 'PV .

The compound states satisfying

(2.7)

(2.&)

therefore include both level shifts and configuration mix-
ing arising from the coupling to open channels. These ef-
fects come-from the second term in the equation for V, .
The decay amplitudes for the compound states are given
by

I „(E)'"=(2~)'"(0,
~

V,
~

cE) . (2.9)

1 —iP,g yq, /(E —Eq )

S„=exp(2iy, )-
I+iP.+1~.~« E~)—(2.10)

To compare with the corresponding K-matrix equation we
must choose the single-particle potential U so that the
phase shifts 5, give the nonresonant elastic scattering at
low energies. This choice makes X„=O, and in the single
channel ease reduces Eq. (2.1) to

—,
' iver„y(E —E, )

S„=exp(2i 5,),
2 igl ~e~« —E~)

(2.11)

We now relate these K-matrix quantities to the corre-
sponchng R-matrix parameters. For simplicity we consid-
er the case of only one open channel; the same discussion
applies to more than one open channel. In a narrow ener-

gy interval the R-matrix equation for the S matrix can be
written
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I g, (E)=2P, (E)yg, . (2.12)

This equation enables us to use R-matrix reduced widths
to determine a spreading width I & for the IAS. We shall
then go on to calculate I ~ using shell model wave func-
tions and the known (and suggested) charge dependent in-
teractions.

B. Strength function for the K matrix

The reduced widths observed in an IAR define very
roughly an envelope which peaks near the unperturbed
IAS. The reduced width of each microresonance is pro-
portional to the fraction of the IAS present in the corre-
sponding %'~ and therefore to the isospin-violating matrix
element between the IAS and a FS state with T&. Statis-
tical fluctuations in this matrix element are largely re-
sponsible for the deviations from a Lorentzian envelope.
To obtain information about the magnitude of the
charge-dependent interactions we use a strength function
(SF) which is the Lorentz-weighted average of the reduced
widths. '-"

(2.13)

The averaging half-width I is arbitrary and can be chosen
to give a smooth function of energy.

A remarkable property of this strength function is that
near an IAR it has a characteristic energy dependence

2

S(E;I)=s, + icos g
(I ~ /2+I)cos2p (E Ez b,z—)sin2qr— —

(E E„—a~ )'+(r„'/—2+I)'

Although the hard-sphere phase shift y, and the potential
phase shift 5, differ greatly in their energy dependence far
from threshold, both must fit the nonresonant background
at low energies. In 8-matrix fits to cross sections the
channel radius can be adjusted to fit the nonresonant
background, giving q&, =5, across the fine structure pat-
tern of an IAR.

For the narrow resonances observed in the IAR it is
clear that the resonance energies E~ and widths on reso-
nance must be equal,

I",(E„)=2P,(E )y, .

We note that the E-matrix width given by Eq. (2.9) has an
energy dependence due simply to the penetrability of the
emitted particle. Calculations by one of us (W.M.M. )
show that this energy dependence is accurately given by
the R-matrix penetrabilities P, . We can therefore use the
8-matrix definition of the reduced widths,

the average distribution of any microscopic quantity qy

(2.15)

we can write succinct equations for the parameters in Eq.
(2.14). The level spacing D/ appears in this definition,
but it is not actually used to calculate the quantity on
the left. One might be tempted to write (f~ )
=(fy/D/) (D/), but the density of levels is not high
enough to define a local average level density. Therefore,
the quantity on the left must be understood as a symbol
for the sum on the right.

r' =2~(M//D/),
6g —(Elff (E Ef ) /D/ )

s, = (y/, /D/),
tang)= n(M/y—/, /D/)/yg, .

(2.16a)

(2.16b)

(2.16c)

(2.16d)

It is important to realize that the characteristic pattern
of reduced widths observed in the IAR, large near Ez and
decreasing rapidly away from it, does not come from a
resonance in the coupling matrix elements but from the
energy denominators (E„—e/) of perturbation theory.
The coupling matrix elements undoubtedly extend to
states many MeV above, and even below, the IAS, even
though the spreading widths range from a few keV to a
few tens of keV at most. The matrix elements can be ex-
pected to have random phases with magnitudes that ex-
hibit statistical fluctuations, but for values of I somewhat
larger than the average level spacing the parameters above
are nearly constant and independent of the precise value
of I. A model study' has shown that an average intervalI-I' gives a strength function from which the spreading
width can be determined with an uncertainty of about
10%.

TABLE I. R-matrix resonance parameters for J =
z in

4'Sc.

E~ (c.m. 3

(keV3
y~z (c.rn. 3

(keV)

C. SF analysis of the isobaric analog
of the ground state of" Sc

High resolution excitation functions from Ca(p, p) and
Ca(p, n) between E~= 1.93 and 2.01 MeV reveal the ex-

istence of eight J = —, resonances whose energies and
reduced widths are given in Table I and illustrated in Fig.

(2.14)

The quantities Ez and yz, are the energy and reduced
width of the unperturbed IAS. The remaining four pa-
rameters s„ I z, Az, and yz are Lorentz-weighted aver-
ages of microscopic quantities. Let ey denote the energy
of a FS state of "intrinsic" partial width y;, which is cou-
pled to the IAS by a matrix element MI. Then defining

1908+2
1919+2
1922+2
1924+2
1934+2
1941+2
1942+2
1950+2

0.844
2.716
0.134
8.026

33.659
1.014
1.264
0.492
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FIG. 2. Strength function of the Ca analog for I=10 keV.
The solid curve is calculated from Eq. (2.13) using experimental
resonance parameters from Table I. The dashed curve is the fit-
ted doorway strength function given by Eq. (2.14) for the pa-
rameters in Table II.

FIG. 1. Reduced widths for proton emission from states in
Sc belonging to the IAR corresponding to the ground state of
Ca. The abscissa is the excitation energy of Sc.

1. The average level spacing is (Df )-6 keV. Figure 1

shows the SF for I=10 keV. This SF has a clearly de-
fined width at half-maximum of about 26 keV. The in-
trinsic widths of the T( states are so small, seen in the
reduced widths well away from the central peak, that one
can take s, to be zero in estimating the width of the SF.
From Eq. (2.14) one sees that I'=26 keV —2I =6 keV. A
more reliable determination is done by using a nonlinear
least-squares procedure to determine the parameters in
Eq. (2.14) by fitting to the SF calculated from Eq. (2.13)
with the (E~,y~, ) given in Table I. The quality of the fit
to the strength function is shown in Fig. 2, where the
dashed line represents Eq. (2.14). The parameters ob-
tained from this analysis are given in Table II.

III. CHARGE-DEPENDENT INTERACTIONS
AND THE GIANT ISOVECTOR MONOPOLE

The charge-d. ependent interactions in the nuclear Ham-
iltonian include the Coulomb interaction together with
isovector and isotensor terms in the short-range two-
nucleon interaction. These latter are small compared to
the isoscalar terms in the two-nucleon interaction, and
this suggests a perturbation calculation based on nuclear
wave functions of pure isospin. The Coulomb distortion
of the continuum proton states cannot be treated pertur-
batively, however, so we are obliged to include the asymp-
totic part of the average Coulomb interaction in the

A. The IAS and the choice of Hp

The IAS is defined by the equation

~

W&—=T ~S &(2T, )-'", (3.1)

where
i
P) is the parent, in our case, the ground state of

Ca. As noted in Sec. I, the ground state of Ca is an ex-
tremely good approximation to a doubly closed shell nu-
cleus. We therefore approximate the ground state of Ca
as a 2@3~2 neutron coupled to this state.

The independent particle Hamiltonian Ho which pro-
vides the neutron and proton radial wave functions must
be chosen so that the quasibound configurations

~
a) of

Eq. (2.6) have negligible isospin impurity. At the same
time the proton continuum wave functions must include
the average Coulomb field outside the nucleus. The aver-
age Coulomb field is approximated by that of a uniformly
charged sphere.

Uc (Ze /2R ) g (——R r; /3) ( —,,
—t—3;) r; &R,

i=A
= g (Ze /r; ) ( —,

'
t3; ) r; )R . — (3.2)

Inclusion in Ho of the external Coulomb field (r )R)
gives bound state neutron and proton radial wave func-

independent-particle Hamiltonian Ho. The smallness of
the spreading width of an IAS requires that care be given
to setting out the framework of the calculation, as we do
in this section.

TABLE II. IAS parameters for the J =
2 in " Sc.

I
(keV)

10

(keV)

1932.4+0.3

(keV)

51.4+0.5

r,'
(keV)

S.3+0.1

Sp

0.001+0.001

(rad)

0.017
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This equation follows from Eq. (3.1) and from

T+
~
f}=0. The matrix element is one between the

ground state of Ca and FS states in Sc of T &
———,'. We

stress that the FS states used in a microscopic calculation
of the spreading width must be eigenstates of isospin. As
we shall see, these states are quite complicated because
they contain sums over particle-hole states of varying de-

grees of excitation.
Equation (3.3) makes explicit the fact that only the

charge-dependent components of the effective interaction
given by Eq. (2.7) contribute to the spreading matrix ele-
ments. In the succeeding subsections we shall identify
these components and show how they contribute.

8. Contribution of the average Coulomb field to I'
As noted in the Introduction, the essential difficulty in

calculating the contribution of the average interior
Coulomb field to the spreading width is that it first
occurs in second order perturbation theory. Nevertheless,
it is large because the contribution is the product of a ma-
trix element of the monopole Coulomb interaction and of
the charge independent component of the effective two-

nucleon interaction. This second order Coulomb coupling
between the IAS and the FS states is illustrated in Fig. 3.

lsovect
monopole matr

eleve

ANALOG

I l

Il
I I

I I

II
II
I

I

I

I I
C" rge-independent
matrix element

I l

II
I I
I

I

I)

Fine structure

T= 9/2
STATES

T =7/2
STATES

FIG. 3. Illustration of the first and second order Coulomb
coupling between the IAS and FS states. The T= z IAS is cou-

pled by the Coulomb isovector, monopole to the T= 2 com-

ponent of the corresponding IVM, which is coupled downward
to the T='

z states by the charge-independent two-nucleon in-

teraction.

tions which are identical over the nuclear interior, except
for a normalization factor. The compound nuclear wave
functions which diagonalize the charge-independent part
of Hs, the effective shell model Hamiltonian, will then
have very pure isospin. The remaining part of the average
Coulomb field, that interior to the nucleus, is responsible
for an isovector monopole deformation of the IAS which
will be discussed in the next section.

The matrix elements between the IAS in Sc and the
FS states can be written in the form

(3.3)

We briefly summarize the doorway formalism used by
Mekjian' to calculate this contribution and explain the
necessity for a microscopic calculation.

where we have introduced the isovector monopole opera-
tor

M=gr; t3; . (3.5)

In a nucleus with a neutron excess the state defined by
this equation has several isospin components, i.e., T& —1,
T&, and T&+1, where T& is the isospin of the IAS.
These components are split by the charge-independent
part of the nucleon-nucleon interaction into three states of
pure isospin. The relevant component of the IVM for the
spreading width calculation is that with isospin
T& =T& —1. Coupling between the IAS and this com-
ponent introduces an isospin impurity into the IAS,
through which it can be coupled to the FS states with iso-
spin T& by the charge-independent two-nucleon interac-
tion. Auerbach' estimated that this component of the
IVM is separated from the IAS by an energy

hE = 1703 ' —110(T + 1)A (3.6)

This energy approximates to 3%co.
Auerbach has also shown that, within the restricted

basis provided by the p-h states, the IVM has a 95—97%
overlap with the corresponding eigenstates of the nuclear
Hamiltonian. . However, the T& component of the IVM is
fragmented through coupling to 2p-2h states of the same
isospin by the charge-independent component of the effec-
tive interaction V, . The theory of the strength function
given in Sec. II would predict a Lorentzian distribution of
this state among eigenstates of the full Hamiltonian with
a spreading width estimated to be about 10 MeV. Using
this theory Mekjian' calculated the spreading widths of
the IAS in a number of nuclei from the equation

2 J

(Ew E~) +(I m/2)—

MwcI c
(3 7)

(E —E ) +(I,'/2)

where I ~ and I,' are the spreading widths of the IVM

1. Doorway model

Since the exterior part of this interaction has been in-
cluded in Ho, we are now considering only the part of Eq.
(3.2) for r &R. This monopole interaction couples the
IAS to p-h excitations produced by exciting protons from
(njl) states to states with quantum numbers (n+1lj).
The first calculations of isospin mixing' use'd energy
denominators from first-order perturbation theory, viz. ,
the single-particle spacing. Later hydrodynamic calcula-
tions by Bohr, Damgaard, and Mottelson' led to recogni-
tion that the isovector monopole interaction generates
from the IAS a collective state whose energy lies consider-
ably above that of the individual excitations. This giant
isovector monopole state' is defined by the equation

(3.4)
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and of the so-called "configuration states, " respectively.
The latter are T& states belonging to the same configura-
tion as the IAS. The matrix elements coupling the IAS to
the IVM and configuration states are denoted by M&3t
and Mz, . The first term of this equation represents the
IAS spreading as a second-order process in which the IAS
is coupled by charge-dependent forces to the IVM, which
itself is spread among FS states. The global fit by
Mekjian to the known I' used 3 MeV for the spreading
width of the IVM. According to Mekjian only the IVM
contributes to the spreading width in Sc. Using the cal-
culated M~M Mekjian obtained a spreading width of 3
keV. This should be compared with the experimental
value of 6 keV obtained in Sec. II.

The contribution of the IVM to the spreading width of
an IAS can be calculated directly by recognizing that their
coupling produces an isospin mixed wave function

I

A')
for the IAS. (Since only the T& component of the IVM
enters here, we henceforth use IM) to denote only this
component. )

%'e now show that this second order contribution can be
approximated by the matrix element of an effective in-
teraction.

3. An effective interaction
for second order Couiomb mixing

The FS states responsible for the spreading width of the
IAS belong to low-lying configurations which do not in-
clude the p-h states 2~ which are excited by the
Coulomb isovector monopole. The Vci must couple these
FS states to the particle state excited by Uc. In configu-
ration space Vcr must deexcite the same particle as U~
excites. The above second-order matrix element can
therefore be approximated by the first-order matrix ele-
ment,

M'f=(f
I U, IA),

of an effective interaction U,tt.

(3.10)

eff E QUCI(t~J)r (')t3(J) ~

Ze /2R

A M i,j
(3.11)

IA' = IA
IM) (MI U, IA)

EA EM
(3.8)

For Eq. (3.10) to be exact, the Coulomb monopole
operator r t3 in U,f~ must not couple the IAS to T& con-
figuration states. Now if the s.p. matrix elements of this
operator are the same for all the valence nucleon orbitals
it can then be replaced by the operator cT3, which clearly
cannot couple states of different isospin. The valence nu-
cleon orbitals in "Sc are lf7~z and 2p3/z for which the
single particle matrix elements of r are exactly equal in
the harmonic oscillator shell model basis. Consequently,
Eqs. (3.10) and (3.11) are very well satisfied for the IAS
we are considering. In other nuclei the relative size of the
error introduced is proportional to the ratio
(M&M ) /(M~, ) of the squares of the matrix elements in
Eq. (3.7).

To simplify further the calculation of the contribution
of the Coulomb isovector monopole to the spreading
width we use a delta function representation of Uci which
has been employed in a number of nuclear studies. '

The IVM component of the IAS can then be coupled to
the FS states near the IAS by the charge-independent
two-nucleon interaction. The spreading width wi11 depend
on the structure of the FS states near the IAS, their densi-
ty, and their distances from the IAS.

Equation (3.7) assumes that the spreading width to FS
states near the IAS is just as large as to FS states near the
IVM itself. Since the IVM in Sc is located some 20
half-widths above the IAS, this assumption is extremely
dubious. We shall therefore explicitly calculate the con-
tribution of the IVM to the spreading width of the
J = —, IAS in Sc.

2. Microscopic theory

Uct(1~2) = —Vo(7r, +pm; )5(r; —r ) . (3.12)

Here ~„m; are projection operators onto the triplet and
singlet spin states of two nucleons. With the Soper mix-
ture, for which p =0.46, an appropriate value of Vo for

Sc is Vo ——6SO MeV fm .

C. Two-body charge-dependent interactions

We now discuss the short-range two-body interactions
which contribute to the spreading width of an IAS.

Two-body Coulomb interaction

In the preceding section we considered only the contri-
bution of the monopole term in the Coulomb interaction.
Higher multipole terms contribute to the spreading width
in first order. These have often been neglected. We have
included direct coupling matrix elements to "hallway
states" extending to an excitation energy of 20 MeV. We(3.9)

The particle states in the p-h configurations making up
the IVM belong mostly to the continuum of Ko because
the monopole operator in Eq. (3.5) excites nucleons
through 2%co. From Eq. (3.4) it can be seen, however, that
the wave function for the IVM decays exponentially be-
cause the IAS wave function contains only bound
particle-hole configurations. The IVM is therefore a nor-
malizable "packet" of continuum states of Kowhich can'
be projected out of the open channel states. This process
greatly reduces the coupling of the IAS to the open chan-
nels. ' Let PM ——

I
M ) (M

I
be the projection operator for

the IVM. Inclusion of the IVM among the set of discrete
states is accomplished by defining Q' =Q+PM and
P'=P PM. The equatio—n for the modified shell model
Hamiltonian for the compound nuclear states is obtained
from Eq. (2.7) simply by replacing P by P'. The direct
coupling between the IVM and the IAS through the iso-
vector part of U~ produces the isospin mixed IAS wave
function of Eq. (3.8). The matrix element coupling this
state to the nearby FS states with T& is

(f I Vcr I
M & (M

I
Uc I

A &

Mgf = f Vcr A'
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calculated separately the contributions from the isovector
and isotensor components in order '.o study their interfer-
ence.

2. Charge syrn-metric cha—rge-dependent (CSCD) interaction

The CSCD interaction violates the equality of V„~ and
V„„while maintaining V Vpp Low energy scattering
experiments give'

=0.0213+0.0052 . (3.13)

X [1—(p/p')' '~e' ~'"], (3.14)

where p' and p refer to the charged and neutral Inesons,
respectively. The s-wave matrix elements of this interac-
tion are negative, so that it is attractive for Like nucleons
and repulsive for unlike nucleons.

3. Charge asymmetric (CACD) interaction

The magnitude and form of a charge asymmetric corn-
poneni of the two-nucleon interaction remain unknown.
Results from low-energy scattering experiments show that
charge symmetry is more nearly exact for the short-range
component than is charge independence. ' ' After sub-

The quantities in brackets are spatial averages of poten-
tials.

Approximately 65% of this CSCD comes from the
mass difference between charged and neutral pions in the
one-pion exchange potential (OPEP), and the remainder is
accounted for by (1) this effect on the two-pion exchange
potential (TPEP), (2) radiative corrections to the meson-
nucleon coupling constants, and (3) meson-photon ex-
change effects. These latter contributions to the CSCD
interaction have different ranges from that of GPEP.

The fact that interactions with different ranges contri-
bute to the CSCD interaction is important because the in-
clusion of two-nucleon correlation effects in Sc leads to
a reduction of the CSCD interaction which might be ex-
pected to be larger for the components with shorter
ranges. Following the procedures developed by Demos '

and Rao for finite nuclei, we therefore carried out a 6-
matrix calculation in Sc of the effect of correlations on
the singlet matrix elements of the CSCD interaction aris-
ing both from the QPEP and TPEP. For both com-
ponents we found a reduction factor due to correlations of
approximately 20%.

For the CSCD interaction used in our calculations of
the spreading width we used the OPEP form with its
strength increased by about 1.5 to account for the ob-
served departure from charge independence. We then ap-
plied a factor of 0.80 for the reduction arising from corre-
lations. The resulting interaction has a strength of
Vo ——13.4 MeV and a radial dependence given by

—p'r

ucscD(1, 2)= Vo r3(1)r3(2)
p r

VcAcD(1, 2) = —Vo 2 (r3( 1)+&3(2))
—pr

X [1.14+0.3lo(1) o(2)]
PI'

(3.15)

where Sato determined the strength to be Vo ———0.478
MeV. This is approximately 1% of the charge indepen-
dent force, and more than a factor of 20 sma11er than the

traction of the electromagnetic effects the scattering
length and effective range for pp scattering are
app 17 2 3 0 fm and p pp 2.84+0.03 fm. The large
uncertainty in a» reflects its sensitivity to the short-range
part of the interaction. The nn scattering length and ef-
fective range have been extracted from the reactions
m d~nny, nnH~nnp, and H( H, He)nn. Averaging
the experimental result from these reactions gives
a = —16.4+1.2 fm and r„„=2.84 fm. On the other
hand, the 'So effective range parameters for neutron-
proton scattering are a „~= —23.715+0.015 fm and
r„p ——2.73+0.03 fm.

The evidence for a sizable CACD component of the
short-range two-nucleon interaction is the Nolen-Schiffer
anomaly in the Coulomb energy shifts between corre-
sponding levels of mirror nuclei. A particular case is the
Coulomb energy difference in 'Ca- 'Sc, which has been
analyzed in detail by Negele. Concluding that none of
the known Coulomb effects could account for the anoma-
ly in these nuclei, Negele proposed the existence of a small
charge-asymmetric (CACD) interaction. As a result
several investigations ' have been carried out using
phenomenological CACD (usually called CSB) interac-
tions. Sato has claimed success in accounting for the

. anomaly in the ground states of single-particle and
single-hole nuclei with a particular CACD interaction
which is consistent with the difference in the nn and pp
scattering lengths. More recently Coon and Scadron
have completed a series of calculations of charge depen-
dent interactions in nuclei and have concluded that the
CACD interaction can be accounted for by a sum of
terms coming from two pion exchange, p -co mixing,
~ -ri and ~ ri mixing-, and simultaneous exchange of a
y and a ~'. 3o

Shifts produced by short-range charge dependent com-
ponents of the NN interaction are overwhelmed by the
very large Coulomb shifts. As noted earlier, however, the
spreading widths of the IAS are likely to be much more
sensitive to charge-dependent components which have a
short range. We therefore included a calculation of the
contribution of a CACD interaction to the spreading
width of the analog of Ca. In view of the complexity of
the CACD interaction implied by the analysis of Coon
and Scadron, we decided to use the phenomenological
CACD interaction determined by Sato. For this pur-
pose we used only the isovector component of the Sato in-
teraction, since this is the only part of his interaction
which actually breaks charge symmetry. This is also the
only part of his interaction which actually contributes to
the Nolen-Schiffer anomaly in the mirror nuclei, and
therefore the only part which was determined by his stud-
ies on the anomalies in mirror nuclei. The CACD in-
teraction we use is therefore
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CSCD interaction. However, the CSCD interaction
changes sign at 2.9 fm and its matrix elements are re-
duced by a cancellation between values for small and large
radii, whereas the CACD interaction has the monotonic
radial dependence of the Yukawa potential. The effective
strength of the CSCD is only about 2% of the charge in-
dependent. interaction, and it is therefore only about twice
the strength of the CACD.

IV. MICROSCOPIC CAI.CULATION

A. Fine structure states

The " Sc IAS corresponding to the ground state of Ca
lies at an excitation energy of 11.6 MeV. To calculate the
spreading width we considered all configurations up to 20
MeV, taking the single particle and hole energies from
Table III. These are from Jaffrin and Ripka ' with
corrections based on more recent experimental work.
The spin assignment of if&/2 to the 4.078 MeV state in

Ca was modified to 2@3/2 The effect on the s.p. ener-

gy of the 1f5/2 state is negligible because of the very small
spectroscopic factor for this state. Significant change in
the 2p, /2 energy was found by Struve et al. , who
changed the assignment of the 4.49 MeV state in Sc
from 2p3/2 (Refs. 32 and 36) to 2p~/2. Since the spectro-
scopic factor is S=0.7, this changes the Zp ~/q significant-
ly. This is our only modification of the Jaffrin and Ripka
level scheme.

The orbits which must be considered in constructing FS
configurations include ldll/q, ld3/2 2sf/2 lf7/p 2+3/p,
lf, /2, 2p,~~, and lg9/2 The total number of FS states
with T= —, belonging to these configurations is of the or-
der of 16000. Averaging the distribution of these T&
states with a Lorentzian of width 2.0 MeV gives the aver-
age level density seen in Fig. 8. At the IAS at 11.6 MeV
the average density is 0.170 keV '. This is in astonish-
ingly good agreement with the value of 0.167 keV ' ob-
tained from the average spacing of the resonances listed in
Table I.

Many of these states cannot be coupled directly to the
IAS. The number of states with T= —, which can be cou-
pled directly to this IAS, the so-called hallway states, is
only about 800. These hallway states are then coupled to
more complicated states. We can obtain information on
the mixing of hallway states with more complicated FS
states by comparing the observed level density with the

cumulative level density from 2p-lh, 3p-2h, 4p-3h, etc. ,
configurations. The density of these p-h states is given by
a formula of Williams with parameters by Gilbert and
Cameron. The results given in Table IV indicate that
the observed density of 0.167 keV ' requires complete
mixing of hallway states with all configurations through
4p-3h. Thus the high resolution data on the IAS look
deep into the compound nucleus, although the IAS door-
way is a rather simple excitation.

B. Reduction to hallway states

The mixing between hallway states and more complex
configurations increases the number of states per unit en-

ergy interval which can be coupled to the IAS. However,
the rms value for the coupling matrix elements to the re-
sulting FS is reduced in the same proportion. Therefore
the mixing of hallway states with more complicated con-
figurations is not expected to change the IAS spreading
width significantly, but this mixing greatly increases the
task of calculating the spreading width.

We can reduce the scale of the calculation enormously
by expressing I entirely in terms of coupling matrix ele-
ments to hallway states only. This is easily done by using
operator identities of Kerman and DeToledo Piza. '

(I~/2+I)i(A
i V, ih) i

(E Eh) +(I—~/2+I)
(4.1)

The quantities I
&

in this equation are the spreading
widths of the hallway states, I"& 2m (M~~/D——~), given by
the Lorentz-weighted average of the squared matrix ele-
ments coupling each hallway state to more complex FS
states. We shall evaluate I' by using an average value
(I &) for the hallway widths. The range of reasonable
values is 1—3 MeV.

C. Evaluation of the spreading matrix elements

Even though we have considerably reduced the scale of
the calculation, the evaluation of the matrix elements be-
tween the IAS and the hallway states is a formidable task
because we must use eigenstates of isospin. Figure 4 illus-
trates the fact that the IAS is a superposition of lp-Oh
and 2p-1h states. Figure 4 also shows that a 2p-1h hall-
way state may also have 4p-3h components in order to be
an eigenstate of isospin. The mp-nh classification of ex-

TABLE III. Particle energies relative to the ground state of
49Sc.

Orbits (p) (MeV) e (n) (MeV)
TABLE IV. Density of particle-hole states at 11.6 MeV in

49sc.

1g9/2
1f5/2

2p 1/2

2p3/2
1f7/2
2$1/2
1 d3/p
1 ds/g

8.50
5.95
5.68
4.42
0

—5.64
—6.01
—9.79

—1.12
—1.18
—3.12
—5.14
—9.94

—13.63
—13.64
—16.57

Complexity

2p-1h
3p-2h
4p-3h
5p-4h

Number
of states
per MeV

4
42
70
21

Cumulative
level density

per keV

0.004
0.045
0.111
0.143
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I AS =
(a) 200

(r„')= O.4 MeV

l50—

HALLWAY =

IOO-
LLj

p

x p
x p 50—

FIG. 4. The particle-hole components of the analog of Ca
are illustrated in (a), with neutron orbits to the right and proton
orbits to the left. Below this part (b) shows the components of
one of the hallway states. The 3p-2h and 4p-3h components
must be added to the 2p-1h component to make a state of iso-

7
spin T( ———,.

cited states is useful here only for identifying the hallway
component of a FS state.

.In the shell model multiparticle matrix elements are
usually evaluated by a standard method which separates
out two-particle wave functions from totally antisym-
metric multiparticle states by using order preserving per-
mutations and coefficients of fractional parentage (cfp).
The hallway states have from six to ten nucleons in the
lf7~z shell. This presents us with a very open shell prob-
lem because 16 particles are required to close the 1f 7' or-
bits in the isospin representation, in contrast with the 8 re-
quired in the proton-neutron representation. %'e were not
able to employ standard techniques for reducing the mul-
tiparticle matrix elements because of the limited range of
existing tables of cfp's. However, by constructing a com-
plete set of hallway states characterized by the coupling of
various subgroups of nucleons and by employing order
preserving perrnutations, we found it possible to evaluate
all of the necessary two-body matrix elements directly in
terms of vector coupling coefficients.

V. DISCUSSION OF RESULTS

We have calculated I ~ ——I' (11.6 MeV) with the in-
clusion of the various charge-dependent components of

10

E (Mev)
l5 20

FIG. 5. Width functions I'(E) are shown for the isovector
~ . . and isotensor ———components of the Coulomb interac-

tion. The solid curve is I'(E) for the coherent sum of the two
sets of matrix elements. A value of (I z ) =0.4 MeV is used to
highlight the coherence.

the NN interaction which were discussed in Sec. III.
Reasonable estimates for the average hallway' spreading .

width lie in the range (I I, ) =1.5—3.0 MeV. Table V
gives the results of our calculations of the various contri-
butions to I z for several values of (I & ) in this range.

First note that I z is in excellent agreement with the
value of I"~ ——5.3+0.5 keV obtained from the strength
function analysis of the experimental data. Second, note
that according to Table V the various charge-dependent
interactions contribute coherently to I z. Although the
matrix elements of the CSCD interaction would only give
rise to a spreading width of about 1 keV, and the first-
and second-order Coulomb matrix elements would only
give a spreading width of 3.5—3.9 keV, together these two
sets of matrix elements generate a spreading width of
6.9—7.5 keV. Again, although the CACD interaction
would give a spreading width of only 0.3 keV, when add-
ed coherently to the matrix elements of the CSCD interac-
tion and the Coulomb interaction the CACD interaction
reduces the spreading width by almost 1 keV. Comparing
the fourth and fifth columns of Table V with the sixth
column, we again see a strong coherence between the

Direct Coulomb

TABLE V. Contributions to the spreading width of the analog of Ca.

Individual contributions (keV)

(I „'&

(MeV) isovector isotensor total IVM Coulomb + IVM CSCD Coulomb + IVM + CSCD CACD
Total
I

1.5
2.0
2.5
3.0

1.37
1.70
2.00
2.28

1.46
1.82
2.15
2.46

1.25
1.65
2.03
2.40

3.09
3.47
3.72
3.88

3.21
3.45
3.64
3.84

0.97
1.06
1.12
1.19

5.80
6.89
7.16
7.45

0.312
0.321
0.325
0.330

5.06
5.61
6.10
6.58
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direct and the second-order Coulomb spreading. The total
Coulomb spreading width is approximately that given by
the IVM alone, but it would be wrong to conclude that the
direct Coulomb matrix elements are negligible. The same
coherence evidently exists between the isovector and iso-
tensor components of the direct Coulomb matrix ele-
ments. The two contributions to the spreading width are
comparable, but the coherent sum is close to that of the
isovector component alone.

A plot of I'(E), given by Eq. (4.1), as a function of en-

ergy shows that the spreading matrix elements of the vari-
ous charge-dependent interactions are actually coherent at
all energies rather than at just the energy of the IAS. This
is best seen by treating (I z ) as an arbitrary parameter
and choosing a small value for it, say 0.4 MeV. For ex-
ample, Fig. 5 shows that the isovector and isotensor com-
ponents of the direct Coulomb coupling have very large
matrix elements to the antianalog and other configuration
states near 5 MeV, seen in the large peaks there. But

I I I I I I I I I . I I I I

FICx. 6. Width function I'(E) for the direct Coulomb cou-
pling . and for the second-order coupling through the IVM
———.The solid curve of I'(E) for the coherent sum of these
matrix elements shows destructive interference near the configu-
ration states.

FIG. 8. Width functions I'(E) for the total Coulomb
the CSCD ———,and the CACD ———.matrix elements.
The solid curve shows I'(E) for the coherent sum of the three
sets of matrix elements.

these two sets of matrix elements interfere destructively
when added, resulting in a reduction of the direct
Coulomb coupling to the configuration states by a factor
of more than 70.

This reduction is easily understood. The separate iso-
vector and isotensor Coulomb matrix elements between
the IAS and the configuration states are dominated by the
monopole component of the Coulomb interaction. Added
coherently these two components give the isovector mono-
pole interaction of Eq. (3.11), which does not couple to
the configuration states' in Sc. This leaves only. the
higher order multipoles to couple directly the analog to
the configuration states.

Destructive interference also occurs between the direct
Coulomb coupli. ng to the antianalog and that going
through the IVM. Figure 6 shows that the coupling
through the IVM is reduced by a factor of 4. From Table
V one finds that for (I')=2.0 MeV the first- and

h
second-order Coulomb coupling would give I z ——3.45
keV, to be compared to 3.47 keV for the IVM alone.

In Fig 7can .be seen the constructive interference be-
tween the total Coulomb spreading and that contributed
by the CSCD interaction which is reflected in Table V.

16

(r„')= 2,O MeV

4.0—
I I I I I I I I

II)

12
IJJ

0 '"'"
I J ~~ I I I t ~~~» f I I I I

0 2 4 6 8 10 12 14

E (Mev)

FICs. 7. Width functions I'(E) for the tota1 Coulomb (direct
plus IVM) coupling . and for the CSCD ———.The solid
curve is I'(E) for the coherent sum of these two sets of matrix
elements.

'3.0

2.5

2.0O

I— 15

1.0a
0.5—

I I I I I (

0 2 4 6 8 10 l 2 l4 l6 18 20
E(MeV)

FIG. 9. Average level density of FS states obtained with a
Lorentz averaging function with a width of 2.0 MeV.
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FIG. 10. Average level density of hallway states obtained
with a Lorentz averaging function with a width of 2.0 MeV.

FIG. 11. Root-mean-square of matrix elements from IAS to
hallway states.

Note that the matrix elements add coherently everywhere.
Figure 8 shows how relatively important the Coulomb,
the CSCD, and the CACD spreading widths are. This
figure again shows the importance of coherence between
the Coulomb matrix elements and those of the CSCD in-
teraction. Comparison of Fig. 7 with Fig. 8 suggests that
the energy dependence of I'(E) may be a reflection of the
density of hallways. Figure 9 shows the average level den-
sity of FS states obtained with a Lorentz averaging func-
tion with a width of 2.0 MeV. In Fig. 10 we plot the den-
sity of hallway states, obtained by using the same Lorentz
averaging function with a width of 2.0 MeV. From the
ratio of I '(E) to this density of hallway states we can find
the rms value of the spreading matrix elements to the
hallway states located at various energies. This is shown
in Fig. 11. Indeed, we see that the rms value of the cou-
pling matrix elements is remarkably constant at about
9+1 keV for hallway states in the entire energy range
8—20 MeV. In spite of the partial cancellation between
the isovector and isotensor components of the Coulomb
interaction, however, Fig. 10 shows that the matrix ele-
ments to the antianalog and the other configuration states
are larger than those to other hallway states.

VI. SUMMARY AND CONCLUSIONS

We have found that the contribution of short-range
charge-dependent interactions to the spreading width of
the analog of Ca is relatively much larger than the
Coulomb displacement anomaly. This result confirms the
general expectation that the violations of isospin selection

rules on transition matrix elements are much more sensi-
tive to contributions from short-range charge-d. ependent
interactions than are level shifts. In Sc we have found
that the CSCD interaction contributes approximately
one-half of the observed spreading width of the Ca ana-
log.

A CACD interaction, which is sufficient to account for
the breaking of charge symmetry seen in the Coulomb
anomaly in the mirror pair 'Sc- 'Ca, also contributes
coherently to 1"~. However, the resulting reduction of I z
by about 1 keV is too small to establish the presence of a
CACD interaction in light of the uncertainty in both the
experimental and calculated values of I z.

The most important conclusion to be drawn from this
work is that the known CSCD interaction cannot be
neglected in any calculation which seeks to account for
the spreading widths of the IAS. In fact, although the
microscopic calculations of these widths are formidable,
they may well provide the best information on the impor-
tance of short-range charge-dependent interactions in nu-
clei.
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